プレプリント / バージョン1

Animal Behavioural Ecology Research Through AI: A Concise Overview of Recent Progress

##article.authors##

  • Malinda, Raj Rajeshwar Graduate School of Information Science, University of Hyogo

DOI:

https://doi.org/10.51094/jxiv.1414

キーワード:

Artificial intelligence、 Animal behaviour、 Visual ecology、 Machine learning、 Deep learning

抄録

Artificial intelligence (AI) is predominantly most discussed topic of recent times in scientific research. In an ecological context, animal behaviour is documented complex and dynamic, and analysis often requiring substantial investment of manual efforts and rigorous tasks. With the integration of emerging technologies, such as AI, the tools and techniques available to study animal behaviour have broadened and deepened the research domain. AI integration has accelerated the automation of tasks performance in behavioural classification, detection, tracking, pose estimation and action recognition in animals. In this paper, I concisely review the current progress in AI methods applied to understand animal behaviour, and discuss their potential impact on ecological research.

利益相反に関する開示

The author declares no financial or personal competing interests.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

H. Wang et al., “Scientific discovery in the age of artificial intelligence,” 2023. doi: 10.1038/s41586-023-06221-2.

M. Krenn et al., “On scientific understanding with artificial intelligence,” Nature Reviews Physics, vol. 4, no. 12, 2022, doi: 10.1038/s42254-022-00518-3.

R. R. Malinda, “Biological data studies, scale-up the potential with machine learning,” 2023. doi: 10.1038/s41431-023-01361-5.

J. G. Greener, S. M. Kandathil, L. Moffat, and D. T. Jones, “A guide to machine learning for biologists,” 2022. doi: 10.1038/s41580-021-00407-0.

D. A. Boiko, R. MacKnight, B. Kline, and G. Gomes, “Autonomous chemical research with large language models,” Nature, vol. 624, no. 7992, 2023, doi: 10.1038/s41586-023-06792-0.

“Defining physicists’ relationship with AI,” 2022. doi: 10.1038/s42254-022-00544-1.

P. Rajpurkar, E. Chen, O. Banerjee, and E. J. Topol, “AI in health and medicine,” 2022. doi: 10.1038/s41591-021-01614-0.

X. Tang, “The role of artificial intelligence in medical imaging research,” BJR|Open, vol. 2, no. 1, 2020, doi: 10.1259/bjro.20190031.

D. Paul, G. Sanap, S. Shenoy, D. Kalyane, K. Kalia, and R. K. Tekade, “Artificial intelligence in drug discovery and development,” 2021. doi: 10.1016/j.drudis.2020.10.010.

D. Tuia et al., “Perspectives in machine learning for wildlife conservation,” 2022. doi: 10.1038/s41467-022-27980-y.

D. Silvestro, S. Goria, T. Sterner, and A. Antonelli, “Improving biodiversity protection through artificial intelligence,” Nat Sustain, vol. 5, no. 5, 2022, doi: 10.1038/s41893-022-00851-6.

B. A. Han, K. R. Varshney, S. LaDeau, A. Subramaniam, K. C. Weathers, and J. Zwart, “A synergistic future for AI and ecology,” Proc Natl Acad Sci U S A, vol. 120, no. 38, 2023, doi: 10.1073/pnas.2220283120.

M. Ryo, “Ecology with artificial intelligence and machine learning in Asia: A historical perspective and emerging trends,” Ecol Res, vol. 39, no. 1, 2024, doi: 10.1111/1440-1703.12425.

K. Rafiq, S. Beery, M. S. Palmer, Z. Harchaoui, and B. Abrahms, “Generative AI as a tool to accelerate the field of ecology,” Nat Ecol Evol, vol. 9, no. 3, pp. 378–385, Jan. 2025, doi: 10.1038/s41559-024-02623-1.

S. A. Reynolds et al., “The potential for AI to revolutionize conservation: a horizon scan,” Trends Ecol Evol, vol. 40, no. 2, pp. 191–207, Feb. 2025, doi: 10.1016/j.tree.2024.11.013.

