プレプリント / バージョン2

Oncogenic stress-induced Netrin reprograms systemic metabolism as a humoral inter-organ molecule in Drosophila

##article.authors##

  • Okada, Morihiro Laboratory for Homeodynamics, RIKEN BDR
  • Tomomi Takano Laboratory for Homeodynamics, RIKEN BDR
  • Yuko Ikegawa Laboratory for Homeodynamics, RIKEN BDR
  • Hanna Ciesielski Physiological Genetics Laboratory, RIKEN CPR
  • Hiroshi Nishida Physiological Genetics Laboratory, RIKEN CPR
  • Sa Kan Yoo Laboratory for Homeodynamics, RIKEN BDR

DOI:

https://doi.org/10.51094/jxiv.114

キーワード:

Netrin、 oncogenic stress、 inter-organ communication、 Drosophila

抄録

Cancer exerts pleiotropic, systemic effects on organisms (Bilder, Ong, Hsi, Adiga, & Kim, 2021; Hiam-Galvez, Allen, & Spitzer, 2021). Health of organisms with cancer deteriorates, eventually leading to organismal death. How cancer induces systemic effects on remote organs and the organism itself still remains elusive. Here we describe a role for NetrinB (NetB), a protein with a particularly well-characterized role as a tissue-level axon guidance cue (Bradford, Cole, & Cooper, 2009; Kennedy, 2000; Serafini et al., 1996), in mediating oncogenic stress-induced organismal, metabolic reprogramming as a systemic humoral factor. Ras-induced dysplasia upregulates and secretes NetB. Inhibition of either NetB from the transformed tissue or its receptor in the fat body suppresses oncogenic stress-induced organismal death. Mechanistically, NetB from the dysplastic tissue remotely suppresses carnitine biosynthesis, which is critical for acetyl-CoA generation and systemic metabolism, in the fat body. Supplementation of carnitine or acetyl-CoA inhibits oncogenic stress-induced organismal death. This is the first identification, to our knowledge, of a role for the Netrin molecule, which has been studied extensively for its role within tissues, in humorally mediating systemic effects of local oncogenic stress on remote organs and organismal metabolism.

利益相反に関する開示

The authors declare no competing financial interests.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Apidianakis, Y., Pitsouli, C., Perrimon, N., & Rahme, L. (2009). Synergy between bacterial infection and genetic predisposition in intestinal dysplasia. Proc Natl Acad Sci U S A, 106(49), 20883-20888. doi:10.1073/pnas.0911797106

Arakawa, H. (2004). Netrin-1 and its receptors in tumorigenesis. Nat Rev Cancer, 4(12), 978-987. doi:10.1038/nrc1504

Argiles, J. M., Busquets, S., Stemmler, B., & Lopez-Soriano, F. J. (2014). Cancer cachexia: understanding the molecular basis. Nat Rev Cancer, 14(11), 754-762. doi:10.1038/nrc3829

Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A., & Wishart, D. S. (2016). Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res, 44(W1), W147-153. doi:10.1093/nar/gkw419

Bilder, D., Ong, K., Hsi, T. C., Adiga, K., & Kim, J. (2021). Tumour-host interactions through the lens of Drosophila. Nat Rev Cancer, 21(11), 687-700. doi:10.1038/s41568-021-00387-5

Bodey, G. P. (1986). Infection in cancer patients. A continuing association. Am J Med, 81(1A), 11-26. doi:10.1016/0002-9343(86)90510-3

Bradford, D., Cole, S. J., & Cooper, H. M. (2009). Netrin-1: diversity in development. Int J Biochem Cell Biol, 41(3), 487-493. doi:10.1016/j.biocel.2008.03.014

Ciesielski, H. M., Nishida, H., Takano, T., Fukuhara, A., Otani, T., Ikegawa, Y., . . . Yoo, S. K. (2022). Erebosis, a new cell death mechanism during homeostatic turnover of gut enterocytes. PLoS Biol, 20(4), e3001586. doi:10.1371/journal.pbio.3001586

Comerford, S. A., Huang, Z., Du, X., Wang, Y., Cai, L., Witkiewicz, A. K., . . . Tu, B. P. (2014). Acetate dependence of tumors. Cell, 159(7), 1591-1602. doi:10.1016/j.cell.2014.11.020

Dar, A. C., Das, T. K., Shokat, K. M., & Cagan, R. L. (2012). Chemical genetic discovery of targets and anti-targets for cancer polypharmacology. Nature, 486(7401), 80-84. doi:10.1038/nature11127

