DOI: 10.1130/B38019.1
Carbonation of oceanic serpentinite related to extensive intraplate magmatism
DOI:
https://doi.org/10.51094/jxiv.1533キーワード:
Hydrothermal alteration抄録
Extensive intraplate magmatism that forms oceanic plateaux involves significant carbon outflux and perturbation of the global carbon cycle, potentially linking to climate change, oceanic anoxia, and mass extinction events. Hydrothermal alteration related to such magmatism can modify the major-element composition of the oceanic lithosphere around the hydrothermal system. However, the relationship between carbon mass transfer and hydrothermal systems associated with intraplate magmatism remains unclear. This study investigated carbonated serpentinites occurring along with mafic metavolcanic rocks, which were part of an oceanic plateau in the Late Jurassic Paleo-Pacific Ocean. Carbonate minerals (calcite and dolomite) occur as cement in the serpentinite breccias and as discrete veins in the serpentinite. C-O-Sr isotopic compositions and rare earth element data for the carbonates suggest the calcite cements in the serpentinite breccias formed in an oceanic setting by the mixing of seawater and hydrothermal fluids before subduction. The strontium isotopic compositions of the seawater-derived carbonates suggest that carbonation most likely occurred concurrently with the formation of an oceanic plateau, suggesting intraplate magmatism plays an important role as a carbon sink by inducing alteration and carbonation during associated hydrothermal activity. Moreover, our results suggest the calcite and dolomites formed in a subduction zone from CO2-rich fluids sourced by the devolatilization of metasediments, after the accretion of an oceanic plateau. These results may indicate that the life cycle of oceanic plateaux can cause perturbations in carbon influx and outflux, and that the interplay among oceanic plateau emplacement, subsequent alteration, and carbon uptake may have modulated atmospheric CO2 and Earth’s surface environments.
利益相反に関する開示
The authors declare no competing interests.ダウンロード *前日までの集計結果を表示します
引用文献
Agata, T., 1994, The Asama igneous complex, central Japan: An ultramafic-mafic layered intrusion in the Mikabu greenstone belt, Sambagawa metamorphic terrain: Lithos, v. 33, p. 241–263, doi:10.1016/0024-4937(94)90032-9.
Alt, J.C., and Teagle, D.A.H., 2003, Hydrothermal alteration of upper oceanic crust formed at a fast-spreading ridge: Mineral, chemical, and isotopic evidence from ODP Site 801: Chemical Geology, v. 201, p. 191–211, doi:10.1016/S0009-2541(03)00201-8.
Anovitz, L.M., and Essene, E.J., 1987, Phase Equilibria in the System CaCO3-MgCO3-FeCO3: Journal of Petrology, v. 28, p. 389–415, doi:10.1093/petrology/28.2.389.
Aoya, M., Endo, S., Mizukami, T., and Wallis, S.R., 2013, Paleo-mantle wedge preserved in the Sambagawa high-pressure: Metamorphic belt and the thickness of forearc continental crust: Geology, v. 41, p. 451–454, doi:10.1130/G33834.1.
Arzilli, F., Burton, M., La Spina, G., Macpherson, C.G., van Keken, P.E., and McCann, J., 2023, Decarbonation of subducting carbonate-bearing sediments and basalts of altered oceanic crust: Insights into recycling of CO2 through volcanic arcs: Earth and Planetary Science Letters, v. 602, p. 117945, doi:10.1016/j.epsl.2022.117945.
Bach, W., Rosner, M., Jöns, N., Rausch, S., Robinson, L.F., Paulick, H., and Erzinger, J., 2011, Carbonate veins trace seawater circulation during exhumation and uplift of mantle rock: Results from ODP Leg 209: Earth and Planetary Science Letters, v. 311, p. 242–252, doi:10.1016/j.epsl.2011.09.021.
Banno, S., 2004, Ultramafic Rocks and Associated Eclogites of the Sanbagawa Schists, Japan: A Review: International Geology Review, v. 46, p. 693–704, doi:10.2747/0020-6814.46.8.693.
Barry, P.H. et al., 2019, Forearc carbon sink reduces long-term volatile recycling into the mantle: Nature, v. 568, p. 487–492, doi:10.1038/s41586-019-1131-5.
Beier, C., Bach, W., Busch, A. V., Genske, F.S., Hübscher, C., and Krumm, S.H., 2019, Extreme intensity of fluid-rock interaction during extensive intraplate volcanism: Geochimica et Cosmochimica Acta, v. 257, p. 26–48, doi:10.1016/j.gca.2019.04.017.
Bernoulli, D., and Weissert, H., 2021a, Oxygen isotopes in ophicalcites: an ever-lasting controversy? International Journal of Earth Sciences, v. 110, p. 1–8, doi:10.1007/s00531-020-01934-5.
Bernoulli, D., and Weissert, H., 2021b, Reply to ‘Discussion of oxygen isotopes in ophicalcites: an ever‐lasting controversy?’ by R. Coltat, Ph. Boulvais, Y. Branquet, M. Poujol, P. Gautier and G. Manatschal: International Journal of Earth Sciences, v. 110, p. 1123–1125, doi:10.1007/s00531-021-01985-2.
Black, B.A., and Gibson, S.A., 2019, Deep carbon and the life cycle of large igneous provinces: Elements, v. 15, p. 319–324, doi:10.2138/gselements.15.5.319.
Burton, M.R., Sawyer, G.M., and Granieri, D., 2013, Deep carbon emissions from volcanoes: Reviews in Mineralogy and Geochemistry, v. 75, p. 323–354, doi:10.2138/rmg.2013.75.11.