O. Elemento, C. Leslie, J. Lundin, and G. Tourassi, “Artificial intelligence in cancer research, diagnosis and therapy,” 2021. doi: 10.1038/s41568-021-00399-1.

S. J. Shettleworth, “Animal cognition and animal behaviour,” 2001. doi: 10.1006/anbe.2000.1606.

F. (editor) Huntingford, The study of animal behaviour. Springer Science & Business Media, 2012.

A. Manning and Marian Stamp Dawkins, An introduction to animal behaviour. Cambridge University Press, 2012.

J. Kendall-Bar et al., “Challenges and solutions for ecologists adopting AI,” Jan. 29, 2025. doi: 10.32942/X2FK8J.

I. D. Couzin and C. Heins, “Emerging technologies for behavioral research in changing environments,” 2023. doi: 10.1016/j.tree.2022.11.008.

N. Kleanthous, A. J. Hussain, W. Khan, J. Sneddon, A. Al-Shamma’a, and P. Liatsis, “A survey of machine learning approaches in animal behaviour,” Neurocomputing, vol. 491, 2022, doi: 10.1016/j.neucom.2021.10.126.

R. Otsuka et al., “Exploring deep learning techniques for wild animal behaviour classification using animal-borne accelerometers,” Methods Ecol Evol, vol. 15, no. 4, 2024, doi: 10.1111/2041-210X.14294.

G. Wang, “Machine learning for inferring animal behavior from location and movement data,” Ecol Inform, vol. 49, 2019, doi: 10.1016/j.ecoinf.2018.12.002.

J. J. Valletta, C. Torney, M. Kings, A. Thornton, and J. Madden, “Applications of machine learning in animal behaviour studies,” 2017. doi: 10.1016/j.anbehav.2016.12.005.

T. Maekawa et al., “Deep learning-assisted comparative analysis of animal trajectories with DeepHL,” Nat Commun, vol. 11, no. 1, 2020, doi: 10.1038/s41467-020-19105-0.

A. Zamansky, A. Sinitca, D. Van Der Linden, and D. Kaplun, “Automatic Animal Behavior Analysis: Opportunities for Combining Knowledge Representation with Machine Learning,” in Procedia Computer Science, 2021. doi: 10.1016/j.procs.2021.04.187.

E. Fazzari, D. Romano, F. Falchi, and C. Stefanini, “Animal Behavior Analysis Methods Using Deep Learning: A Survey,” May 2024.

J. V. Congdon, M. Hosseini, E. F. Gading, M. Masousi, M. Franke, and S. E. Macdonald, “The Future of Artificial Intelligence in Monitoring Animal Identification, Health, and Behaviour,” Animals, vol. 12, no. 13, 2022, doi: 10.3390/ani12131711.

N. Wilson, “Artificial intelligence helps drive new frontiers in ecology,” Bioscience, vol. 74, no. 5, pp. 306–311, Jun. 2024, doi: 10.1093/biosci/biae016.

A. Bin Rashid and M. A. K. Kausik, “AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications,” Hybrid Advances, vol. 7, p. 100277, Dec. 2024, doi: 10.1016/j.hybadv.2024.100277.

M. D. Lürig, S. Donoughe, E. I. Svensson, A. Porto, and M. Tsuboi, “Computer Vision, Machine Learning, and the Promise of Phenomics in Ecology and Evolutionary Biology,” 2021. doi: 10.3389/fevo.2021.642774.

J. Wang et al., “Deep High-Resolution Representation Learning for Visual Recognition,” IEEE Trans Pattern Anal Mach Intell, vol. 43, no. 10, 2021, doi: 10.1109/TPAMI.2020.2983686.

C. Angermueller, T. Pärnamaa, L. Parts, and O. Stegle, “Deep learning for computational biology,” Mol Syst Biol, vol. 12, no. 7, 2016, doi: 10.15252/msb.20156651.

J. J. Bolhuis, L. A. Giraldeau, and J. A. Hogan, “the study of animal behavior,” in The Behavior of Animals: Mechanisms, Function, and Evolution: Second Edition, 2021. doi: 10.1002/9781119109556.ch1.

