Fermentation characteristics and brewing potential of kuratsuki sake yeasts isolated from the Niigata Prefecture, Japan
DOI:
https://doi.org/10.51094/jxiv.1308キーワード:
alcoholic beverage、 flavor-compound profile、 phenotypic diversity、 Saccharomyces cerevisiae、 sake brewing抄録
The sake brewing industry continues to evolve in response to consumer preferences for novel flavors and fermentation characteristics. However, the genetic and phenotypic diversity of brewery landrace yeast (kuratsuki yeast) strains, particularly their regional brewing characteristics and potential for unique flavor development, remains poorly understood due to limited studies and challenges in distinguishing them from industrial strains. This study explored the phenotypic diversity of kuratsuki yeast in the Niigata Prefecture, which persists in sake breweries and is isolated outside the realm of industrial yeast selection. Small-scale brewing analysis demonstrated substantial variation in fermentation performance, including rapid and efficient sake production and unique flavor-compound profiles, highlighting their potential for introducing novel traits into brewing practices. Furthermore, several kuratsuki yeasts exhibited sufficient alcohol production capacity and desirable flavor characteristics during industrial-scale brewing, supporting their suitability for commercial sake production. The results of this study emphasize the crucial role of preserving brewing cultural heritage, including knowledge and resources related to yeast culture.
利益相反に関する開示
All experiments were performed in Japan and complied with current Japanese laws.ダウンロード *前日までの集計結果を表示します
引用文献
Azumi, M., & Goto-Yamamoto, N. (2001). AFLP analysis of type strains and laboratory and industrial strains of Saccharomyces sensu stricto and its application to phenetic clustering. Yeast, 18(12), 1145–1154. https://doi.org/10.1002/yea.767
Coghe, S., Benoot, K., Delvaux, F., Vanderhaegen, B., & Delvaux, F. R. (2004). Ferulic acid release and 4-vinylguaiacol formation during brewing and fermentation: Indications for feruloyl esterase activity in Saccharomyces cerevisiae. Journal of Agricultural and Food Chemistry, 52(3), 602–608. https://doi.org/10.1021/jf0346556
Gallone, B., Steensels, J., Prahl, T., Soriaga, L., Saels, V., Herrera-Malaver, B., Merlevede, A., Roncoroni, M., Voordeckers, K., Miraglia, L., Teiling, C., Steffy, B., Taylor, M., Schwartz, A., Richardson, T., White, C., Baele, G., Maere, S., & Verstrepen, K. J. (2016). Domestication and divergence of Saccharomyces cerevisiae beer yeasts. Cell, 166(6), 1397–1410.e16. https://doi.org/10.1016/j.cell.2016.08.020
Hatakeyama, A., Watanabe, Y., Arimoto, K., Hara, T., & Joh, T. (2020a). Genotypic analysis of the FDC1 polymorphism that inhibits ferulic acid decarboxylation activity in industrial yeasts. Journal of the Brewing Society of Japan, 115(4), 249–254. https://doi.org/10.6013/jbrewsocjapan.115.249
Hatakeyama, A., Watanabe, Y., Arimoto, K., Kuribayashi, T., Hara, T., & Joh, T. (2020b). Screening and characterization of a house yeast strain for sake brewing using the loop-mediated isothermal amplification method. Journal of the Brewing Society of Japan, 115(9), 537–544. https://doi.org/10.6013/jbrewsocjapan.115.537
Hatakeyama, A., Yarimizu, J., Imai, Y., Kuribayashi, T., & Takahashi, M. (2017). Discrimination of brewing yeast strains by a loop-mediated isothermal amplification method. Journal of the Brewing Society of Japan, 112(10), 707–713. https://doi.org/10.6013/jbrewsocjapan.112.707
Kawahata, M., Fujii, T., & Iefuji, H. (2007). Intraspecies diversity of the industrial yeast strains Saccharomyces cerevisiae and Saccharomyces pastorianus based on analysis of the sequences of the internal transcribed spacer (ITS) regions and the D1/D2 region of 26S rDNA. Bioscience, Biotechnology, and Biochemistry, 71(7), 1616–1620. https://doi.org/10.1271/bbb.60673
Kerruish, D. W., Cormican, P., Kenny, E. M., Kearns, J., Colgan, E., Boulton, C. A., & Stelma, S. N. (2024). The origins of the Guinness stout yeast. Communications Biology, 7(1), 68. https://doi.org/10.1038/s42003-023-05587-3
Kita, T. (2019). An analysis of craft sake breweries in the world through survey. Journal of the Brewing Society of Japan, 114(6), 330–341. https://doi.org/10.6013/jbrewsocjapan.114.330
Kitagaki, H., & Kitamoto, K. (2013). Breeding research on sake yeasts in Japan: History, recent technological advances, and future perspectives. Annual Review of Food Science and Technology, 4(1), 215–235. https://doi.org/10.1146/annurev-food-030212-182545
Kitamoto, K., Oda-Miyazaki, K., Gomi, K., & Kumagai, C. (1993). Mutant isolation of non-urea producing sake yeast by positive selection. Journal of Fermentation and Bioengineering, 75(5), 359–363. https://doi.org/10.1016/0922-338X(93)90134-T
Kuribayashi, T., Asahi, N., Satone, H., Tanaka, J., Sugawara, M., Sato, K., Nabekura, Y., Joh, T., & Aoki, T. (2025). A simple genotyping method for RIM15 gene polymorphisms in sake yeast strains. Mycoscience, 66(2), 330–341. https://doi.org/10.47371/mycosci.2024.12.001
Kuribayashi, T., Hatakeyama, A., Yarimizu, J., Arimoto, K., Kaneoke, M., Tasaki, Y., Hara, T., & Joh, T. (2022). Isolation and brewing properties of a sake yeast mutant with high ethyl caprylate productivity. Food Science and Technology Research, 28(3), 217–224. https://doi.org/10.3136/fstr.FSTR-D-21-00308
Kuribayashi, T., Sato, K., Kasai, D., Fukuda, M., Kaneoke, M., & Watanabe, K. I. (2014). Differentiation of industrial sake yeast strains by a loop-mediated isothermal amplification method that targets the PHO3 gene. Journal of Bioscience and Bioengineering, 118(6), 661–664. https://doi.org/10.1016/j.jbiosc.2014.05.019
Kuribayashi, T., Tamura, H., & Watanabe, K. (2015). Isolation of a non-urea-producing sake yeast strain carrying a discriminable molecular marker: And its application to industrial brewing. Journal of the Brewing Society of Japan, 110(4), 182–188. https://doi.org/10.6013/jbrewsocjapan.110.182
Kuribayashi, T., Tsukada, M., Asahi, N., Kai, S. I., Abe, K. I., Kaneoke, M., Oguma, T., Kinebuchi, J., Shigeno, T., Sugiyama, T., & Kasai, D. (2024). Screening using loop-mediated isothermal amplification (LAMP) assay and breeding of a Saccharomyces cerevisiae strain isolated from Muramatsu Park, Japan, for sake brewing. Mycoscience, 65(4), 187–190. https://doi.org/10.47371/mycosci.2024.04.002
Mizoguchi, H., & Fujita, E. (1981). Rapid detection of wild yeasts by assaying acid phosphatase in sake mashes. Journal of Fermentation Technology, 59(3), 185–188.