Cannaò, E., Scambelluri, M., Bebout, G.E., Agostini, S., Pettke, T., Godard, M., and Crispini, L., 2020, Ophicarbonate evolution from seafloor to subduction and implications for deep-Earth C cycling: Chemical Geology, v. 546, p. 119626, doi:10.1016/j.chemgeo.2020.119626.
Coffin, M.F., and Eldholm, O., 1994, Large igneous provinces: Crustal structure, dimensions, and external consequences: Reviews of Geophysics, v. 32, p. 1–36, doi:10.1029/93RG02508.
Coltat, R., Boulvais, P., Branquet, Y., Collot, J., Epin, M.E., and Manatschal, G., 2019, Syntectonic carbonation during synmagmatic mantle exhumation at an ocean-continent transition: Geology, v. 47, p. 183–186, doi:10.1130/G45530.1.
Coltat, R., Boulvais, P., Branquet, Y., Poujol, M., Gautier, P., and Manatschal, G., 2021, Discussion to “Oxygen isotope in ophicalcites: an ever-lasting controversy?” International Journal of Earth Sciences, v. 110, p. 1117–1121, doi:10.1007/s00531-021-01983-4.
Coltorti, M., Bonadiman, C., Faccini, B., Grégoire, M., O’Reilly, S.Y., and Powell, W., 2007, Amphiboles from suprasubduction and intraplate lithospheric mantle: Lithos, v. 99, p. 68–84, doi:10.1016/j.lithos.2007.05.009.
Cortiade, N., Delacour, A., Guillaume, D., Moine, B., and Chevet, J., 2022, Serpentinization of mantle xenoliths in Kerguelen archipelago: A first petrographic and geochemical study: Lithos, v. 428–429, doi:10.1016/j.lithos.2022.106796.
Daëron, M., Drysdale, R.N., Peral, M., Huyghe, D., Blamart, D., Coplen, T.B., Lartaud, F., and Zanchetta, G., 2019, Most Earth-surface calcites precipitate out of isotopic equilibrium: Nature Communications, v. 10, p. 1–7, doi:10.1038/s41467-019-08336-5.
Dessert, C., Dupré, B., Gaillardet, J., François, L.M., and Allègre, C.J., 2003, Basalt weathering laws and the impact of basalt weathering on the global carbon cycle: Chemical Geology, v. 202, p. 257–273, doi:10.1016/j.chemgeo.2002.10.001.
Dilek, Y., and Ernst, R., 2008, Links between ophiolites and Large Igneous Provinces (LIPs) in Earth history: Introduction: Lithos, v. 100, p. 1–13, doi:10.1016/j.lithos.2007.08.001.
Eickmann, B., Bach, W., Rosner, M., and Peckmann, J., 2009, Geochemical constraints on the modes of carbonate precipitation in peridotites from the Logatchev Hydrothermal Vent Field and Gakkel Ridge: Chemical Geology, v. 268, p. 97–106, doi:10.1016/j.chemgeo.2009.08.002.
Elderfield, H., 1988, The oceanic chemistry of the rare-earth elements: Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, v. 325, p. 105–126, doi:10.1098/rsta.1988.0046.
Enami, M., 1983, Petrology of pelitic schists in the oligoclase‐biotite zone of the Sanbagawa metamorphic terrain, Japan: phase equilibria in the highest grade zone of a high‐pressure intermediate type of metamorphic belt: Journal of Metamorphic Geology, v. 1, p. 141–161, doi:10.1111/j.1525-1314.1983.tb00269.x.
Enami, M., Wallis, S.R., and Banno, Y., 1994, Paragenesis of sodic pyroxene-bearing quartz schists: implications for the P-T history of the Sanbagawa belt: Contributions to Mineralogy and Petrology, v. 116, p. 182–198, doi:10.1007/BF00310699.
Endo, S., Kouketsu, Y., and Aoya, M., 2024, Sanbagawa Subduction: What Went in, How Deep, and How Hot did it Get? Elements, v. 20, p. 77–82, doi:10.2138/gselements.20.2.77.
Endo, S., Wallis, S., Hirata, T., Anczkiewics, R., Platt, J., Thirlwall, M., and Asahara, Y., 2009, Age and early metamorphic history of the Sanbagawa belt: Lu-Hf and P - T constraints from the Western Iratsu eclogite: Journal of Metamorphic Geology, v. 27, p. 371–384, doi:10.1111/j.1525-1314.2009.00821.x.
Ernst, R.E., Bond, D.P.G., Zhang, S., Buchan, K.L., Grasby, S.E., Youbi, N., El Bilali, H., Bekker, A., and Doucet, L.S., 2021, Large Igneous Province Record Through Time and Implications for Secular Environmental Changes and Geological Time‐Scale Boundaries, in Large Igneous Provinces: A Driver of Global Environmental and Biotic Changes, p. 1–26, doi:10.1002/9781119507444.ch1.
Faure, G., and Mensing, T.M., 2004, Isotopes: Principles and Applications (3rd Edition, Ed.): Wiley, 928 p.
Früh-Green, G.L., Kelley, D.S., Bernasconi, S.M., Karson, J.A., Ludwig, K.A., Butterfield, D.A., Boschi, C., and Proskurowski, G., 2003, 30,000 Years of hydrothermal activity at the Lost City vent field: Science, doi:10.1126/science.1085582.
Früh-Green, G.L., Weissert, H., and Bernoulli, D., 1990, A multiple fluid history recorded in Alpine ophiolites: Journal of the Geological Society, v. 147, p. 959–970, doi:10.1144/gsjgs.147.6.0959.
