プレプリント / バージョン1

日本のグリーン移行を推進する:電力系統安定性と再生可能エネルギー統合のための先進的モデリングフレームワーク

##article.authors##

  • Ravikumar Shah Research and Development Department, VeBuIn Pvt. Ltd.
  • Tanvi Bhatt Research and Development Department, VeBuIn Pvt. Ltd.
  • Jay Parmar Research and Development Department, VeBuIn Pvt. Ltd.
  • Mayur Barbhaya Research and Development Department, VeBuIn Pvt. Ltd.

DOI:

https://doi.org/10.51094/jxiv.1523

キーワード:

Best–Worst–Random (BWR) algorithm、 Jaya algorithm、 Best-Mean-Random (BMR) algorithm、 Parameter estimation、 Single-diode model、 Double-diode model、 Metaheuristic optimization、 Energy forecasting、 Photovoltaic modeling

抄録

The increasing integration of photovoltaic (PV) systems into Japan's power grid presents significant challenges for grid stability and energy forecasting, primarily due to the intermittent nature of solar power. A key impediment to accurate power output prediction is the difficulty in precisely estimating PV cell parameters from the limited information available on manufacturer datasheets. This study proposes and validates a robust methodology to extract comprehensive PV parameters using advanced metaheuristic optimization for both single-diode and double-diode models. We apply and compare several algorithms, including Best–Worst–Random(BWR), Best-Mean-Random (BMR), and JAYA, utilizing data from three distinct module types: polycrystalline, monocrystalline, and thin-film. The optimization process minimizes the error between the model's calculated IV characteristics and the empirical data at the open-circuit, short-circuit, and maximum power points. The results demonstrate that the proposed metaheuristic approach successfully identifies optimal parameter sets, achieving a precise match with experimental IV and PV curves. This enhanced modeling accuracy provides a reliable foundation for predicting energy production, facilitating more effective grid management and operational planning for Japanese power utilities and supporting the nation's transition to a renewable-centric power system.

利益相反に関する開示

The authors declare that they have no conflicts of interest relevant to the content of this article.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

A. Assaf, H. Haron, H. N. A. Hamed, F. A. Ghaleb, S. N. Qasem, and A. M. Albarrak. A review on neural network based models for short term solar irradiance forecasting. Applied Sciences, 13(14):8332, 2023. doi: 10.3390/app13148332.

P. P. Biswas, P. N. Suganthan, G. Wu, and G. A. J. Amaratunga. Parameter estimation of solar cells using datasheet information with the application of an adaptive differential evolution algorithm. Renewable Energy, 132:425, 2018. doi: 10.1016/j.renene.2018.07.152.

B. Carrera, M. K. Sim, and J. Jung. Pvhybnet: a hybrid framework for predicting photovoltaic power generation using both weather forecast and observation data. IET Renewable Power Generation, 14(12):2192, 2020. doi:10.1049/iet-rpg.2018.6174.

D. Chakraborty, J. Mondal, H. B. Barua, and A. Bhattacharjee. Computational solar energy – ensemble learning methods for prediction of solar power generation based on meteorological parameters in eastern india. arXiv (CornellUniversity), 2023.

D. Chen and D. Irwin. Black-box solar performance modeling. ACM SIGMETRICS Performance Evaluation Review, 45(2):79, 2017. doi: 10.1145/3152042.3152067.

T. Gayibov and E. Abdullaev. Optimization of daily operation mode of photovoltic systems of enterprises. In E3S Web of Conferences, volume 264, page 4063, 2021. doi: 10.1051/e3sconf/202126404063.

M. Hopwood and T. Gunda. Generation of data-driven expected energy models for photovoltaic systems. Applied Sciences, 12(4):1872, 2022. doi: 10.3390/app12041872.

K. J. Iheanetu. Solar photovoltaic power forecasting: A review. Sustainability, 14(24):17005, 2022. doi: 10.3390/su142417005.

