Binding of Protoporphyrin IX and its H- and J-aggregates by Porphyrin-Binding Aptamer – Novel Candidates for Photosensitizer Delivery Systems and Method for Supporting Supramolecules
DOI:
https://doi.org/10.51094/jxiv.1611キーワード:
protoporphyrin IX、 DNA aptamer、 photodynamic sensitizer、 supramolecule抄録
The formation of protoporphyrin IX (PPIX) H- and J-aggregates and the interactions between porphyrin-binding aptamer (PBA), monomeric PPIX, and PPIX aggregates were comprehensively studied. The present study reveals for the first time that PBA can capture one or more PPIX molecules upon interaction with H- and J-aggregates forming the common novel complex, with the absorption maximum at 412 nm. This complex could not be prepared even by adding excess amount of monomeric PPIX to PBA. The titration experiments, and the denaturation and subsequent annealing of the resulting complex suggested the equilibrated interaction between PBA and H- or J-aggregates, and the affinity constants Kas were determined as 1.4 × 105 M-1 and 5.0 × 104 M-1, respectively. From the standpoint of clinical applications, the aptamer sequence having affinity for cancer cells bound to the PBA sequence may be effective for drug delivery system of photodynamic therapy and diagnosis because the resulting complexes are sufficiently stable at body temperature to reach the target and are not too stable to release one or more PPIXs near cancer cells. From the standpoint of supramolecular chemistry, moreover, the present results may be useful for the immobilization of the porphyrin aggregates on the electrode or sensor surface using DNA aptamers for the practical applications.
利益相反に関する開示
The authors declare that they have no conflicts of interest.ダウンロード *前日までの集計結果を表示します
引用文献
Y. Zhang, B. S. Lai, M. Juhas, Molecules, 2019, 24, 941.
S. D Jayasena, Clin. Chem, 1999, 45, 1628.
L. Gold, N. Janjic, T. Jarvis, D. Schneider, J. J. Walker, S. K. Wilcox, D. Zichi, Cold Spring Harb Perspect. Biol., 2012, 4, a003582.
Z. Chen, L. Hu, B. T. Zhang, A. Lu, Y. Wang, Y. Yu, G. Zhang, Int. J. Mol. Sci., 2021, 22, 3605.
S. J. Lee, J. Cho, B. H. Lee, D. Hwang, J. W. Park, Biomedicines, 2023, 11, 356.
A. Di Gioacchino, J. Procyk, M. Molari, J. S. Schreck, Y. Zhou, Y. Liu, R. Monasson, S. Cocco, P. Šulc, PLoS. Comput. Biol., 2022, 18, e1010561.
E. M. Reyes-Reyes, Y. Teng, P. J. Bates, Cancer Res., 2010, 70, 8617.
Y. A. Shieh, S. J. Yang, M. F. Wei, M. J. Shieh, ACS Nano 2010, 4, 1433.
J. Carvalho, A. Paiva, Cabral Campello, Maria Paula, A. Paulo, J. L. Mergny, G. F. Salgado, J. A. Queiroz, C. Cruz, Sci Rep 2019, 9, 7945.
Yehuda G. Assaraf, Christopher P. Leamon, Joseph A. Reddy, Drug resistance updates 2014, 17, 89.
Nikki Parker, Mary Jo Turk, Elaine Westrick, Jeffrey D. Lewis, Philip S. Low, Christopher P. Leamon, Anal Biochem 2005, 338, 284.
Z. Wei, Y. Zhou, R. Wang, J. Wang, Z. Chen, Pharmaceutics 2022, 14, 2561.
Partha Ray, Rebekah R. White, Pharmaceuticals 2010, 3, 1761.