Galvez, M.E., and Pubellier, M., 2019, How Do Subduction Zones Regulate the Carbon Cycle?, in Deep Carbon, Cambridge University Press, p. 276–312, doi:10.1017/9781108677950.010.
Geersen, J., Sippl, C., and Harmon, N., 2022, Impact of bending-related faulting and oceanic-plate topography on slab hydration and intermediate-depth seismicity: Geosphere, v. 18, p. 562–584, doi:10.1130/GES02367.1.
German, C.R., and Elderfield, H., 1990, Application of the Ce anomaly as a paleoredox indicator: The ground rules: Paleoceanography, v. 5, p. 823–833, doi:10.1029/PA005i005p00823.
Hara, H., Mori, H., Tominaga, K., and Nobe, Y., 2021, Progressive low-grade metamorphism reconstructed from the raman spectroscopy of carbonaceous material and an EBSD analysis of quartz in the sanbagawa metamorphic event, central Japan: Minerals, v. 11, doi:10.3390/min11080854.
Harris, P.T., Macmillan-Lawler, M., Rupp, J., and Baker, E.K., 2014, Geomorphology of the oceans: Marine Geology, v. 352, p. 4–24, doi:10.1016/j.margeo.2014.01.011.
Hart, S.R., and Staudigel, H., 1986, Ocean crust vein mineral deposition: Rb Sr ages, U-Th-Pb geochemistry, and duration of circulation at DSDP sites 261, 462 and 516: Geochimica et Cosmochimica Acta, v. 50, p. 2751–2761, doi:10.1016/0016-7037(86)90224-3.
Hashimoto, M., Tagiri, M., Kusakabe, K., Masuda, K., and Yano, T., 1992, Geologic structure formed by tectonic stacking of sliced layers in the Sanbagawa metamorphic terrain, Kodama-Nagatoro area, Kanto Mountains.: The Journal of the Geological Society of Japan, v. 98, p. 953–965, doi:10.5575/geosoc.98.953.
Hastie, A.R., and Kerr, A.C., 2010, Mantle plume or slab window?: Physical and geochemical constraints on the origin of the Caribbean oceanic plateau: Earth-Science Reviews, v. 98, p. 283–293, doi:10.1016/j.earscirev.2009.11.001.
Hattori, K., Wallis, S., Enami, M., and Mizukami, T., 2010, Subduction of mantle wedge peridotites: Evidence from the Higashi-akaishi ultramafic body in the Sanbagawa metamorphic belt: Island Arc, v. 19, p. 192–207, doi:10.1111/j.1440-1738.2009.00696.x.
Heydolph, K., Murphy, D.T., Geldmacher, J., Romanova, I. V., Greene, A., Hoernle, K., Weis, D., and Mahoney, J., 2014, Plume versus plate origin for the Shatsky Rise oceanic plateau (NW Pacific): Insights from Nd, Pb and Hf isotopes: Lithos, v. 200–201, p. 49–63, doi:10.1016/j.lithos.2014.03.031.
Hieronymus, C.F., and Bercovici, D., 2001, A theoretical model of hotspot volcanism: Control on volcanic spacing and patterns via magma dynamics and lithospheric stresses: Journal of Geophysical Research: Solid Earth, v. 106, p. 683–702, doi:10.1029/2000jb900355.
Hirauchi, K. ichi, Nagata, Y., Kataoka, K., Oyanagi, R., Okamoto, A., and Michibayashi, K., 2021, Cataclastic and crystal-plastic deformation in shallow mantle-wedge serpentinite controlled by cyclic changes in pore fluid pressures: Earth and Planetary Science Letters, v. 576, p. 117232, doi:10.1016/j.epsl.2021.117232.
Hirschmann, M.M., 2018, Comparative deep Earth volatile cycles: The case for C recycling from exosphere/mantle fractionation of major (H2O, C, N) volatiles and from H2O/Ce, CO2/Ba, and CO2/Nb exosphere ratios: Earth and Planetary Science Letters, v. 502, p. 262–273, doi:10.1016/j.epsl.2018.08.023.
Hisada, K., Nakazawa, E., and Arai, S., 1993, Sedimentary origon of ophicalcite in the Sambagawa metamorphic rocks, Kanto Mountains, central Japan: Annual report of the Institute of Geoscience, the University of Tsukuba, v. 19, p. 43–47.
Horton, F., 2021, Rapid recycling of subducted sedimentary carbon revealed by Afghanistan carbonatite volcano: Nature Geoscience, v. 14, p. 508–512, doi:10.1038/s41561-021-00764-7.
Ichiyama, Y., Ishiwatari, A., Kimura, J.I., Senda, R., and Miyamoto, T., 2014, Jurassic plume-origin ophiolites in Japan: Accreted fragments of oceanic plateaus: Contributions to Mineralogy and Petrology, v. 168, p. 1–24, doi:10.1007/s00410-014-1019-1.
Ichiyama, Y., Takahashi, S., and Ito, H., 2018, Zircon U-Pb ages of the Mikabu ophiolitic belt, Southwest Japan: Implications for the origin of the Shatsky Rise, in EGU General Assembly Conference Abstracts, v. 20, p. 11879, https://meetingorganizer.copernicus.org/EGU2018/EGU2018-11879.pdf.
Inomata, M., and Tazaki, K., 1974, Phlogopite and Ti-pargasite-bearing ultramafic rocks from the Mikabu zone, Central Japan: The Journal of the Japanese Association of Mineralogists, Petrologists and Economic Geologists, v. 69, p. 205–214, doi:10.2465/ganko1941.69.205.