Ding, G., Xiang, X., Hu, Y., Xiao, G., Chen, Y., Binari, R., . . . Song, W. (2021). Coordination of tumor growth and host wasting by tumor-derived Upd3. Cell Rep, 36(7), 109553. doi:10.1016/j.celrep.2021.109553

Egeblad, M., Nakasone, E. S., & Werb, Z. (2010). Tumors as organs: complex tissues that interface with the entire organism. Dev Cell, 18(6), 884-901. doi:10.1016/j.devcel.2010.05.012

Figueroa-Clarevega, A., & Bilder, D. (2015). Malignant Drosophila tumors interrupt insulin signaling to induce cachexia-like wasting. Dev Cell, 33(1), 47-55. doi:10.1016/j.devcel.2015.03.001

Freeman, M. (1996). Reiterative use of the EGF receptor triggers differentiation of all cell types in the Drosophila eye. Cell, 87(4), 651-660. doi:10.1016/s0092-8674(00)81385-9

Halme, A., Cheng, M., & Hariharan, I. K. (2010). Retinoids regulate a developmental checkpoint for tissue regeneration in Drosophila. Curr Biol, 20(5), 458-463. doi:10.1016/j.cub.2010.01.038

Hanahan, D., & Weinberg, R. A. (2011). Hallmarks of cancer: the next generation. Cell, 144(5), 646-674. doi:10.1016/j.cell.2011.02.013

Hao, W., Yu, M., Lin, J., Liu, B., Xing, H., Yang, J., . . . Zhu, Y. (2020). The pan-cancer landscape of netrin family reveals potential oncogenic biomarkers. Sci Rep, 10(1), 5224. doi:10.1038/s41598-020-62117-5

Hiam-Galvez, K. J., Allen, B. M., & Spitzer, M. H. (2021). Systemic immunity in cancer. Nat Rev Cancer, 21(6), 345-359. doi:10.1038/s41568-021-00347-z

Hobbs, G. A., Der, C. J., & Rossman, K. L. (2016). RAS isoforms and mutations in cancer at a glance. J Cell Sci, 129(7), 1287-1292. doi:10.1242/jcs.182873

Kefeli, U., Ucuncu Kefeli, A., Cabuk, D., Isik, U., Sonkaya, A., Acikgoz, O., . . . Uygun, K. (2017). Netrin-1 in cancer: Potential biomarker and therapeutic target? Tumour Biol, 39(4), 1010428317698388. doi:10.1177/1010428317698388

Kennedy, T. E. (2000). Cellular mechanisms of netrin function: long-range and short-range actions. Biochem Cell Biol, 78(5), 569-575. Retrieved from https://www.ncbi.nlm.nih.gov/pubmed/11103947

Khezri, R., Holland, P., Schoborg, T. A., Abramovich, I., Takats, S., Dillard, C., . . . Rusten, T. E. (2021). Host autophagy mediates organ wasting and nutrient mobilization for tumor growth. EMBO J, 40(18), e107336. doi:10.15252/embj.2020107336

Kim, J., Chuang, H. C., Wolf, N. K., Nicolai, C. J., Raulet, D. H., Saijo, K., & Bilder, D. (2021). Tumor-induced disruption of the blood-brain barrier promotes host death. Dev Cell, 56(19), 2712-2721 e2714. doi:10.1016/j.devcel.2021.08.010

Ko, S. Y., Blatch, G. L., & Dass, C. R. (2014). Netrin-1 as a potential target for metastatic cancer: focus on colorectal cancer. Cancer Metastasis Rev, 33(1), 101-113. doi:10.1007/s10555-013-9459-z

Kwon, Y., Song, W., Droujinine, I. A., Hu, Y., Asara, J. M., & Perrimon, N. (2015). Systemic organ wasting induced by localized expression of the secreted insulin/IGF antagonist ImpL2. Dev Cell, 33(1), 36-46. doi:10.1016/j.devcel.2015.02.012

Luft, F. C. (2007). Cachexia has only one meaning. J Mol Med (Berl), 85(8), 783-785. doi:10.1007/s00109-007-0231-0

Maas, M. N., Hintzen, J. C. J., Porzberg, M. R. B., & Mecinovic, J. (2020). Trimethyllysine: From Carnitine Biosynthesis to Epigenetics. Int J Mol Sci, 21(24). doi:10.3390/ijms21249451

Markstein, M., Dettorre, S., Cho, J., Neumuller, R. A., Craig-Muller, S., & Perrimon, N. (2014). Systematic screen of chemotherapeutics in Drosophila stem cell tumors. Proc Natl Acad Sci U S A, 111(12), 4530-4535. doi:10.1073/pnas.1401160111