Y. Li, C. R. Geyer, D. Sen, Biochemistry 1996, 35, 6911.
H. Yaku, T. Murashima, D. Miyoshi, N. Sugimoto, Molecules 2012, 17, 10586.
Y. A. Lee, S. Lee, T. S. Cho, C. Kim, S. W. Han, S. K. Kim, Journal of Physical Chemistry B 2002, 106, 11351.
W. Zhou, Y. Cheng, B. Song, J. Hao, W. Miao, G. Jia, C. Li, Biochemistry 2021, 60, 3707.
I. Haq, J. O. Trent, B. Z. Chowdhry, T. C. Jenkins, J Am Chem Soc 1999, 121, 1768.
G. Song, J. Ren, Chemical Communications 2010, 46, 7283.
N. V Anantha, M. Azam, R. D. Sheardy, Biochemistry 1998, 37, 2709.
M. del Toro, R. Gargallo, R. Eritja, J. Jaumot, Anal Biochem 2008, 379, 8.
D. Zhao, X. Dong, N. Jiang, D. Zhang, C. Liu, Nucleic Acids Res., 2014, 42, 11612.
I. R. Krauss, A. Merlino, C. Giancola, A. Randazzo, L. Mazzarella, F. Sica, Nucleic Acids Res., 2011, 39, 7858.
H. Y. Cho, Y.-A. Lee, Y. S. Oh, G. J. Lee, Y. J. Jang, S. K. Kim, J. Biomol. Struct. Dyn., 2020, 38, 2686.
E. Yoshioka, V. S. Chelakkot, M. Licursi, S. G. Rutihinda, J. Som, L. Derwish, J. J. King, T. Pongnopparat, K. Mearow, M. Larijani, A. M. Dorward, K. Hirasawa, Theranostics, 2018, 8, 2134.
H. Fukuhara, K. Inoue, A. Kurabayashi, M. Furihata, T. Shuin, BMC Urol., 2015, 15, 78.
Y. Kitajima, T. Ishii, T. Kohda, M. Ishizuka, K. Yamazaki, Y. Nishimura, T. Tanaka, S. Dan, M. Nakajima, Sci. Rep., 2019, 9, 8666.
K. Omoto, R. Matsuda, Y. Nakai, Y. Tatsumi, T. Nakazawa, Y. Tanaka, Y. Shida, T. Murakami, F. Nishimura, I. Nakagawa, Y. Motoyama, M. Nakamura, K. Fujimoto, N. Hiroyuki, Photodiagnosis Photodyn. Ther., 2019, 25, 309.
M. Kiening, N. Lange, Int. J. Mol. Sci., 2022, 23, 7974.
V. S. Chelakkot, K. Liu, E. Yoshioka, S. Saha, D. Xu, M. Licursi, A. Dorward, K. Hirasawa, Sci. Rep., 2020, 10, 22124.
O. Tatarinova, V. Tsvetkov, D. Basmanov, N. Barinov, I. Smirnov, E. Timofeev, D. Kaluzhny, A. Chuvilin, D. Klinov, A. Varizhuk, G. Pozmogova, PLoS One, 2014, 9, e89383.
Roman F. Macaya, Peter Schultze, Flint W. Smith, James A. Roe, Juli Feigon, Proc. Natl. Acad. Sci. USA, 1993, 90, 3745.
F. Zaccaria, G. Paragi, F. C. Guerra, Phys. Chem. Chem. Phys., 2016, 18, 20895.
E. Largy, J.-L. Mergny, V. Gabelica, Met. Ions Life Sci., 2016, 16, 203.
A. E. Engelhart, J. Plavec, Ö. Persil, N. V. Hud, in RSC Biomolecular Sciences Nucleic Acid-Metal Ion Interactions, ed. by N. V. Hud, 2008, Chap. 4, pp. 114–149.
D. Varshney, J. Spiegel, K. Zyner, D. Tannahill, S. Balasubramanian, Nat. Rev. Mol. Cell Biol., 2020, 21, 459.
T. G. Hoog, M. R. Pawlak, B. F. Bachan, A. E. Engelhart, Biochem. Biophys. Rep., 2022, 30, 101238.
F. Hao, Y. Ma, Y. Guan, Molecules, 2019, 24, 1863.
I. Russo Krauss, A. Merlino, A. Randazzo, E. Novellino, L. Mazzarella, F. Sica, Nucleic Acids Res., 2012, 40, 8119.
B. Pagano, L. Martino, A. Randazzo, C. Giancola, Biophys. J., 2008, 94, 562.
A. Virgilio, D. Benigno, C. Aliberti, V. Vellecco, M. Bucci, V. Esposito, A. Galeone, Int. J. Mol. Sci., 2023, 24, 15529.