Ishiwatari, A., Ozawa, K., Arai, S., Ishimaru, S., Abe, N., and Takeuchi, M., 2016, Ophiolites and ultramafic rocks, in The Geology of Japan, Geological Society London, p. 223–250, doi:10.1144/GOJ.9.
Isozaki, Y., Maruyama, S., and Furuoka, F., 1990, Accreted oceanic materials in Japan: Tectonophysics, v. 181, p. 179–205, doi:10.1016/0040-1951(90)90016-2.
Jacobsen, S.B., and Kaufman, A.J., 1999, The Sr, C and O isotopic evolution of Neoproterozoic seawater: Chemical Geology, v. 161, p. 37–57, doi:10.1016/S0009-2541(99)00080-7.
Jamtveit, B., Malthe-Sørenssen, A., and Kostenko, O., 2008, Reaction enhanced permeability during retrogressive metamorphism: Earth and Planetary Science Letters, v. 267, p. 620–627, doi:10.1016/j.epsl.2007.12.016.
Jiang, Q., Jourdan, F., Olierook, H.K.H., Merle, R.E., Bourdet, J., Fougerouse, D., Godel, B., and Walker, A.T., 2022, Volume and rate of volcanic CO2 emissions governed the severity of past environmental crises: Proceedings of the National Academy of Sciences of the United States of America, v. 119, p. 1–10, doi:10.1073/pnas.2202039119.
Jochum, K.P., Willbold, M., Raczek, I., Stoll, B., and Herwig, K., 2005, Chemical Characterisation of the USGS Reference Glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G, BCR-2G, BHVO-2G and BIR-1G Using EPMA, ID-TIMS, ID-ICP-MS and LA-ICP-MS: Geostandards and Geoanalytical Research, v. 29, p. 285–302, doi:10.1111/j.1751-908X.2005.tb00901.x.
Johansson, L., Zahirovic, S., and Müller, R.D., 2018, The Interplay Between the Eruption and Weathering of Large Igneous Provinces and the Deep-Time Carbon Cycle: Geophysical Research Letters, v. 45, p. 5380–5389, doi:10.1029/2017GL076691.
Jones, M.T., Jerram, D.A., Svensen, H.H., and Grove, C., 2016, The effects of large igneous provinces on the global carbon and sulphur cycles: Palaeogeography, Palaeoclimatology, Palaeoecology, v. 441, p. 4–21, doi:10.1016/j.palaeo.2015.06.042.
Kaufman, A.J., Jacobsen, S.B., and Knoll, A.H., 1993, The Vendian record of Sr and C isotopic variations in seawater: Implications for tectonics and paleoclimate: Earth and Planetary Science Letters, v. 120, p. 409–430, doi:10.1016/0012-821X(93)90254-7.
Kelemen, P.B. et al., 2022, Listvenite Formation During Mass Transfer into the Leading Edge of the Mantle Wedge: Initial Results from Oman Drilling Project Hole BT1B: Journal of Geophysical Research: Solid Earth, v. 127, p. 1–38, doi:10.1029/2021jb022352.
Kelemen, P.B., and Manning, C.E., 2015, Reevaluating carbon fluxes in subduction zones, what goes down, mostly comes up: Proceedings of the National Academy of Sciences, v. 112, p. E3997–E4006, doi:10.1073/pnas.1507889112.
Kendrick, M.A., Zhao, J., and Feng, Y., 2022, Early accretion and prolonged carbonation of the Pacific Ocean’s oldest crust: Geology, v. 50, p. 1270–1275, doi:10.1130/G49985.1.
Kerr, A.C., 2014, Oceanic Plateaus, in Treatise on Geochemistry, Elsevier, v. 4, p. 631–667, doi:10.1016/B978-0-08-095975-7.00320-X.
Kerr, A.C., Tarney, J., Nivia, A., Marriner, G.F., and Saunders, A.D., 1998, The internal structure of oceanic plateaus: Inferences from obducted Cretaceous terranes in western Colombia and the Caribbean: Tectonophysics, v. 292, p. 173–188, doi:10.1016/S0040-1951(98)00067-5.
Kerr, A.C., White, R. V., and Saunders, A.D., 2000, LIP Reading: Recognizing Oceanic Plateaux in the Geological Record: Journal of Petrology, v. 41, p. 1041–1056, doi:10.1093/petrology/41.7.1041.
Kim, S.T., and O’Neil, J.R., 1997, Equilibrium and nonequilibrium oxygen isotope effects in synthetic carbonates: Geochimica et Cosmochimica Acta, v. 61, p. 3461–3475, doi:10.1016/S0016-7037(97)00169-5.
Kimura, J.I., and Chang, Q., 2012, Origin of the suppressed matrix effect for improved analytical performance in determination of major and trace elements in anhydrous silicate samples using 200 nm femtosecond laser ablation sector-field inductively coupled plasma mass spectrometry: Journal of Analytical Atomic Spectrometry, v. 27, p. 1549–1559, doi:10.1039/c2ja10344c.
Kimura, G., Sakakibara, M., and Okamura, M., 1994, Plumes in central Panthalassa? Deductions from accreted oceanic fragments in Japan: Tectonics, v. 13, p. 905–916, doi:10.1029/94TC00351.
Klein, F., Schroeder, T., John, C.M., Davis, S., Humphris, S.E., Seewald, J.S., Sichel, S., Bach, W., and Brunelli, D., 2024, Mineral carbonation of peridotite fueled by magmatic degassing and melt impregnation in an oceanic transform fault: Proceedings of the National Academy of Sciences, v. 121, p. 2017, doi:10.1073/pnas.2315662121.
