プレプリント / バージョン1

Discovery of NOT-GPCRs: An Archaeal Membrane Protein Family Whose AlphaFold Predictions Structurally Resemble G Protein-coupled Receptors

##article.authors##

DOI:

https://doi.org/10.51094/jxiv.1270

キーワード:

Marine Group II (MGII)、 Bacteriorhodopsin (bR)、 G protein-coupled receptor (GPCR)、 Data mining、 Structure–function relationship、 AlphaFold2

抄録

G protein-coupled receptors (GPCRs) are a prominent class of membrane proteins recognized for their significance in human pharmaceutical research and central roles in eukaryotic cell communication. The author hypothesized that GPCR-like proteins might be distributed across domains other than eukaryotes and aimed to discover them via structure-based data mining. Comprehensive structure-based searches against the AlphaFold protein structure database identified a family of uncharacterized membrane proteins in Methanobacteriati (formerly Euryarchaeota) whose AlphaFold predictions structurally resemble the canonical GPCR fold. They were termed Not Objectively True GPCRs (NOT-GPCRs) because they show higher structural similarity to GPCRs than to archaerhodopsin and bacteriorhodopsin, while lacking evidence of coupling to G proteins. In addition to the GPCR-like domain, they possess putative eighth and ninth transmembrane helices on the C-terminus, and a subtype possesses EF-hand motifs in the probable cytosolic domain following them. The physiological and environmental significance of the genes remains entirely unknown. Therefore, NOT-GPCRs are structurally appealing, yet offer no biologically grounded interpretation at this stage. When seen from the viewpoint of metascience, this situation could illustrate the Rorschach limit of structural biology in the post-AlphaFold era. To ultimately reconnect the contextless atomic coordinate data to biology, experimental validation will be necessary to confirm the predictions, elucidate their functions, and uncover their evolutionary origin. Equally important will be the development of a novel interpretative framework in structural biology to reconsider the dogma Structure Determines Function.

利益相反に関する開示

The author declares that there are no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Rost B. Twilight zone of protein sequence alignments. Protein Engineering, Design and Selection. 1999 Feb;12(2):85–94.

Varadi M, Anyango S, Deshpande M, Nair S, Natassia C, Yordanova G, et al. AlphaFold Protein Structure Database: massively expanding the structural coverage of protein-sequence space with high-accuracy models. Nucleic Acids Research. 2022 Jan 7;50(D1):D439–44.

Varadi M, Bertoni D, Magana P, Paramval U, Pidruchna I, Radhakrishnan M, et al. AlphaFold Protein Structure Database in 2024: providing structure coverage for over 214 million protein sequences. Nucleic Acids Research. 2024 Jan 5;52(D1):D368–75.

Lin Z, Akin H, Rao R, Hie B, Zhu Z, Lu W, et al. Evolutionary-scale prediction of atomic-level protein structure with a language model. 2023;

Van Kempen M, Kim SS, Tumescheit C, Mirdita M, Lee J, Gilchrist CLM, et al. Fast and accurate protein structure search with Foldseek. Nat Biotechnol [Internet]. 2023 May 8 [cited 2023 May 17]; Available from: https://www.nature.com/articles/s41587-023-01773-0

Gilman AG. G PROTEINS: TRANSDUCERS OF RECEPTOR-GENERATED SIGNALS. Vol. 56, Annual Review of Biochemistry. Annual Reviews; 1987. p. 615–49.

Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, et al. High-Resolution Crystal Structure of an Engineered Human β2 -Adrenergic G Protein–Coupled Receptor. Science. 2007 Nov 23;318(5854):1258–65.

Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, et al. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nature Reviews Drug Discovery [Internet]. 2025 Jan 2; Available from: https://doi.org/10.1038/s41573-024-01083-3

De Mendoza A, Sebé-Pedrós A, Ruiz-Trillo I. The Evolution of the GPCR Signaling System in Eukaryotes: Modularity, Conservation, and the Transition to Metazoan Multicellularity. Genome Biology and Evolution. 2014 Mar;6(3):606–19.

Kojima K, Sudo Y. Convergent evolution of animal and microbial rhodopsins. RSC Adv. 2023;13(8):5367–81.

Lake JA, Henderson E, Oakes M, Clark MW. Eocytes: a new ribosome structure indicates a kingdom with a close relationship to eukaryotes. Proc Natl Acad Sci USA. 1984 Jun;81(12):3786–90.

Woese CR, Kandler O, Wheelis ML. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Sciences. 1990 Jun 1;87(12):4576–9.

