Long-term use of modern Portland cement concrete: change in strength due to reaction between aggregate and cement paste
DOI:
https://doi.org/10.51094/jxiv.1187キーワード:
Concrete、 Aggregate、 Reaction、 Long-term performance抄録
Experimental measurements on samples cored from thick concrete walls of existing building structures whose age was ~50 years at most showed that concrete strength increased after long-term use due to chemical reactions between aggregate and cement hydrates. Chemical compositions of reacted aggregate were analyzed by comparing the oxide composition of cement paste with that of original cement based on inductively coupled plasma atomic emission spectroscopy (ICP-AES) measurement. The results provide indicators to determine the dissolving aggregate minerals as well as the reaction degree of aggregate. A model was proposed to simulate the progress of reaction degree over time in coupling with moisture transport and temperature in concrete. The mechanism of strength increase was discussed by analyzing the gel-space ratio estimated from XRD-Riteveld analysis and that estimated from the thermodynamic simulation of the reaction. Finally, the strength prediction model was proposed for the aging management of building structures.
利益相反に関する開示
The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.ダウンロード *前日までの集計結果を表示します
引用文献
Global Cement and Concrete Association, https://gccassociation.org/concretefuture/getting-to-net-zero/, (2024).
I. Maruyama, J. Rymeš, A. Aili, S. Sawada, O. Kontani, S. Ueda, R. Shimamoto, Long-term use of modern Portland cement concrete: The impact of Al-tobermorite formation, Mater Des 198 (2021). https://doi.org/10.1016/j.matdes.2020.109297.
J. Rymeš, I. Maruyama, R. Shimamoto, A. Tachibana, Y. Tanaka, S. Sawada, Y. Ichikawa, O. Kontani, Long-term material properties of a thick concrete wall exposed to ordinary environmental conditions in a nuclear reactor building: The contribution of cement hydrates and feldspar interaction, Journal of Advanced Concrete Technology 17 (2019) 195–215. https://doi.org/10.3151/jact.17.5.195.
A. Aili, I. Maruyama, G. Geng, S. Umeki, K. Sumitani, S. Sawada, S. Ueda, Y. Umeki, Micro X-ray diffraction and elemental study on Al-tobermorite formation in aged modern concrete, Journal of the American Ceramic Society 105 (2022) 6924–6937. https://doi.org/10.1111/jace.18624.
A. Leemann, M. Bagheri, B. Lothenbach, K. Scrivener, S. Barbotin, E. Boehm‐courjault, G. Geng, R. Dähn, Z. Shi, M. Shakoorioskooie, M. Griffa, R. Zboray, P. Lura, E. Gallyamov, R. Rezakhani, J.F. Molinari, Alkali‐silica reaction – a multidisciplinary approach, RILEM Technical Letters 6 (2021) 169–187. https://doi.org/10.21809/RILEMTECHLETT.2021.151.
A.C. Lasaga, CHEMICAL KINETICS OF WATER-ROCK INTERACTIONS., in: J Geophys Res, 1984: pp. 4009–4025. https://doi.org/10.1029/jb089ib06p04009.
M. Heřmanská, M.J. Voigt, C. Marieni, J. Declercq, E.H. Oelkers, A comprehensive and consistent mineral dissolution rate database: Part II: Secondary silicate minerals, Chem Geol 636 (2023). https://doi.org/10.1016/j.chemgeo.2023.121632.
M. Bagheri, B. Lothenbach, M. Shakoorioskooie, K. Scrivener, Effect of different ions on dissolution rates of silica and feldspars at high pH, Cem Concr Res 152 (2022). https://doi.org/10.1016/j.cemconres.2021.106644.
Dove - 1994 - The Dissolution Kinetics of Quartz in Sodium Chloride Solutions at 25 Degrees to 300 Degrees C, (n.d.).
P.M. Dove, N. Han, A.F. Wallace, J.J. De Yoreo, Kinetics of amorphous silica dissolution and the paradox of the silica polymorphs, Proceedings of the National Academy of Sciences 105 (2008) 9903–9908. https://doi.org/10.1073/pnas.080379810.
L. Chou, R. Wollast, Study of the weathering of albite at room temperature and pressure with a fluidized bed reactor, Geochim Cosmochim Acta 48 (1984) 2205–2217.
R.T. Lowson, M.C.J. Comarmond, G. Rajaratnam, P.L. Brown, The kinetics of the dissolution of chlorite as a function of pH and at 25°C, Geochim Cosmochim Acta 69 (2005) 1687–1699. https://doi.org/10.1016/j.gca.2004.09.028.
C.A. Rochelle, K. Bateman, R. MacGregor, J.M. Pearce, D. Savage, P.D. Wetton, Experimental determination of chlorite dissolution rates, in: Materials Research Society Symposium - Proceedings, Materials Research Society, 1995: pp. 149–156. https://doi.org/10.1557/proc-353-149.