Klinkhammer, G.P., Elderfield, H., Edmond, J.M., and Mitra, A., 1994, Geochemical implications of rare earth element patterns in hydrothermal fluids from mid-ocean ridges: Geochimica et Cosmochimica Acta, v. 58, p. 5105–5113, doi:10.1016/0016-7037(94)90297-6.
Korenaga, J., 2017, On the extent of mantle hydration caused by plate bending: Earth and Planetary Science Letters, v. 457, p. 1–9, doi:10.1016/j.epsl.2016.10.011.
Korenaga, J., 2007, Thermal cracking and the deep hydration of oceanic lithosphere: A key to the generation of plate tectonics? Journal of Geophysical Research: Solid Earth, v. 112, doi:10.1029/2006JB004502.
Koto, B., 1888, On the so-called Crystalline Schists of Chichibu (The Sambagawan Series): The journal of the College of Science, Imperial University, Japan, p. 77–141.
Kouketsu, Y., Enami, M., Mouri, T., Okamura, M., and Sakurai, T., 2014, Composite metamorphic history recorded in garnet porphyroblasts of Sambagawa metasediments in the Besshi region, central Shikoku, Southwest Japan: Island Arc, v. 23, p. 263–280, doi:10.1111/iar.12075.
Kunugiza, K., Takasu, A., and Banno, S., 1986, The origin and metamorphic history of the ultramafic and metagabbro bodies in the Sanbagawa metamorphic belt: Memoir of the Geological Society of America, v. 164, p. 375–385, doi:10.1130/MEM164-p375.
Labotka, T.C., Cole, D.R., and Riciputi, L.R., 2000, Diffusion of C and O in calcite at 100 MPa: American Mineralogist, v. 85, p. 488–494, doi:10.2138/am-2000-0410.
Lawrence, M.G., Greig, A., Collerson, K.D., and Kamber, B.S., 2006, Rare earth element and yttrium variability in South East Queensland waterways: Aquatic Geochemistry, v. 12, p. 39–72, doi:10.1007/s10498-005-4471-8.
Leake, B.E. et al., 1997, Nomenclature of Amphiboles; Report of the Subcommittee on Amphiboles of the International Mineralogical Association Commission on New Minerals and Mineral Names: Mineralogical Magazine, v. 61, p. 295–310, doi:10.1180/minmag.1997.061.405.13.
Leong, J.A., de Obeso, J.C., Manning, C.E., and Kelemen, P.B., 2023, Thermodynamic constraints on the fate of carbon mobilized from subducted sediments in the overlying mantle wedge: Earth and Planetary Science Letters, v. 623, p. 118424, doi:10.1016/j.epsl.2023.118424.
Li, S., Geldmacher, J., Hauff, F., Garbe-Schönberg, D., Yu, S., Zhao, S., and Rausch, S., 2014, Composition and timing of carbonate vein precipitation within the igneous basement of the Early Cretaceous Shatsky Rise, NW Pacific: Marine Geology, v. 357, p. 321–333, doi:10.1016/j.margeo.2014.09.046.
Makimoto, H., and Takeuchi, K., 1992, Geology of the Yorii district.: Geological Survey of Japan, 136 p.
Malvoisin, B., Brantut, N., and Kaczmarek, M.A., 2017, Control of serpentinisation rate by reaction-induced cracking: Earth and Planetary Science Letters, v. 476, p. 143–152, doi:10.1016/j.epsl.2017.07.042.
McArthur, J.M., Howarth, R.J., Shields, G.A., and Zhou, Y., 2020, Strontium Isotope Stratigraphy: Geologic Time Scale 2020, p. 211–238, doi:10.1016/B978-0-12-824360-2.00007-3.
McCollom, T.M., 2008, Observational, experimental, and theoretical constraints on carbon cycling in mid-ocean ridge hydrothermal systems: Geophysical Monograph Series, v. 178, p. 193–213, doi:10.1029/178GM10.
Menzel, M.D., Garrido, C.J., López Sánchez-Vizcaíno, V., Marchesi, C., Hidas, K., Escayola, M.P., and Delgado Huertas, A., 2018, Carbonation of mantle peridotite by CO2-rich fluids: the formation of listvenites in the Advocate ophiolite complex (Newfoundland, Canada): Lithos, v. 323, p. 238–261, doi:10.1016/j.lithos.2018.06.001.
Menzel, M.D., Sieber, M.J., and Godard, M., 2024, From peridotite to listvenite – perspectives on the processes, mechanisms and settings of ultramafic mineral carbonation to quartz-magnesite rocks: Earth-Science Reviews, v. 255, p. 104828, doi:10.1016/j.earscirev.2024.104828.
Miyazaki, T., and Shuto, K., 1998, Sr and Nd isotope ratios of twelve GSJ rock reference samples: Geochemical Journal, v. 32, p. 345–350, doi:10.2343/geochemj.32.345.
Mizukami, T., Yokoyama, H., Hiramatsu, Y., Arai, S., Kawahara, H., Nagaya, T., and Wallis, S.R., 2014, Two types of antigorite serpentinite controlling heterogeneous slow-slip behaviours of slab-mantle interface: Earth and Planetary Science Letters, v. 401, p. 148–158, doi:10.1016/j.epsl.2014.06.009.
Morohashi, K., Okamoto, A., Satish-Kumar, M., and Tsuchiya, N., 2008, Variations in stable isotope compositions (δ13C, δ18O) of calcite within exhumation-related veins from the Sanbagawa metamorphic belt: Journal of Mineralogical and Petrological Sciences, v. 103, p. 361–364, doi:10.2465/jmps.080620b.