Kim H, Mirdita M, Steinegger M. Foldcomp: a library and format for compressing and indexing large protein structure sets. Cowen L, editor. Bioinformatics. 2023 Apr 3;39(4):btad153.

Minami S, Sawada K, Ota M, Chikenji G. MICAN-SQ: a sequential protein structure alignment program that is applicable to monomers and all types of oligomers. Valencia A, editor. Bioinformatics. 2018 Oct 1;34(19):3324–31.

Xu J, Zhang Y. How significant is a protein structure similarity with TM-score = 0.5? Bioinformatics. 2010 Apr 1;26(7):889–95.

Blum M, Andreeva A, Florentino LC, Chuguransky SR, Grego T, Hobbs E, et al. InterPro: the protein sequence classification resource in 2025. Nucleic Acids Research. 2025 Jan 6;53(D1):D444–56.

Steinegger M, Söding J. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat Biotechnol. 2017 Nov;35(11):1026–8.

Minami S, Sawada K, Chikenji G. MICAN : a protein structure alignment algorithm that can handle Multiple-chains, Inverse alignments, C α only models, Alternative alignments, and Non-sequential alignments. BMC Bioinformatics. 2013 Dec;14(1):24.

Barrio-Hernandez I, Yeo J, Jänes J, Mirdita M, Gilchrist CLM, Wein T, et al. Clustering predicted structures at the scale of the known protein universe. Nature [Internet]. 2023 Sep 13 [cited 2023 Oct 4]; Available from: https://www.nature.com/articles/s41586-023-06510-w

Suzek BE, Wang Y, Huang H, McGarvey PB, Wu CH, the UniProt Consortium. UniRef clusters: a comprehensive and scalable alternative for improving sequence similarity searches. Bioinformatics. 2015 Mar 15;31(6):926–32.

The UniProt Consortium, Bateman A, Martin MJ, Orchard S, Magrane M, Ahmad S, et al. UniProt: the Universal Protein Knowledgebase in 2023. Nucleic Acids Research. 2023 Jan 6;51(D1):D523–31.

Herrera LPT, Andreassen SN, Caroli J, Rodríguez-Espigares I, Kermani AA, Keserű GM, et al. GPCRdb in 2025: adding odorant receptors, data mapper, structure similarity search and models of physiological ligand complexes. Nucleic Acids Research. 2025 Jan 6;53(D1):D425–35.

Alexandrov N, Shindyalov I. PDP: protein domain parser. Bioinformatics. 2003 Feb 12;19(3):429–30.

Veretnik S, Bourne PE, Alexandrov NN, Shindyalov IN. Toward Consistent Assignment of Structural Domains in Proteins. Journal of Molecular Biology. 2004 Jun 4;339(3):647–78.

Bernhofer M, Rost B. TMbed: transmembrane proteins predicted through language model embeddings. BMC Bioinformatics. 2022 Aug 8;23(1):326.

Lomize AL, Todd SC, Pogozheva ID. Spatial arrangement of proteins in planar and curved membranes by PPM 3.0. Protein Science. 2022 Jan;31(1):209–20.

Schrodinger. The PyMOL Molecular Graphics System, Version 1.8. 2015.

Frishman D, Argos P. Knowledge-based protein secondary structure assignment. Proteins: Structure, Function, and Bioinformatics. 1995 Dec 1;23(4):566–79.

Spang A, Saw JH, Jørgensen SL, Zaremba-Niedzwiedzka K, Martijn J, Lind AE, et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature. 2015 May;521(7551):173–9.

Zaremba-Niedzwiedzka K, Caceres EF, Saw JH, Bäckström D, Juzokaite L, Vancaester E, et al. Asgard archaea illuminate the origin of eukaryotic cellular complexity. Nature. 2017 Jan 19;541(7637):353–8.

Williams TA, Cox CJ, Foster PG, Szöllősi GJ, Embley TM. Phylogenomics provides robust support for a two-domains tree of life. Nature Ecology & Evolution. 2020 Jan 1;4(1):138–47.

Göker M, Oren A. Valid publication of names of two domains and seven kingdoms of prokaryotes. International Journal of Systematic and Evolutionary Microbiology [Internet]. 2024 Jan 22 [cited 2025 Jul 19];74(1). Available from: https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/ijsem.0.006242

DeLong EF. Archaea in coastal marine environments. Proc Natl Acad Sci USA. 1992 Jun 15;89(12):5685–9.