B. Koger, A. Deshpande, J. T. Kerby, J. M. Graving, B. R. Costelloe, and I. D. Couzin, “Quantifying the movement, behaviour and environmental context of group-living animals using drones and computer vision,” Journal of Animal Ecology, vol. 92, no. 7, 2023, doi: 10.1111/1365-2656.13904.

M. Patel, Y. Gu, L. C. Carstensen, M. E. Hasselmo, and M. Betke, “Animal Pose Tracking: 3D Multimodal Dataset and Token-based Pose Optimization,” Int J Comput Vis, vol. 131, no. 2, 2023, doi: 10.1007/s11263-022-01714-5.

S. Broomé et al., “Going Deeper than Tracking: A Survey of Computer-Vision Based Recognition of Animal Pain and Emotions,” Int J Comput Vis, vol. 131, no. 2, 2023, doi: 10.1007/s11263-022-01716-3.

S. Quaade, A. Vallebueno, O. D. N. Alcabes, K. T. Rodolfa, and D. E. Ho, “Remote sensing and computer vision for marine aquaculture,” Sci Adv, vol. 10, no. 42, Oct. 2024, doi: 10.1126/sciadv.adn4944.

B. Zion, “The use of computer vision technologies in aquaculture - A review,” 2012. doi: 10.1016/j.compag.2012.07.010.

K. F. A. Darras et al., “Eyes on nature: Embedded vision cameras for terrestrial biodiversity monitoring,” Methods Ecol Evol, vol. 15, no. 12, pp. 2262–2275, Dec. 2024, doi: 10.1111/2041-210X.14436.

J. D. Blair, K. M. Gaynor, M. S. Palmer, and K. E. Marshall, “A gentle introduction to computer vision-based specimen classification in ecological datasets,” Journal of Animal Ecology, vol. 93, no. 2, 2024, doi: 10.1111/1365-2656.14042.

A. Saleh, M. Sheaves, and M. Rahimi Azghadi, “Computer vision and deep learning for fish classification in underwater habitats: A survey,” Fish and Fisheries, vol. 23, no. 4, 2022, doi: 10.1111/faf.12666.

B. G. Weinstein, “A computer vision for animal ecology,” 2018. doi: 10.1111/1365-2656.12780.

A. M. Vukicevic, M. Petrovic, P. Milosevic, A. Peulic, K. Jovanovic, and A. Novakovic, “A systematic review of computer vision-based personal protective equipment compliance in industry practice: advancements, challenges and future directions,” Artif Intell Rev, vol. 57, no. 12, p. 319, Oct. 2024, doi: 10.1007/s10462-024-10978-x.

S. Zhu et al., “Intelligent Computing: The Latest Advances, Challenges, and Future,” Intelligent Computing, vol. 2, 2023, doi: 10.34133/icomputing.0006.

Z. Chen et al., “AlphaTracker: a multi-animal tracking and behavioral analysis tool,” Front Behav Neurosci, vol. 17, 2023, doi: 10.3389/fnbeh.2023.1111908.

M. Perez and C. Toler-Franklin, “CNN-Based Action Recognition and Pose Estimation for Classifying Animal Behavior from Videos: A Survey,” Jan. 2023.

T. D. Pereira et al., “SLEAP: A deep learning system for multi-animal pose tracking,” Nat Methods, vol. 19, no. 4, 2022, doi: 10.1038/s41592-022-01426-1.

J. Lauer et al., “Multi-animal pose estimation, identification and tracking with DeepLabCut,” Nat Methods, vol. 19, no. 4, 2022, doi: 10.1038/s41592-022-01443-0.

D. Biderman et al., “Lightning Pose: improved animal pose estimation via semi-supervised learning, Bayesian ensembling and cloud-native open-source tools,” Nat Methods, vol. 21, no. 7, 2024, doi: 10.1038/s41592-024-02319-1.

T. W. Dunn et al., “Geometric deep learning enables 3D kinematic profiling across species and environments,” Nat Methods, vol. 18, no. 5, 2021, doi: 10.1038/s41592-021-01106-6.