Newton, H., Wang, Y. F., Camplese, L., Mokochinski, J. B., Kramer, H. B., Brown, A. E. X., . . . Hirabayashi, S. (2020). Systemic muscle wasting and coordinated tumour response drive tumourigenesis. Nat Commun, 11(1), 4653. doi:10.1038/s41467-020-18502-9

Nishida, H., Okada, M., Yang, L., Takano, T., Tabata, S., Soga, T., . . . Yoo, S. K. (2021). Methionine restriction breaks obligatory coupling of cell proliferation and death by an oncogene Src in Drosophila. Elife, 10. doi:10.7554/eLife.59809

Okada, M., & Shi, Y. B. (2018). EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development. FASEB J, 32(1), 431-439. doi:10.1096/fj.201700424R

Pietrocola, F., Galluzzi, L., Bravo-San Pedro, J. M., Madeo, F., & Kroemer, G. (2015). Acetyl coenzyme A: a central metabolite and second messenger. Cell Metab, 21(6), 805-821. doi:10.1016/j.cmet.2015.05.014

Prior, I. A., Lewis, P. D., & Mattos, C. (2012). A comprehensive survey of Ras mutations in cancer. Cancer Res, 72(10), 2457-2467. doi:10.1158/0008-5472.CAN-11-2612

Santabarbara-Ruiz, P., & Leopold, P. (2021). An Oatp transporter-mediated steroid sink promotes tumor-induced cachexia in Drosophila. Dev Cell, 56(19), 2741-2751 e2747. doi:10.1016/j.devcel.2021.09.009

Sasaki, A., Nishimura, T., Takano, T., Naito, S., & Yoo, S. K. (2021). white regulates proliferative homeostasis of intestinal stem cells during ageing in Drosophila. Nat Metab, 3(4), 546-557. doi:10.1038/s42255-021-00375-x

Serafini, T., Colamarino, S. A., Leonardo, E. D., Wang, H., Beddington, R., Skarnes, W. C., & Tessier-Lavigne, M. (1996). Netrin-1 is required for commissural axon guidance in the developing vertebrate nervous system. Cell, 87(6), 1001-1014. doi:10.1016/s0092-8674(00)81795-x

Silverio, R., Laviano, A., Rossi Fanelli, F., & Seelaender, M. (2011). l-carnitine and cancer cachexia: Clinical and experimental aspects. J Cachexia Sarcopenia Muscle, 2(1), 37-44. doi:10.1007/s13539-011-0017-7

Simon, M. A., Bowtell, D. D., Dodson, G. S., Laverty, T. R., & Rubin, G. M. (1991). Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase. Cell, 67(4), 701-716. doi:10.1016/0092-8674(91)90065-7

Song, W., Kir, S., Hong, S., Hu, Y., Wang, X., Binari, R., . . . Perrimon, N. (2019). Tumor-Derived Ligands Trigger Tumor Growth and Host Wasting via Differential MEK Activation. Dev Cell, 48(2), 277-286 e276. doi:10.1016/j.devcel.2018.12.003

Tang, A. H., Neufeld, T. P., Rubin, G. M., & Muller, H. A. (2001). Transcriptional regulation of cytoskeletal functions and segmentation by a novel maternal pair-rule gene, lilliputian. Development, 128(5), 801-813. doi:10.1242/dev.128.5.801

Tsuda-Sakurai, K., Kimura, M., & Miura, M. (2020). Diphthamide modification of eEF2 is required for gut tumor-like hyperplasia induced by oncogenic Ras. Genes Cells, 25(2), 76-85. doi:10.1111/gtc.12742

Villegas, S. N. (2019). One hundred years of Drosophila cancer research: no longer in solitude. Dis Model Mech, 12(4). doi:10.1242/dmm.039032

Wu, M., Pastor-Pareja, J. C., & Xu, T. (2010). Interaction between Ras(V12) and scribbled clones induces tumour growth and invasion. Nature, 463(7280), 545-548. doi:10.1038/nature08702

Yoo, S. K., Pascoe, H. G., Pereira, T., Kondo, S., Jacinto, A., Zhang, X., & Hariharan, I. K. (2016). Plexins function in epithelial repair in both Drosophila and zebrafish. Nat Commun, 7, 12282. doi:10.1038/ncomms12282

ダウンロード

公開済


投稿日時: 2022-07-07 09:46:46 UTC

公開日時: 2022-07-08 09:25:10 UTC — 2023-03-29 23:46:17 UTCに更新

バージョン

改版理由

Improved data and descriptions.
研究分野
生物学・生命科学・基礎医学