DeLong EF, Wu KY, Prézelin BB, Jovine RVM. High abundance of Archaea in Antarctic marine picoplankton. Nature. 1994 Oct;371(6499):695–7.

Rinke C, Rubino F, Messer LF, Youssef N, Parks DH, Chuvochina M, et al. A phylogenomic and ecological analysis of the globally abundant Marine Group II archaea ( Ca . Poseidoniales ord. nov.). The ISME Journal. 2019 Mar 1;13(3):663–75.

Fuhrman JA, McCallum K, Davis AA. Novel major archaebacterial group from marine plankton. Nature. 1992 Mar;356(6365):148–9.

Santoro AE, Richter RA, Dupont CL. Planktonic Marine Archaea. Annu Rev Mar Sci. 2019 Jan 3;11(1):131–58.

Tully BJ, Sachdeva R, Graham ED, Heidelberg JF. 290 metagenome-assembled genomes from the Mediterranean Sea: a resource for marine microbiology. PeerJ. 2017 Jul 10;5:e3558.

Tully BJ, Graham ED, Heidelberg JF. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci Data. 2018 Jan 16;5(1):170203.

Parks DH, Chuvochina M, Waite DW, Rinke C, Skarshewski A, Chaumeil PA, et al. A standardized bacterial taxonomy based on genome phylogeny substantially revises the tree of life. Nat Biotechnol. 2018 Nov;36(10):996–1004.

Haro-Moreno JM, López-Pérez M, De La Torre JR, Picazo A, Camacho A, Rodriguez-Valera F. Fine metagenomic profile of the Mediterranean stratified and mixed water columns revealed by assembly and recruitment. Microbiome. 2018 Dec;6(1):128.

Hiraoka S, Okazaki Y, Anda M, Toyoda A, Nakano S ichi, Iwasaki W. Metaepigenomic analysis reveals the unexplored diversity of DNA methylation in an environmental prokaryotic community. Nat Commun. 2019 Jan 11;10(1):159.

Zhou Z, Tran PQ, Kieft K, Anantharaman K. Genome diversification in globally distributed novel marine Proteobacteria is linked to environmental adaptation. The ISME Journal. 2020 Aug 1;14(8):2060–77.

Cabello-Yeves PJ, Callieri C, Picazo A, Mehrshad M, Haro-Moreno JM, Roda-Garcia JJ, et al. The microbiome of the Black Sea water column analyzed by shotgun and genome centric metagenomics. Environmental Microbiome. 2021 Mar 16;16(1):5.

Lin H, Ascher DB, Myung Y, Lamborg CH, Hallam SJ, Gionfriddo CM, et al. Mercury methylation by metabolically versatile and cosmopolitan marine bacteria. The ISME Journal. 2021 Jun 1;15(6):1810–25.

Rinke C, Chuvochina M, Mussig AJ, Chaumeil PA, Davín AA, Waite DW, et al. A standardized archaeal taxonomy for the Genome Taxonomy Database. Nat Microbiol. 2021 Jun 21;6(7):946–59.

Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K, Salazar G, et al. Structure and function of the global ocean microbiome. Science. 2015 May 22;348(6237):1261359.

Ban C, Ramakrishnan B, Ling KY, Kung C, Sundaralingam M. Structure of the recombinant ıt Paramecium tetraurelia calmodulin at 1.68 Å resolution. Acta Crystallographica Section D. 1994 Jan;50(1):50–63.

Krishna SS, Grishin NV. Structurally Analogous Proteins Do Exist! Structure. 2004 Jul 1;12(7):1125–7.

Gaasterland T. Structural genomics taking shape. Trends in Genetics. 1998 Apr 1;14(4):135–135.

Gaasterland T. Structural genomics: Bioinformatics in the driver’s seat. Nat Biotechnol. 1998 Jul;16(7):625–7.

Kim SH. Shining a light on structural genomics. Nature Structural Biology. 1998 Aug 1;5(8):643–5.

Williamson AR. Creating a structural genomics consortium. Nature Structural Biology. 2000 Nov 1;7(11):953–953.

Cyranoski D. “Big science” protein project under fire. Nature. 2006 Sep;443(7110):382–382.

Yokoyama S, Terwilliger TC, Kuramitsu S, Moras D, Sussman JL. RIKEN aids international structural genomics efforts. Nature. 2007 Jan 1;445(7123):21–21.

公開済


投稿日時: 2025-08-01 18:43:23 UTC

公開日時: 2025-08-07 04:24:37 UTC
研究分野
生物学・生命科学・基礎医学