X. Jiang, M. Jiang, and Q. Zhou. Day-ahead pv power forecasting based on mstl-tft. arXiv (Cornell University), 2023.

S. Kalra, R. Beniwal, V. P. Singh, and N. S. Beniwal. Innovative approaches in residential solar electricity: Forecasting and fault detection using machine learning. Electricity, 5(3):585, 2024. doi: 10.3390/electricity5030029.

K.C. KC200GT High Efficiency Multicrystal Photovoltaic Module Datasheet. Kyocera Corporation, 2004. [Online]. Available: http://www.kyocerasolar.com/assets/001/5195.pdf.

B. Kim, D. Suh, M.-O. Otto, and J.-S. Huh. A novel hybrid spatio-temporal forecasting of multisite solar photovoltaic generation. Remote Sensing, 13 (13):2605, 2021. doi: 10.3390/rs13132605.

D. L. King,W. E. Boyson, and J. A. Kratochvil. Analysis of factors influencing the annual energy production of photovoltaic systems. In Photovoltaic Specialists Conference, volume 1356, 2003. doi: 10.1109/pvsc.2002.1190861.

R. Koh´ut and M. Kvasnica. Power output reconstruction of photovoltaic curtailment. Zenodo (CERN European Organization for Nuclear Research), 2023.

M. Konstantinou, S. Peratikou, and A. G. Charalambides. Solar photovoltaic forecasting of power output using lstm networks. Atmosphere, 12(1):124, 2021. doi: 10.3390/atmos12010124.

A. Kumar, A. K. Dubey, I. S. Ram´ırez, A. M. del R´ıo, and F. P. G. M´arquez. Artificial intelligence techniques for the photovoltaic system: A systematic review and analysis for evaluation and benchmarking. Archives of Computational Methods in Engineering, 2024. doi: 10.1007/s11831-024-10125-3.

D. S. Kumar, G. M. Yagli, M. Kashyap, and D. Srinivasan. Solar irradiance resource and forecasting: a comprehensive review. IET Renewable Power Generation, 14(10):1641, 2020. doi: 10.1049/iet-rpg.2019.1227.

A. J. Lari, A. Sanfilippo, D. Bachour, and D. P´erez-Astudillo. Using machine learning algorithms to forecast solar energy power output. Electronics, 14 (5):866, 2025. doi: 10.3390/electronics14050866.

P. D. Leo, A. Ciocia, G. Malgaroli, and F. Spertino. Advancements and challenges in photovoltaic power forecasting: A comprehensive review. Preprints, 2025.

H. Li, J. Li, and Y. Mi. Research on photovoltaic power prediction technology based on machine learning. In Journal of Physics Conference Series, volume 2087, page 12004, 2021. doi: 10.1088/1742-6596/2087/1/012004.

W. Liao, B. Bak-Jensen, J. R. Pillai, Z. Yang, and K. Liu. Short-term power prediction for renewable energy using hybrid graph convolutional network and long short-term memory approach. Electric Power Systems Research, 211:108614, 2022. doi: 10.1016/j.epsr.2022.108614.

H. Lin and M. Yu. A novel distributed pv power forecasting approach based on time-llm. arXiv (Cornell University), 2025.

S. Meisenbacher, B. Heidrich, T. Martin, R. Mikut, and V. Hagenmeyer. Autopv: Automated photovoltaic forecasts with limited information using an ensemble of pre-trained models. arXiv (Cornell University), 2022.

Y. Mhanni and Y. Lagmich. Maximizing solar panel efficiency in partial shade: The improved poa solution for mppt. International Journal of Advanced Computer Science and Applications, 15(3), 2024. doi: 10.14569/ijacsa. 2024.0150397.

D. H. Muhsen, T. Khatib, and F. Nagi. A review of photovoltaic water pumping system designing methods, control strategies and field performance. Renewable and Sustainable Energy Reviews, 68:70, 2016. doi:10.1016/j.rser.2016.09.129.