Mukai, N., Masaki, K., Fujii, T., & Iefuji, H. (2014). Single nucleotide polymorphisms of PAD1 and FDC1 show a positive relationship with ferulic acid decarboxylation ability among industrial yeasts used in alcoholic beverage production. Journal of Bioscience and Bioengineering, 118(1), 50–55. https://doi.org/10.1016/j.jbiosc.2013.12.017
Nagai, Y., Suzuki, T., Hoshino, A., Kuribayashi, T., Hara, T., & Joh, T. (2020). The simple determination of urea in sake using a commercial assay kit. Journal of the Brewing Society of Japan, 115(2), 109–114. https://doi.org/10.6013/jbrewsocjapan.115.109
Namba, Y., Obata, T., Kayashima, S., Yamasaki, Y., Murakami, M., & Shimoda, T. (1978). Conditions of small scale sake brewing. Journal of the Brewing Society of Japan, 73(4), 295–300. https://doi.org/10.6013/jbrewsocjapan1915.73.295
Nojiro, K. (1966). Echigo-Toji. Journal of the Brewing Society of Japan, 61(2), 144–151. https://doi.org/10.6013/jbrewsocjapan1915.61.144
Ogata, T. (2019). Breeding of sake, brewing, miso and soy sauce yeast strains by mating. Journal of the Brewing Society of Japan, 114(9), 534–539. https://doi.org/10.6013/jbrewsocjapan.114.534
Ouchi, K. (2010). History of non-foaming yeasts. Journal of the Brewing Society of Japan, 105(4), 184–187. https://doi.org/10.6013/jbrewsocjapan.105.184
Preiss, R., Fletcher, E., Garshol, L. M., Foster, B., Ozsahin, E., Lubberts, M., van der Merwe, G., & Krogerus, K. (2024). European farmhouse brewing yeasts form a distinct genetic group. Applied Microbiology and Biotechnology, 108, 430. https://doi.org/10.1007/s00253-024-13267-3
Sato, K., Nabekura, Y., Aoki, T., Kaneoke, M., Watanabe, K., & Tsukioka, M. (2002). Analysis of the constituents of commercial low alcohol sake. Journal of the Brewing Society of Japan, 97(5), 377–381. https://doi.org/10.6013/jbrewsocjapan1988.97.377
Takao, Y., Takahashi, T., Yamada, T., Goshima, T., Isogai, A., Sueno, K., Fujii, T., & Akao, T. (2018). Characteristic features of the unique house sake yeast strain Saccharomyces cerevisiae Km67 used for industrial sake brewing. Journal of Bioscience and Bioengineering, 126(5), 617–623. https://doi.org/10.1016/j.jbiosc.2018.05.008
Utsunomiya, H. (2006). Flavor terminology and reference standards for sensory analysis of sake. Journal of the Brewing Society of Japan, 101(10), 730–739. https://doi.org/10.6013/jbrewsocjapan1988.101.730
Washizu, S., & Yamazaki, Y. (1974). Ginjo sake making by Toji of Niigata Prefecture. Journal of the Brewing Society of Japan, 69(8), 495–498. https://doi.org/10.6013/jbrewsocjapan1915.69.495
Watanabe, D., Araki, Y., Zhou, Y., Maeya, N., Akao, T., & Shimoi, H. (2012). A loss-of-function mutation in the PAS kinase Rim15p is related to defective quiescence entry and high fermentation rates of Saccharomyces cerevisiae sake yeast strains. Applied and Environmental Microbiology, 78(11), 4008–4016. https://doi.org/10.1128/AEM.00165-12
Yoshizawa, K. (1999). Sake: Production and flavor. Food Reviews International, 15(1), 83–107. https://doi.org/10.1080/87559129909541178
公開済
投稿日時: 2025-06-18 05:08:08 UTC
公開日時: 2025-06-18 09:50:26 UTC
ライセンス
Copyright(c)2025
Takashi Kuribayashi
Fuka Sawaguchi
Hina Satone
Jumpei Tanaka
Masamichi Sugawara
Keigo Sato
Yoshihito Nabekura
Toshio Joh
Toshio Aoki

この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。