D. Bhattacharyya, G. M. Arachchilage, S. Basu, Front. Chem., 2016, 4, 38.
P. Serafini, M. Fernández-Leyes, J. Sánchez, R. B. Pereyra, E. P. Schulz, G. A. Durand, P. C. Schulz, H. A. Ritacco, Colloids Surf. A Physicochem. Eng. Asp., 2018, 559, 127.
Unpublished data as follows. The mixture solution of the PBA having a thiol group at the 5’-position (5’-SH-PBA) and PPIX was prepared by the same protocol, and then a gold electrode was immersed into it for 24 h. After the repeated washing with the buffer solution, the electrode was immersed in the electrolyte, 1 M Na2SO4 solution, and electrochemical measurement was carried out by using a counter Pt electrode and Ag/AgCl reference electrode. Upon illumination of repetitive pulsed 650 nm light, the square waved photocurrent synchronized with the square waved light pulse was observed. The control electrode prepared in the absence of PPIX showed no photocurrent. In the presence of Triton®, PPIX molecules should be dispersed without aggregation and the PPIX was considered to prepare 1:1 complex with 5’-SH-PBA. Accordingly, the result indicates that a PPIX in the complex transferred electrons to the oxygen molecules saturated in the solution upon photoillumination. The complex was sufficiently stable because it was durable to repeated washing by buffer solution.
I. Russo Krauss, A. Merlino, A. Randazzo, E. Novellino, L. Mazzarella, F. Sica, Nucleic Acids Res 2012, 40, 8119.
I. Inamura and K. Uchida, Bull. Chem. Soc. Jpn., 1991, 64, 2005.
J.-H. Fuhrhop, Demoulin Corinna, C. Boettcher, J. Konig, U. Siggel, J. Am. Chem. Soc., 1992, 114, 4159.
B. Myrzakhmetov, P. Arnoux, S. Mordon, S. Acherar, I. Tsoy, C. Frochot, Pharmaceuticals, 2021, 14, 1.
S. M. Andrade, R. Teixeira, S. M. B. Costa, A. J. F. N. Sobral, Biophys. Chem., 2008, 133, 1.
L. M. Scolaro, M. Castriciano, A. Romeo, S. Patanè, E. Cefalì, M. Allegrini, J. Phys. Chem. B, 2002, 106, 2453.
U. Siggel, U. Bindig, C. Endisch, T. Komatsu, E. Tsuchida, J. Voigt, J. -H. Fuhrhop, Ber. Bunsennges. Phys. Chem., 1996, 100, 2070.
M. Kasha, H. R. Rawls, M. Ashraf El-Bayoumi, Pure Appl. Chem., 1965, 11, 371.
A. Satake, Y. Kobuke, Org Biomol Chem 2007, 5, 1679.
C. A. Hunter, J. K. M. Sanders, J. Am. Chem. Soc., 1990, 112, 5525.
K. Kano, K. Fukuda, H. Wakami, R. Nishiyabu, R. F. Pasternack, J. Am. Chem. Soc., 2000, 122, 7494.
S. Faure, C. Stern, R. Guilard, P. D. Harvey, J Am Chem Soc 2004, 126, 1253.
ダウンロード
- PDF (English)
- Supplement-1_PDF (English)
- Supplement-2_PDF (English)
- Supplement-3_PDF (English)
- Supplement-4_PDF (English)
- Supplement-5_PDF (English)
- Supplement-6_PDF (English)
- Supplement-7_PDF (English)
- Supplement-8_PDF (English)
- Supplement-9_PDF (English)
- Supplement-10_PDF (English)
- Supplement-11_PDF (English)
- Supplement-12_PDF (English)
- Supplement-13_PDF (English)
- Supplement-14_PDF (English)
- Supplement-15_PDF (English)
- Supplement-16_PDF (English)
- Supplement-17_PDF (English)
- Supplement-18_PDF (English)
公開済
投稿日時: 2025-10-06 06:04:20 UTC
公開日時: 2025-10-08 08:21:55 UTC
ライセンス
Copyright(c)2025
Karin Rogi
Ishida, Akito

この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。