Müller, R.D., Mather, B., Dutkiewicz, A., Keller, T., Merdith, A., Gonzalez, C.M., Gorczyk, W., and Zahirovic, S., 2022, Evolution of Earth’s tectonic carbon conveyor belt: Nature, v. 605, p. 629–639, doi:10.1038/s41586-022-04420-x.
Neo, N., Yamazaki, S., and Miyashita, S., 2009, Data report: bulk rock compositions of samples from the IODP Expedition 309/312 sample pool, ODP Hole 1256D, in Proceedings of the IODP, 309/312, Integrated Ocean Drilling Program, v. 309, doi:10.2204/iodp.proc.309312.204.2009.
Nivia, A., 1996, The Bolivar mafic-ultramafic complex, SW Colombia: The base of an obducted oceanic plateau: Journal of South American Earth Sciences, v. 9, p. 59–68, doi:10.1016/0895-9811(96)00027-2.
Noël, J., Godard, M., Oliot, E., Martinez, I., Williams, M., Boudier, F., Rodriguez, O., Chaduteau, C., Escario, S., and Gouze, P., 2018, Evidence of polygenetic carbon trapping in the Oman Ophiolite: Petro-structural, geochemical, and carbon and oxygen isotope study of the Wadi Dima harzburgite-hosted carbonates (Wadi Tayin massif, Sultanate of Oman): Lithos, v. 323, p. 218–237, doi:10.1016/j.lithos.2018.08.020.
Okamoto, A., Nagaya, T., Endo, S., and Mizukami, T., 2024, Ultramafic Rocks from the Sanbagawa Belt: Records of Mantle Wedge Processes: Elements, v. 20, p. 83–88, doi:10.2138/gselements.20.2.83.
Okamoto, A., Oyanagi, R., Yoshida, K., Uno, M., Shimizu, H., and Satish-Kumar, M., 2021, Rupture of wet mantle wedge by self-promoting carbonation: Communications Earth & Environment, v. 2, p. 1–10, doi:10.1038/s43247-021-00224-5.
Oyanagi, R., and Okamoto, A., 2024, Subducted carbon weakens the forearc mantle wedge in a warm subduction zone: Nature Communications, v. 15, p. 7159, doi:10.1038/s41467-024-51476-6.
Oyanagi, R., Okamoto, A., Satish-Kumar, M., Minami, M., Harigane, Y., and Michibayashi, K., 2021, Hadal aragonite records venting of stagnant paleoseawater in the hydrated forearc mantle: Communications Earth & Environment, v. 2, p. 1–10, doi:10.1038/s43247-021-00317-1.
Oyanagi, R., Uno, M., and Okamoto, A., 2023, Metasomatism at a metapelite–ultramafic rock contact at the subduction interface: Insights into mass transfer and fluid flow at the mantle wedge corner: Contributions to Mineralogy and Petrology, v. 178, p. 27, doi:10.1007/s00410-023-02011-1.
Ozawa, H., Murata, M., Nishimura, H., and Itaya, T., 1997, Petrological Feature and Dating of Igneous Rocks of the Mikabu Belt: Bulletin of the Volcanological Society of Japan, v. 42, p. S231–S237, doi:10.18940/kazan.42.Special_S231.
Park, J., and Rye, D.M., 2019a, Broader Impacts of the Metasomatic Underplating Hypothesis: Geochemistry, Geophysics, Geosystems, v. 20, p. 4810–4829, doi:10.1029/2019GC008493.
Park, J., and Rye, D.M., 2019b, Why Is Crustal Underplating Beneath Many Hot Spot Islands Anisotropic? Geochemistry, Geophysics, Geosystems, v. 20, p. 4779–4809, doi:10.1029/2019GC008492.
Pearce, J.A., 2008, Geochemical fingerprinting of oceanic basalts with applications to ophiolite classification and the search for Archean oceanic crust: Lithos, v. 100, p. 14–48, doi:10.1016/j.lithos.2007.06.016.
Peng, W., Zhang, L., Menzel, M.D., Vitale Brovarone, A., Tumiati, S., Shen, T., and Hu, H., 2020, Multistage CO2 sequestration in the subduction zone: Insights from exhumed carbonated serpentinites, SW Tianshan UHP belt, China: Geochimica et Cosmochimica Acta, v. 270, p. 218–243, doi:10.1016/j.gca.2019.11.025.
Plank, T., 2014, The Chemical Composition of Subducting Sediments, in Treatise on Geochemistry, Elsevier, v. 4, p. 607–629, doi:10.1016/B978-0-08-095975-7.00319-3.
Plank, T., and Manning, C.E., 2019, Subducting carbon: Nature, v. 574, p. 343–352, doi:10.1038/s41586-019-1643-z.
Pourmand, A., Dauphas, N., and Ireland, T.J., 2012, A novel extraction chromatography and MC-ICP-MS technique for rapid analysis of REE, Sc and Y: Revising CI-chondrite and Post-Archean Australian Shale (PAAS) abundances: Chemical Geology, v. 291, p. 38–54, doi:10.1016/j.chemgeo.2011.08.011.
Richards, M., Contreras-Reyes, E., Lithgow-Bertelloni, C., Ghiorso, M., and Stixrude, L., 2013, Petrological interpretation of deep crustal intrusive bodies beneath oceanic hotspot provinces: Geochemistry, Geophysics, Geosystems, v. 14, p. 604–619, doi:10.1029/2012GC004448.
Ridley, V.A., and Richards, M.A., 2010, Deep crustal structure beneath large igneous provinces and the petrologic evolution of flood basalts: Geochemistry, Geophysics, Geosystems, v. 11, doi:10.1029/2009GC002935.