T. N. L. Nguyen and F. M¨usgens. What drives the accuracy of pv output forecasts? arXiv (Cornell University), 2021.

M. Paulescu and E. Paulescu. Short-term forecasting of solar irradiance. Renewable Energy, 143:985, 2019. doi: 10.1016/j.renene.2019.05.075.

Rao. Bmr and bwr: Two simple metaphor-free optimization algorithms for solving real-life non-convex constrained and unconstrained problems. 2024. doi: 10.48550/arXiv.2407.11149.

R. Venkata Rao. Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems. International Journal of Industrial Engineering Computations, 7(1):19–34, 2016. doi: 10.5267/j. ijiec.2015.8.004.

A. Rashid. Nano fullerenes with the ability to store electrostatic energy that can be used as nano supercapacitors with very high capacity. ResearchGate, 2024.

H. Riggs, S. Tufail, M. Tariq, and A. I. Sarwat. Combined machine learning and physics-based forecaster for intra-day and 1-week ahead solar irradiance forecasting under variable weather conditions. arXiv (Cornell University), 2023.

F. E. Robrini, B. Amrouche, U¨ . Cali, and T. S. Ustun. Assessment of machine and deep learning models integrated with variational mode decomposition for photovoltaic power forecasting using real-world data from the semi-arid region of djelfa, algeria. Energy Conversion and Management X, page 101108, 2025. doi: 10.1016/j.ecmx.2025.101108.

N. Salazar-Pe˜na, A. Tabares, and A. Gonz´alez-Mancera. Ai-powered dynamic fault detection and performance assessment in photovoltaic systems. SSRN, 2024.

S. Soleymani and S. Mohammadzadeh. Comparative analysis of machine learning algorithms for solar irradiance forecasting in smart grids. arXiv (Cornell University), 2023.

Soon et al. Photovoltaic model identification using particle swarm optimization with inverse barrier constraint. IEEE Transactions on Power Electronics, 27 (9):3975–3983, 2012. doi: 10.1109/TPEL.2012.2190524.

M. R. A. T, B. S. Balaji, S. A. P. R. R, C. Rani, R. K. M, P. Ramachandran, S. Rajkumar, V. N. Kumar, G. Aggarwal, and A. M. Siddiqui. Intelligent energy management across smart grids deploying 6g iot, ai, and blockchain in sustainable smart cities. IoT, 5(3):560, 2024. doi: 10.3390/iot5030025.

R. Teixeira, A. Cerveira, E. J. S. Pires, and J. Baptista. Advancing renewable energy forecasting: A comprehensive review of renewable energy forecasting methods. Energies, 17(14):3480, 2024. doi: 10.3390/en17143480.

N. Ulapane, S. G. Abeyratne, P. Binduhewa, C. H. Dhanapala, S. Wickramasinghe, and N. Rathnayake. A simple software application for simulating commercially available solar panels. International Journal of Soft Computing and Software Engineering [JSCSE], 2(5):48, 2012. doi: 10.7321/jscse.v2.n5.5.

Y. Xuan, Y. Dong, and T. Wu. Short-term forecasting of photovoltaic power generation based on entropy during the foggy winter. arXiv (Cornell University), 2024.

M. Yamazaki and O. Ikki. National Survey Report of PV Power Applications in Japan 2022. IEA PVPS Programme, 2022. doi: 10.54550/iea.pvps.

X. Zhang, R. Shen, and Y. Wang. A combined method of two-model based on forecasting meteorological data for photovoltaic power generation forecasting. In E3S Web of Conferences, volume 185, page 1053, 2020. doi: 10.1051/e3sconf/202018501053.

ダウンロード

公開済


投稿日時: 2025-09-13 16:02:38 UTC

公開日時: 2025-09-18 04:15:57 UTC
研究分野
一般工学・総合工学