M.M. Smith, Z. Dai, S.A. Carroll, Illite dissolution kinetics from 100 to 280 °C and pH 3 to 9, Geochim Cosmochim Acta 209 (2017) 9–23. https://doi.org/10.1016/j.gca.2017.04.005.
G. Yuan, Y. Cao, H.M. Schulz, F. Hao, J. Gluyas, K. Liu, T. Yang, Y. Wang, K. Xi, F. Li, A review of feldspar alteration and its geological significance in sedimentary basins: From shallow aquifers to deep hydrocarbon reservoirs, Earth Sci Rev 191 (2019) 114–140. https://doi.org/10.1016/j.earscirev.2019.02.004.
V.A. Alekseyev, L.S. Medvedeva, N.I. Prisyagina, S.S. Meshalkin, A.I. Balabin, Change in the dissolution rates of alkali feldspars as a result of secondary mineral precipitation and approach to equilibrium, Geochim Cosmochim Acta 61 (1997) 1125–142.
S. Poyet, Water transport properties of virtual fractal porous media: Implications for the unsaturated transport properties of cement-based materials, Cem Concr Res 150 (2021). https://doi.org/10.1016/j.cemconres.2021.106613.
H. Akita, T. Fujiwara, Y. Ozaka, Akita - 1994 - An analytical method of moisture transfer within concrete due to drying, JSCE Journal Proceedings 23 (1994) 101–110.
G. Plusquellec, M.R. Geiker, J. Lindgård, J. Duchesne, B. Fournier, K. De Weerdt, Determination of the pH and the free alkali metal content in the pore solution of concrete: Review and experimental comparison, Cem Concr Res 96 (2017) 13–26. https://doi.org/10.1016/j.cemconres.2017.03.002.
B. Lothenbach, T. Matschei, G. Möschner, F.P. Glasser, Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement, Cem Concr Res 38 (2008) 1–18. https://doi.org/10.1016/j.cemconres.2007.08.017.
B. Lothenbach, D.A. Kulik, T. Matschei, M. Balonis, L. Baquerizo, B. Dilnesa, G.D. Miron, R.J. Myers, Cemdata18: A chemical thermodynamic database for hydrated Portland cements and alkali-activated materials, Cem Concr Res 115 (2019) 472–506. https://doi.org/10.1016/j.cemconres.2018.04.018.
T.C. Powers, T.L. Brownyard, Studies of the Hardened Paste by Means of Specific-Volume Measurements, Portland Cement Association Bulletin (1947) 669–712.
T.C. POWERS, Structure and Physical Properties of Hardened Portland Cement Paste, Journal of the American Ceramic Society 41 (1958) 1–6. https://doi.org/10.1111/j.1151-2916.1958.tb13494.x.
A. Schöler, B. Lothenbach, F. Winnefeld, M. Zajac, Hydration of quaternary Portland cement blends containing blast-furnace slag, siliceous fly ash and limestone powder, Cem Concr Compos 55 (2015) 374–382. https://doi.org/10.1016/j.cemconcomp.2014.10.001.
B. Pichler, C. Hellmich, J. Eberhardsteiner, J. Wasserbauer, P. Termkhajornkit, R. Barbarulo, G. Chanvillard, Effect of gel-space ratio and microstructure on strength of hydrating cementitious materials: An engineering micromechanics approach, Cem Concr Res 45 (2013) 55–68. https://doi.org/10.1016/j.cemconres.2012.10.019.
I. Maruyama, G. Igarashi, Cement Reaction and Resultant Physical Properties of Cement Paste, Journal of Advanced Concrete Technology 12 (2014) 200–213. https://doi.org/10.3151/jact.12.200.
P. Termkhajornkit, Q.H. Vu, R. Barbarulo, S. Daronnat, G. Chanvillard, Dependence of compressive strength on phase assemblage in cement pastes: Beyond gel-space ratio - Experimental evidence and micromechanical modeling, Cem Concr Res 56 (2014) 1–11. https://doi.org/10.1016/j.cemconres.2013.10.007.
B. Lothenbach, M. Zajac, Application of thermodynamic modelling to hydrated cements, Cem Concr Res 123 (2019). https://doi.org/10.1016/j.cemconres.2019.105779.
Y. Ichikawa, I. Maruyama, H. Wada, K. Yokokura, S. Ishikawa, G. Saito, Soundness evaluation method for concrete structures based on the data obtained from decommissioning Hamaoka nuclear power plant, Part 3: Investigation on core sampling method, Proceeding of Annual Conf.of AIJ Structure (2017) 1259–1260.
JSA, Portland cement (JIS R5210), Tokyo, Japanese Standards Association (1973).
JSA, Method of test for static modulus of elasticity of concrete (JIS A 1149), Tokyo: Japanese Standards Association (2017).