P. Karashchuk, J. C. Tuthill, and B. W. Brunton, “The DANNCE of the rats: a new toolkit for 3D tracking of animal behavior,” Nat Methods, vol. 18, no. 5, 2021, doi: 10.1038/s41592-021-01110-w.

V. Panadeiro, A. Rodriguez, J. Henry, D. Wlodkowic, and M. Andersson, “A review of 28 free animal-tracking software applications: current features and limitations,” 2021. doi: 10.1038/s41684-021-00811-1.

F. Schindler and V. Steinhage, “Instance segmentation and tracking of animals in wildlife videos: SWIFT - segmentation with filtering of tracklets,” Ecol Inform, vol. 71, 2022, doi: 10.1016/j.ecoinf.2022.101794.

F. Schindler, V. Steinhage, S. T. S. van Beeck Calkoen, and M. Heurich, “Action Detection for Wildlife Monitoring with Camera Traps Based on Segmentation with Filtering of Tracklets (SWIFT) and Mask-Guided Action Recognition (MAROON),” Applied Sciences (Switzerland), vol. 14, no. 2, 2024, doi: 10.3390/app14020514.

G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in Proceedings - 30th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017. doi: 10.1109/CVPR.2017.243.

S. Kiranyaz, O. Avci, O. Abdeljaber, T. Ince, M. Gabbouj, and D. J. Inman, “1D convolutional neural networks and applications: A survey,” Mech Syst Signal Process, vol. 151, 2021, doi: 10.1016/j.ymssp.2020.107398.

A. S. Abangan, D. Kopp, and R. Faillettaz, “Artificial intelligence for fish behavior recognition may unlock fishing gear selectivity,” 2023. doi: 10.3389/fmars.2023.1010761.

A. Saleh, M. Sheaves, D. Jerry, and M. Rahimi Azghadi, “Applications of deep learning in fish habitat monitoring: A tutorial and survey,” 2024. doi: 10.1016/j.eswa.2023.121841.

R. Arablouei, L. Wang, L. Currie, J. Yates, F. A. P. Alvarenga, and G. J. Bishop-Hurley, “Animal behavior classification via deep learning on embedded systems,” Comput Electron Agric, vol. 207, 2023, doi: 10.1016/j.compag.2023.107707.

J. Kwon et al., “SUBTLE: An Unsupervised Platform with Temporal Link Embedding that Maps Animal Behavior,” Int J Comput Vis, vol. 132, no. 10, pp. 4589–4615, Oct. 2024, doi: 10.1007/s11263-024-02072-0.

M. Fuchs, E. Genty, K. Zuberbühler, and P. Cotofrei, “ASBAR: an Animal Skeleton-Based Action Recognition framework. Recognizing great ape behaviors in the wild using pose estimation with domain adaptation,” Aug. 02, 2024. doi: 10.7554/eLife.97962.1.

E. Zaidan and I. A. Ibrahim, “AI Governance in a Complex and Rapidly Changing Regulatory Landscape: A Global Perspective,” Humanit Soc Sci Commun, vol. 11, no. 1, p. 1121, Sep. 2024, doi: 10.1057/s41599-024-03560-x.

A. Bin Rashid and M. A. K. Kausik, “AI revolutionizing industries worldwide: A comprehensive overview of its diverse applications,” Hybrid Advances, vol. 7, p. 100277, Dec. 2024, doi: 10.1016/j.hybadv.2024.100277.

M. Q. R. Pembury Smith and G. D. Ruxton, “Camouflage in predators,” Biological Reviews, vol. 95, no. 5, 2020, doi: 10.1111/brv.12612.

J. V. De Alcantara Viana, C. Vieira, R. C. Duarte, and G. Q. Romero, “Predator responses to prey camouflage strategies: A meta-analysis,” Proceedings of the Royal Society B: Biological Sciences, vol. 289, no. 1982, 2022, doi: 10.1098/rspb.2022.0980.

