プレプリント / バージョン1

Estimation of Cellulose Nanofiber Length Using Steady Shear Viscosity of Fiber Suspensions

##article.authors##

  • Yasuda, Kazunori Department of Mechanical Engineering, Graduate School of Science and Technology, Ehime University https://researchmap.jp/read0014108
  • Honda, Tatsuhiro Department of Mechanical Engineering, Graduate School of Science and Technology, Ehime University

DOI:

https://doi.org/10.51094/jxiv.1064

キーワード:

Fiber length、 Fiber concentration、 Fiber orientation、 Shear viscosity、 Rheology、 Non-Newtonian fluid、 Fiber-fiber interaction、 Cellulose nanofiber

抄録

In this study, a novel method was proposed for estimating the length of TEMPO-oxidized cellulose nanofibers using the steady shear viscosity of a nanofiber suspension in water. Two fiber suspensions were prepared: one sample contained fibers approximately 500 nm in length and the other sample contained fibers of approximately 200–300 nm in length. For each sample, the steady shear viscosity of the suspension was measured for 7–8 distinct volume fractions, and the viscosity was approximated using a power-law model. The relationship between the power index of the power-law model and the volume fraction of the nanofiber was used to estimate the fiber length. The measured lengths of the nanofibers were similar to those obtained using various other fiber length measurement methods, indicating that this method can be used for fiber length estimation.

利益相反に関する開示

The authors have no relevant financial or non-financial interests to disclose.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

Turbak, A. F., Snyder, F. W., and Sandberg, K. R., “Microfibrillated cellulose, a new cellulose product: properties, uses, and commercial potential,” J. Appl. Polym. Sci.: Appl. Polym. Symp. 37, 815-827 (1983).

Samir, M. A. S. A., Alloin, F., and Dufresne, A., “Review of recent research into cellulosic whiskers, their properties and their application in nanocomposite field,” Biomacromolecules 6, 612-626 (2005). https://doi.org/10.1021/bm0493685

Eichhorn, S. J., Dufresne, A., Aranguren, M., Marcovich, N. E., Capadona, J. R., Rowan, S. J., Weder, C., Thielemans, W., Roman, M., Rennecker, S., Gindl, W., Veigel, S., Keckes, J., Yano, H., Abe, K., Nogi, M., Nakagaito, A. N., Mangalam, A., Simonsen, J., Benight, A. S., Bismarck, A., Berglund, L. A., and Peijs, T., “Review: current international research into cellulose nanofibers and nanocomposites,” J. Mater. Sci. 45, 1-33 (2010). https://doi.org/10.1007/s10853-009-3874-0

Siró I. and Plackett, D., “Microfibrillated cellulose and new nanocomposite materials: a review,” Cellulose 17, 459–494 (2010). https://doi.org/10.1007/s10570-010-9405-y

Habibi, Y., Lucia, L. A., and Rojas, O. J., “Cellulose nanocrystals: chemistry, self-assembly, and applications,” Chem. Rev. 110, 3479–3600 (2010). https://doi.org/10.1021/cr900339w

Klemm, D., Kramer, F., Moritz, S., Lindström, T., Ankerfors, M., Gray, D., and Dorris, A., “Nanocelluloses: a new family of nature-based materials,” Angew. Chem. Int. Ed. 50, 5438–5466 (2011). https://doi.org/10.1002/anie.201001273

Moon, R. J., Martini, A., Nairn, J., Simonsen, J., and Youngblood, J., “Cellulose nanomaterials review: structure, properties and nanocomposites,” Chem. Soc. Rev. 40, 3941-3994 (2011). https://doi.org/10.1039/C0CS00108B

Isogai, A., “Wood nanocelluloses: fundamentals and applications as new bio-based nanomaterials,” J. Wood. Sci. 59, 449-459 (2013). https://doi.org/10.1007/s10086-013-1365-z

Kose, R., Mitani, I., Kasai, W., and Kondo, T., ““Nanocellulose'' as a single nanofiber prepared from pellicle secreted by gluconacetobacter xylinus using aqueous counter collision,” Biomacromolecules 12, 716-720 (2011). https://dx.doi.org/10.1021/bm1013469