Ripperdan, R.L., 2001, Stratigraphic Variation in Marine Carbonate Carbon Isotope Ratios: Reviews in Mineralogy and Geochemistry, v. 43, p. 637–662, doi:10.2138/gsrmg.43.1.637.
Sager, W.W., Sano, T., and Geldmacher, J., 2016, Earth-Science Reviews Formation and evolution of Shatsky Rise oceanic plateau : Insights from IODP Expedition 324 and recent geophysical cruises: Earth Science Reviews, v. 159, p. 306–336, doi:10.1016/j.earscirev.2016.05.011.
Sakai, R., Kusakabe, M., Noto, M., and Ishii, T., 1990, Origin of waters responsible for serpentinization of the Izu-Ogasawara-Mariana forearc seamounts in view of hydrogen and oxygen isotope ratios: Earth and Planetary Science Letters, v. 100, p. 291–303, doi:10.1016/0012-821X(90)90192-Z.
Sakakibara, M., Hori, R.S., and Murakami, T., 1993, Evidence from radiolarian chert xenoliths for post-Early Jurassic volcanism of the Mikabu greenrocks, Okuki area, western Shikoku, Japan: The Journal of the Geological Society of Japan, v. 99, p. 831- 833_1, doi:10.5575/geosoc.99.831.
Sano, T., Shimizu, K., Ishikawa, A., Senda, R., Chang, Q., Kimura, J.I., Widdowson, M., and Sager, W.W., 2012, Variety and origin of magmas on Shatsky Rise, northwest Pacific Ocean: Geochemistry, Geophysics, Geosystems, v. 13, doi:10.1029/2012GC004235.
Sawada, H., Isozaki, Y., Aoki, S., Sakata, S., Sawaki, Y., Hasegawa, R., and Nakamura, Y., 2019, The Late Jurassic magmatic protoliths of the Mikabu greenstones in SW Japan: A fragment of an oceanic plateau in the Paleo-Pacific Ocean: Journal of Asian Earth Sciences, v. 169, p. 228–236, doi:10.1016/j.jseaes.2018.08.018.
Scambelluri, M., Bebout, G.E., Belmonte, D., Gilio, M., Campomenosi, N., Collins, N., and Crispini, L., 2016, Carbonation of subduction-zone serpentinite (high-pressure ophicarbonate; Ligurian Western Alps) and implications for the deep carbon cycling: Earth and Planetary Science Letters, v. 441, p. 155–166, doi:10.1016/j.epsl.2016.02.034.
Schaller, M.F., Wright, J.D., Kent, D. V., and Olsen, P.E., 2012, Rapid emplacement of the Central Atlantic Magmatic Province as a net sink for CO2: Earth and Planetary Science Letters, v. 323–324, p. 27–39, doi:10.1016/j.epsl.2011.12.028.
Schmidt, K., Koschinsky, A., Garbe-Schönberg, D., de Carvalho, L.M., and Seifert, R., 2007, Geochemistry of hydrothermal fluids from the ultramafic-hosted Logatchev hydrothermal field, 15°N on the Mid-Atlantic Ridge: Temporal and spatial investigation: Chemical Geology, v. 242, p. 1–21, doi:10.1016/j.chemgeo.2007.01.023.
Schwarzenbach, E.M., Gill, B.C., Gazel, E., and Madrigal, P., 2016, Sulfur and carbon geochemistry of the Santa Elena peridotites: Comparing oceanic and continental processes during peridotite alteration: Lithos, v. 252–253, p. 92–108, doi:10.1016/j.lithos.2016.02.017.
Seki, Y., and Kuriyagawa, S., 1961, Mafic and leucocratic rocks associated with serpentinite of Kanasaki, Kanto Mountains, central Japan: Japanese Journal of Geology and Geography, v. 33, p. 15–32.
Smrzka, D., Zwicker, J., Bach, W., Feng, D., Himmler, T., Chen, D., and Peckmann, J., 2019, The behavior of trace elements in seawater, sedimentary pore water, and their incorporation into carbonate minerals: a review: Facies, v. 65, p. 41, doi:10.1007/s10347-019-0581-4.
Suzuki, N., Saito, H., and Hoshino, T., 2017, Hydrogen gas of organic origin in shales and metapelites: International Journal of Coal Geology, v. 173, p. 227–236, doi:10.1016/j.coal.2017.02.014.
Takasu, A., and Dallmeyer, R.D., 1990, 40Ar/39Ar mineral age constraints for the tectonothermal evolution of the Sambagawa metamorphic belt, central Shikoku, Japan: a Cretaceous accretionary prism: Tectonophysics, v. 185, p. 111–139, doi:10.1016/0040-1951(90)90408-Z.
Tamura, A., and Arai, S., 2006, Harzburgite-dunite-orthopyroxenite suite as a record of supra-subduction zone setting for the Oman ophiolite mantle: Lithos, v. 90, p. 43–56, doi:10.1016/j.lithos.2005.12.012.
Tatsumi, Y., Shinjoe, H., Ishizuka, H., Sager, W.W., and Klaus, A., 1998, Geochemical evidence for a mid-Cretaceous superplume: Geology, v. 26, p. 151, doi:10.1130/0091-7613(1998)026<0151:GEFAMC>2.3.CO;2.
Tejada, M.L.G., Mahoney, J.J., Neal, C.R., Duncan, R.A., and Petterson, M.G., 2002, Basement Geochemistry and Geochronology of Central Malaita, Solomon Islands, with Implications for the Origin and Evolution of the Ontong Java Plateau: Journal of Petrology, v. 43, p. 449–484, doi:10.1093/petrology/43.3.449.