A. Meawad, K. Murakami, T. Ohkubo, O. Kontani, J. Etoh, M. Do Thi, C. Aparicio, C.M. Silva, I. Maruyama, Evaluation of radiation-induced amorphization of α-quartz in concrete aggregates using Raman spectroscopy, Journal of Nuclear Materials 604 (2025) 155523. https://doi.org/10.1016/j.jnucmat.2024.155523.
I. Maruyama, G. Igarashi, N. Kishi, Fundamental study on water transfer in portland cement paste, Journal of Structural and Construction Engineering 76 (2011) 1737–1744. https://doi.org/10.3130/aijs.76.1737.
H. Sasano, I. Maruyama, A. Nakamura, Y. Yamamoto, M. Teshigawara, Impact of drying on structural performance of reinforced concrete shear walls, Journal of Advanced Concrete Technology 16 (2018) 210–232. https://doi.org/10.3151/jact.16.210.
H. Sasano, I. Maruyama, Mechanism of drying-induced change in the physical properties of concrete: A mesoscale simulation study, Cem Concr Res 143 (2021) 106401. https://doi.org/10.1016/j.cemconres.2021.106401.
H. Sasano, I. Maruyama, Investigation into the changes in the splitting tensile strength of concrete subjected to long-term drying using a three-phase mesoscale RBSM, Cem Concr Compos 148 (2024) 105462. https://doi.org/10.1016/j.cemconcomp.2024.105462.
F. Soleilhet, F. Benboudjema, X. Jourdain, F. Gatuingt, Effect of transient drying on mechanical properties of concrete specimens, European Journal of Environmental and Civil Engineering 26 (2022) 6650–6669. https://doi.org/10.1080/19648189.2021.1952488.
M. Lin, M. Itoh, I. Maruyama, Mechanism of Change in Splitting Tensile Strength of Concrete during Heating or Drying up to 90°C, Journal of Advanced Concrete Technology 13 (2015) 94–102. https://doi.org/10.3151/jact.13.94.
I. Maruyama, H. Sasano, Y. Nishioka, G. Igarashi, Strength and Young’s modulus change in concrete due to long-term drying and heating up to 90°C, Cem Concr Res 66 (2014) 48–63. https://doi.org/10.1016/j.cemconres.2014.07.016.
J. Glucklich, U. Korin, Effect of Moisture Content on Strength and Strain Energy Release Rate of Cement Mortar, Journal of the American Ceramic Society 58 (1975) 517–521. https://doi.org/10.1111/j.1151-2916.1975.tb18772.x.
A. Idiart, J. Bisschop, A. Caballero, P. Lura, A numerical and experimental study of aggregate-induced shrinkage cracking in cementitious composites, Cem Concr Res 42 (2012) 272–281. https://doi.org/10.1016/j.cemconres.2011.09.013.
I. Yurtdas, H. Peng, N. Burlion, F. Skoczylas, Influences of water by cement ratio on mechanical properties of mortars submitted to drying, Cem Concr Res 36 (2006) 1286–1293. https://doi.org/10.1016/j.cemconres.2005.12.015.
N. Burlion, F. Bourgeois, J.-F. Shao, Effects of desiccation on mechanical behaviour of concrete, Cem Concr Compos 27 (2005) 367–379. https://doi.org/10.1016/j.cemconcomp.2004.05.004.
I. Yurtdas, N. Burlion, F. Skoczylas, Experimental characterisation of the drying effect on uniaxial mechanical behaviour of mortar, Mater Struct 37 (2004) 170–176. https://doi.org/10.1007/BF02481616.
S.E. Pihlajavaara, A review of some of the main results of a research on the aging phenomena of concrete: Effect of moisture conditions on strength, shrinkage and creep of mature concrete, Cem Concr Res 4 (1974) 761–771. https://doi.org/10.1016/0008-8846(74)90048-9.
D.A. Kulik, T. Wagner, S. V. Dmytrieva, G. Kosakowski, F.F. Hingerl, K. V. Chudnenko, U.R. Berner, GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes, Comput Geosci (2012). https://doi.org/10.1007/s10596-012-9310-6.
T. Wagner, D.A. Kulik, F.F. Hingerl, S. V. Dmytrieva, GEM-SELEKTOR GEOCHEMICAL MODELING PACKAGE: TSolMod LIBRARY AND DATA INTERFACE FOR MULTICOMPONENT PHASE MODELS, The Canadian Mineralogist 50 (2012) 1173–1195. https://doi.org/10.3749/canmin.50.5.1173.
ダウンロード
公開済
投稿日時: 2025-04-06 20:40:01 UTC
公開日時: 2025-04-09 09:08:39 UTC
ライセンス
Copyright(c)2025
Ippei Maruyama
Aili, Abudushalamu
Shohei Sawada
Kazuhiro Yokokura
Yoshito Umeki

この作品は、Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International Licenseの下でライセンスされています。