Isogai, A., Saito, T., and Fukuzumi, H., “TEMPO-oxidized cellulose nanofibers,” Nanoscale 3, 71-85 (2011). https://doi.org/10.1039/C0NR00583E

Brenner, H., “Rheology of a dilute suspension of axisymmetric Brownian particles,” Int. J. Multiphase Flow 1, 195-341 (1974). https://doi.org/10.1016/0301-9322(74)90018-4

Gunes, D. Z., Scirocco, R., Mewis, J., and Vermant, J., “Flow-induced orientation of non-spherical particles: Effect of aspect ratio and medium rheology,” J. non-Newt. Fluid Mech. 155, 39-50 (2008). https://doi.org/10.1016/j.jnnfm.2008.05.003

Iwamoto, S., Lee, S-H., and Endo, T., “Relationship between aspect ratio and suspension viscosity of wood cellulose nanofibers,” Polymer J. 46, 73-74 (2014). https://doi.org/10.1038/pj.2013.64

Yamagata, Y., Suga, K., Nakano, Y., Takasaki, Y., and Miyamoto, K., “Aspect ratio of TEMPO-oxidized nanocellulose and rheological analysis of aqueous suspensions,” Nihon Reoroji Gakk. (J. Soc. Rheol., Jpn.) 48, 207-213 (2020). https://doi.org/10.1678/rheology.48.207

Boluk, Y., Lahiji, R., Zhao, L., McDermott, M. T. “Suspension viscosities and shape parameter of cellulose nanocrystals (CNC),” Colloid Surf. A 377, 297–303 (2011). https://doi.org/10.1016/j.colsurfa.2011.01.003

Ishii, D., Saito, T., and Isogai, A. “Viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation,” Biomacromolecules,” 12, 548–550 (2011). https://doi.org/10.1021/bm1013876

Ishii, D., Saito, T., and Isogai, A. “Correction to viscoelastic evaluation of average length of cellulose nanofibers prepared by TEMPO-mediated oxidation,” Biomacromolecules 13, 1706 (2012). https://doi.org/10.1021/bm300482w

Araki, J., Wada, M., Kuga, S., and Okano, T. “Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose,” Colloids Surf A 142, 75–82 (1998). https://doi.org/10.1016/S0927-7757(98)00404-X

Yasuda, K. and Kawamata, S. “A new measurement method of fiber length using birefringence of cellulose nanofiber suspension induced by simple shear flow,” to be submitted.

Saito, T., Nishiyama, Y., Putaux, J-L., Vignon, M., and Isogai, A., “Homogeneous suspensions of individualized microfibrils from TEMPO-Catalyzed oxidation of native cellulose,” Biomacromolecules 7, 1687-1691 (2006). https://doi.org/10.1021/bm060154s

Tanaka, R., Saito, T., Ishii, D., and Isogai, A., “Determination of nanocellulose fibril length by shear viscosity measurement,” Cellulose 21, 1581-1589 (2014). https://doi.org/10.1007/s10570-014-0196-4

Iwamoto, S., Kai, W., Isogai, A., and Iwata, T., “Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy,” Biomacromolecules 10, 2571-2576 (2009). https://doi.org/10.1021/bm900520n

Saito, T., Kuramae, R., Wohlert, J., Berglund, L. A., and Isogai, A., “An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation,” Biomacromolecules 14, 248-253 (2013). https://doi.org/10.1021/bm301674e

Doi, M. and Edwards, S. F., The Theory of Polymer Dynamics (Oxford Univ. Press, 1986).

Yasuda, K., Armstrong, R.C., and Cohen, R.E., “Shear flow properties of concentrated solutions of linear and star branched polystyrenes,” Rheol. Acta 20, 163-178 (1981). https://doi.org/10.1007/BF01513059

ダウンロード

公開済


投稿日時: 2025-01-28 17:00:20 UTC

公開日時: 2025-02-04 02:45:28 UTC
研究分野
物理学