Ternieten, L., Früh-Green, G.L., and Bernasconi, S.M., 2021, Distribution and Sources of Carbon in Serpentinized Mantle Peridotites at the Atlantis Massif (IODP Expedition 357): Journal of Geophysical Research: Solid Earth, v. 126, doi:10.1029/2021JB021973.
Tetreault, J.L., and Buiter, S.J.H., 2014, Future accreted terranes: A compilation of island arcs, oceanic plateaus, submarine ridges, seamounts, and continental fragments: Solid Earth, v. 5, p. 1243–1275, doi:10.5194/se-5-1243-2014.
Tetreault, J.L., and Buiter, S.J.H., 2012, Geodynamic models of terrane accretion: Testing the fate of island arcs, oceanic plateaus, and continental fragments in subduction zones: Journal of Geophysical Research: Solid Earth, v. 117, p. 1–23, doi:10.1029/2012JB009316.
Tokuda, M., 1986, Mountains., Study on the Geological Structure of the Sambagawa-Chichibu Belts in the Kanto: Geological report of the Hiroshima University, v. 26, p. 260, doi:10.15027/52892.
Tominaga, K., and Hara, H., 2021, Paleogeography of Late Jurassic large-igneous-province activity in the Paleo-Pacific Ocean: Constraints from the Mikabu greenstones and Chichibu accretionary complex, Kanto Mountains, Central Japan: Gondwana Research, v. 89, p. 177–192, doi:10.1016/j.gr.2020.10.003.
Treves, B.E., and Harper, G.D., 1994, Exposure of serpentinites on the ocean floor: sequence of faulting and hydrofracturing in the Northern Apennine ophicalcites: Ofioliti, v. 19, p. 435–466.
Uesugi, J., and Arai, S., 1999, The Shiokawa peridotite mass in the Mikabu belt, central Japan, as a cumulate from intra-plate tholeiite: The Memoirs of the Geological Society of Japan, v. 52, p. 229–242.
Uno, M., Koyanagawa, K., Kasahara, H., Okamoto, A., and Tsuchiya, N., 2022, Volatile-consuming reactions fracture rocks and self-accelerate fluid flow in the lithosphere: Proceedings of the National Academy of Sciences, v. 119, p. e2110776118, doi:10.1073/pnas.2110776118.
Veizer, J., and Prokoph, A., 2015, Temperatures and oxygen isotopic composition of Phanerozoic oceans: Earth-Science Reviews, v. 146, p. 92–104, doi:10.1016/j.earscirev.2015.03.008.
Wallis, S., and Aoya, M., 2000, A re-evaluation of eclogite facies metamorphism in SW Japan: proposal for an eclogite nappe: Journal of Metamorphic Geology, v. 18, p. 653–664, doi:10.1046/j.1525-1314.2000.00285.x.
Wallis, S., Takasu, A., Enami, M., and Tsujimori, T., 2000, Eclogite and related metamorphism in the Sanbagawa belt, Southwest Japan: Bulletin of Research Institute of Natural Sciences, Okayama University of Science, v. 26, p. 3–17.
Wallis, S.R., Yamaoka, K., Mori, H., Ishiwatari, A., Miyazaki, K., and Ueda, H., 2020, The basement geology of Japan from A to Z: Island Arc, v. 29, doi:10.1111/iar.12339.
Wasilewski, B. et al., 2017, Ultra-refractory mantle within oceanic plateau: Petrology of the spinel harzburgites from Lac Michèle, Kerguelen Archipelago: Lithos, v. 272–273, p. 336–349, doi:10.1016/j.lithos.2016.12.010.
Xia, L., and Li, X., 2019, Basalt geochemistry as a diagnostic indicator of tectonic setting: Gondwana Research, v. 65, p. 43–67, doi:10.1016/j.gr.2018.08.006.
Yamaguchi, A., Ujiie, K., Nakai, S., and Kimura, G., 2012, Sources and physicochemical characteristics of fluids along a subduction-zone megathrust: A geochemical approach using syn-tectonic mineral veins in the Mugi mélange, Shimanto accretionary complex: Geochemistry, Geophysics, Geosystems, v. 13, doi:10.1029/2012GC004137.
Yoshida, K., Niki, S., Sawada, H., Oyanagi, R., Hirata, T., Asakura, K., and Hirajima, T., 2021, Discovery of the Early Jurassic high-temperature pre-Sanbagawa metamorphism recorded in titanite: Lithos, v. 398–399, p. 106349, doi:10.1016/j.lithos.2021.106349.
Yoshida, K., Okamoto, A., Shimizu, H., Oyanagi, R., and Tsuchiya, N., 2020, Fluid Infiltration Through Oceanic Lower Crust in Response to Reaction-Induced Fracturing: Insights From Serpentinized Troctolite and Numerical Models: Journal of Geophysical Research: Solid Earth, v. 125, doi:10.1029/2020JB020268.
Zhang, S., and DePaolo, D.J., 2020, Equilibrium calcite-fluid Sr/Ca partition coefficient from marine sediment and pore fluids: Geochimica et Cosmochimica Acta, v. 289, p. 33–46, doi:10.1016/j.gca.2020.08.017.
ダウンロード
公開済
投稿日時: 2025-09-19 03:47:09 UTC
公開日時: 2025-09-21 23:49:27 UTC
ライセンス
Copyright(c)2025
Oyanagi, Ryosuke
Sawada, Hikaru
Chang, Qing
Yoshida, Kenta
Satish-Kumar, Madhusoodhan

この作品は、Creative Commons Attribution 4.0 International Licenseの下でライセンスされています。