AI Assistant Scientist
Aiding scientific discovery with quantum-like evolutionary algorithm
DOI:
https://doi.org/10.51094/jxiv.1103キーワード:
scientific discovery、 genetic programming、 machine learning、 AI assistant scientist、 quantum-like decision theory、 quantum-like evolutionary algorithm抄録
The greatest challenge of scientific discovery is how unknown becomes known. While there have been ways set forth to go about scientific discovery, most require rigorous work done by humans, and involve human scientists trying their best to sift out the most important information from vast amounts of raw data. This paper presents an AI assistant scientist that utilizes quantum superposition principle to model many different theories and applies genetic programming to evolve the most satisfactory theory from many possible ones. Setting out from an information perspective, multiple AI agents cooperate to find the valuable information from raw data: (1) produce a function for natural phenomena with complete information obtained from experimental data, and (2) produce a matrix for natural phenomena where complete information cannot be obtained from experimental data. Using the freefall trajectory of a light sphere and Schrodinger's Cat simulated thought experiment as case studies, we show that the AI assistant scientist is able to reconstruct the past trajectory and predict the future trajectory of the light sphere with the function it produces, and to reconstruct the cats' past states and probabilistically predict the cat's future states with the matrix it produces. We believe that the key to scientific discovery is how to obtain as much valuable information from raw data as possible and this can be done by the AI Assistant scientist that’s powered with the quantum-like evolutionary algorithm that we’ve developed.
利益相反に関する開示
The authors are affiliated with XINVISIONQ, INC., the developer of a commercial forecasting tool, but for transparency of the experiments conducted in this study, all data generated and produced are included in the main text and supplementary materials.ダウンロード *前日までの集計結果を表示します
引用文献
Guimerà, Roger, Ignasi Reichardt, Antoni Aguilar-Mogas, Francesco Alessandro Massucci, Manuel Miranda, Jordi Pallarés and Marta Sales-Pardo. “A Bayesian machine scientist to aid in the solution of challenging scientific problems.” Science Advances 6 (2020).
Langley, Pat. “Rediscovering Physics with BACON.3.” International Joint Conference on Artificial Intelligence (1979).
Schmidt, Michael D. and Hod Lipson. “Distilling Free-Form Natural Laws from Experimental Data.” Science 324 (2009): 81 – 85.
Brunton, Steven L., Joshua L. Proctor and J. Nathan Kutz. “Discovering governing equations from data by sparse identification of nonlinear dynamical systems.” Proceedings of the National Academy of Sciences 113 (2015): 3932 – 3937.
Lemos, Pablo, Niall Jeffrey, M. Cranmer, Shi-Lin Ho and Peter W. Battaglia. “Rediscovering orbital mechanics with machine learning.” ArXiv abs/2202.02306 (2022).
Udrescu, Silviu-Marian and Max Tegmark. “AI Feynman: A physics-inspired method for symbolic regression.” Science Advances 6 (2019).
Cornelio, C., Dash, S., Austel, V. et al. Combining data and theory for derivable scientific discovery with AI-Descartes. Nat Commun 14, 1777 (2023). https://doi.org/10.1038/s41467-023-37236-y.
Krenn, M., Pollice, R., Guo, S.Y. et al. On scientific understanding with artificial intelligence. Nat Rev Phys 4, 761–769 (2022). https://doi.org/10.1038/s42254-022-00518-3.
Xin, L., Xin, H. Decision-making under uncertainty – a quantum value operator approach. Int J Theor Phys 62, 48, https://doi.org/10.1007/s10773-023-05308-w (2023).
Xin, L.; Xin, K.; Xin, H. 2023 On Laws of Thought—A Quantum-like Machine Learning Approach. Entropy, 25, 1213. (doi:10.3390/e25081213)
Holland, J., Adaptation in Natural and Artificial System, Ann Arbor, MI: University of Michigan Press (1975).
Goldberg, D.E., Genetic algorithms – in search, optimization and machine learning, New York, NY: Addison-Wesley Publishing Company, Inc. (1989).
Koza, J.R., Genetic programming, on the programming of computers by means of natural selection, Cambridge, MA: MIT Press (1992).
Koza, J.R., Genetic programming II, automatic discovery of reusable programs, Cambridge, MA: MIT Press (1994).
Trimmer, John D. “The Present Situation in Quantum Mechanics: A Translation of Schrödinger’s ‘Cat Paradox’ Paper.” Proceedings of the American Philosophical Society 124, no. 5 (1980): 323–38.
Von Neumann, J. Mathematical Foundations of Quantum Theory, Princeton, NJ: Princeton University Press (1932).
Dirac, P.A.M., the Principles of Quantum Mechanics, Oxford University Press (1958).
Heisenberg, W., the Physical Principles of the Quantum Theory, Chicago, IL: The University of Chicago Press (1930).
N. S. Yanofsky, M. A. Mannucci, Quantum Computing for Computer Scientists, Cambridge University Press, Cambridge, 2008.
Nielsen, M.A. and Chuang, I.L., Quantum computation and quantum information, Cambridge University Press (2000).
Wheeler, J. A. and Zurek W.H., Quantum Theory and Measurement, Princeton, NJ: Princeton University Press (1983).
Jammer, M., the Philosophy of Quantum Mechanics, New York, NY: Wiley (1974).
Rovelli, C., Helgoland: Making Sense of the Quantum Revolution, New York, NY: Riverhead Books (2021).
Zurek W.H., Decoherence, einselection, and the quantum origins of the classical, Rev. Mod. Phys. 75, 715-75 (2003).
Popper, K.R., Quantum Mechanics without "the Observer", In Bunge, M. (Ed.). Quantum Theory and Reality, Springer (1967).
van Fraassen, B. C., Hidden Variables and the Modal Interpretation of Quantum Statistics, Synthese 42, 155-65 (1979).
Everett, H., “Relative State” Formulation of Quantum Mechanics, Rev. Mod. Phys. 29, 454 (1957).
Fuchs, C.A, Schack, R., Quantum- Bayesian coherence, Rev. Mod. Phys. 85, 1693 (2013).
Mittelstaedt, P., the Interpretation of Quantum Mechanics and the Measurement Process, Cambridge: Cambridge University Press (1998).
Omnes, R., the Interpretation of Quantum Mechanics, Princeton, NJ: Princeton University Press (1994).
Bub, Jeffrey. Interpreting the Quantum World, Cambridge: Cambridge University Press (1997).
Baggott, Jim., Beyond measure: Modern physics, philosophy, and the meaning of quantum theory, Oxford: Oxford University Press (2004).
Healey, R. A., and Hellman G., Quantum Measurement: Beyond Paradox, Minneapolis, MN: University of Minnesota Press (1998).
Bunge, M., Quantum Theory and Reality, Springer (1967).
Maudlin, T., Philosophy of Physics: Quantum Theory, Princeton, NJ: Princeton University Press (2019).
Albert, D.Z., Quantum Mechanics and Experience, Cambridge, MA: Harvard University Press (1992).
公開済
投稿日時: 2025-02-25 07:34:01 UTC
公開日時: 2025-03-04 23:47:52 UTC
ライセンス
Copyright(c)2025
Lizhi Xin
Kevin Xin

この作品は、Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International Licenseの下でライセンスされています。