M. C. Stoddard and D. Osorio, “Animal coloration patterns: Linking spatial vision to quantitative analysis,” American Naturalist, vol. 193, no. 2, 2019, doi: 10.1086/701300.

J. P. Renoult, A. Kelber, and H. M. Schaefer, “Colour spaces in ecology and evolutionary biology,” Biological Reviews, vol. 92, no. 1, 2017, doi: 10.1111/brv.12230.

I. C. Cuthill et al., “The biology of color,” 2017. doi: 10.1126/science.aan0221.

J. G. Fennell, L. Talas, R. J. Baddeley, I. C. Cuthill, and N. E. Scott-Samuel, “The Camouflage Machine: Optimizing protective coloration using deep learning with genetic algorithms,” Evolution (N Y), vol. 75, no. 3, 2021, doi: 10.1111/evo.14162.

F. Xiao et al., “A Survey of Camouflaged Object Detection and Beyond,” CAAI Artificial Intelligence Research, p. 9150044, Dec. 2024, doi: 10.26599/AIR.2024.9150044.

G. H. JACOBS, “THE DISTRIBUTION AND NATURE OF COLOUR VISION AMONG THE MAMMALS,” Biological Reviews, vol. 68, no. 3, 1993, doi: 10.1111/j.1469-185x.1993.tb00738.x.

C. S. Ike, N. Muhammad, N. Bibi, S. Alhazmi, and F. Eoghan, “Discriminative context-aware network for camouflaged object detection,” Front Artif Intell, vol. 7, Mar. 2024, doi: 10.3389/frai.2024.1347898.

Y. Wen, W. Ke, and H. Sheng, “Camouflaged Object Detection Based on Deep Learning with Attention-Guided Edge Detection and Multi-Scale Context Fusion,” Applied Sciences (Switzerland), vol. 14, no. 6, 2024, doi: 10.3390/app14062494.

C. Guo and H. Huang, “Enhancing camouflaged object detection through contrastive learning and data augmentation techniques,” Eng Appl Artif Intell, vol. 141, p. 109703, Feb. 2025, doi: 10.1016/j.engappai.2024.109703.

B. Ge, X. Peng, C. Xia, and H. Chen, “Camouflaged object detection with integrated feature fusion and boundary optimization,” Multimed Syst, vol. 31, no. 4, p. 284, Aug. 2025, doi: 10.1007/s00530-025-01879-2.

F. Xiao et al., “A Survey of Camouflaged Object Detection and Beyond,” Aug. 2024.

R. Kamble and P. Rajarajeswari, “Revealing Hidden Patterns: A Deep Learning Approach to Camouflage Detection,” International Journal of Computational Methods and Experimental Measurements, vol. 12, no. 1, pp. 97–105, Mar. 2024, doi: 10.18280/ijcmem.120111.

C. Shi, L. Zhao, R. Wang, K. Zhang, F. Kong, and C. Duan, “Multi-information guided camouflaged object detection,” Image Vis Comput, vol. 156, p. 105470, Apr. 2025, doi: 10.1016/j.imavis.2025.105470.

C. Zhang, H. Bi, T. Z. Xiang, R. Wu, J. Tong, and X. Wang, “Collaborative Camouflaged Object Detection: A Large-Scale Dataset and Benchmark,” IEEE Trans Neural Netw Learn Syst, 2023, doi: 10.1109/TNNLS.2023.3317091.

H. Bi, C. Zhang, K. Wang, J. Tong, and F. Zheng, “Rethinking Camouflaged Object Detection: Models and Datasets,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 32, no. 9, 2022, doi: 10.1109/TCSVT.2021.3124952.

V. Papaspyros, R. Escobedo, A. Alahi, G. Theraulaz, C. Sire, and F. Mondada, “Predicting the long-term collective behaviour of fish pairs with deep learning,” J R Soc Interface, vol. 21, no. 212, 2024, doi: 10.1098/rsif.2023.0630.

ダウンロード

公開済


投稿日時: 2025-07-30 06:08:07 UTC

公開日時: 2025-08-01 04:24:22 UTC
研究分野
学際科学