プレプリント / バージョン1

Anomalies in the regional distribution and mutation spectrum of the SARS-CoV-2 Omicron BA.2.86 lineage

##article.authors##

  • Kakeya, Hideki Institute of Systems and Information Engineering, University of Tsukuba

DOI:

https://doi.org/10.51094/jxiv.1043

キーワード:

SARS-CoV-2、 Omicron variant、 BA.2 lineage、 epidemiology、 mutation spectrum

抄録

SARS-CoV-2 remains globally prevalent, despite reduced virulence, causing a range of mild to severe diseases. Since mid-2023, major variants such as JN.1, KP.3.1.1, and XEC have emerged as predominant strains, all of which are descendants of BA.2.86. BA.2.86 exhibited substantial divergence from earlier strains, with around 30 mutations in the spike protein alone compared to Omicron BA.2, a divergence as striking as the initial emergence of Omicron BA.1. In this study, we focus on BA.2.86 to understand how this striking variant emerged. Epidemiological data from early global collections of BA.2.86 and BA.2.86.1 variants show a worldwide, simultaneous emergence, without clear epicenters, suggesting a mechanism beyond natural human-to-human community transmission. Molecular analysis of mutation spectra reveals a divergence from human SARS-CoV-2, pointing toward evolution in a non-human host, possibly through experiments involving animal models.

利益相反に関する開示

The authors declare no conflict of interests exist.

ダウンロード *前日までの集計結果を表示します

ダウンロード実績データは、公開の翌日以降に作成されます。

引用文献

C. Mallapaty, The hunt for the origin of Omicron. Nature 602, 26-28 (2022). DOI: 10.1038/d41586-022-00215-2

B. Choi, M. C. Choudhary, J. Regan, et al., persistence and evolution of SARS-CoV-2 in an immunocompromised host. The New England Journal of Medicine 383, 2291-2293 (2020). DOI: 10.1056/NEJMc2031364

S. A. Kemp, D. A. Collier, R. P. Datier, et al., SARS-CoV-2 evolution during treatment of chronic infection. Nature 592, 277-282 (2021). DOI: 10.1038/s41586-021-03291-y

T. T. Truong, A. Ryutov, U. Pandey, et al., Increased viral variants in children and young adults with impaired humoral immunity and persistent SARS-CoV-2 infection: A consecutive case series. EBioMedicine May;67:103355 (2021). DOI: 10.1016/j.ebiom.2021.103355

C. Wei, K. J. Shan, W. Wang, et al., Evidence for a mouse origin of the SARS-CoV-2 Omicron variant. J Genet Genomics 48, 1111-1121 (2021). DOI: 10.1016/j.jgg.2021.12.003

W. Zhang, K. Shi, Q. Geng, et al., Structural basis for mouse receptor recognition by SARS-CoV-2 omicron variant. PNAS 119, e2206509119 (2022). DOI: 10.1073/pnas.2206509119

S. Piplani, P. K. Singh, D. A. Winkler, et al., In silico comparison of SARS-CoV-2 spike protein-ACE2 binding affinities across species and implications for virus origin. Scientific Reports 11, 13063 (2021). DOI: 10.1038/s41598-021-92388-5

H. Kakeya, H. Arakawa, Y. Matsumoto. Multiple probabilistic analyses suggest non-natural origin of SARS-CoV-2 Omicron variant. Zenodo (2023). DOI: 10.5281/zenodo.7470652

J. E. Pekar, A. Magee, E. Parker, et al., The molecular epidemiology of multiple zoonotic origins of SARS-CoV-2. Science 377, 960-966 (2022). DOI:10.1126/science.abp8337

M. Worobey, J. Levy, L. M. Serrano, et al., The Huanan Seafood Wholesale Market in Wuhan was the early epicenter of the COVID-19 pandemic. Science 377, 951-959 (2022). DOI:10.1126/science.abp8715

S. E. Massey, A. Jones, D. Zhang, et al. Unwarranted exclusion of intermediate lineage A-B SARS-CoV-2 genomes is inconsistent with the two-spillover hypothesis of the origin of COVID-19. Microbiology Research 14, 448-453 (2023). DOI: 10.3390/microbiolres14010033

Z. Daoyu, D. Gilles, J. Adrian, et al., Zoonosis at the Huanan Seafood Market: a critique. Zenodo (2022). DOI: 10.5281/zenodo.7169296

C. Luo, L. Li, Y. Gu, et al., Receptor binding and structural basis of raccoon dog ACE2 binding to SARS-CoV-2 prototype and its variants. PLoS Pathogen 20(12): e1012713 (2024). DOI: 10.1371/journal.ppat.1012713

L. Du Plessis, J. T. McCrone, A. E. Zarebski, et al., Establishment and lineage dynamics of the SARS-CoV-2 epidemic in the UK. Science 371, 708-712 (2021). DOI: 10.1126/science.abf2946

E. Volz, V. Hill, J. T. McCrone, et al., Evaluating the effects of SARS-CoV-2 spike mutation D614G on transmissibility and pathogenicity. Cell 184, 64-75 (2021). DOI: 10.1016/j.cell.2020.11.020

B. Korber, W. M. Fischer, S. Gnanakaran, et al., Tracking changes in SARS-CoV-2 spike: evidence that D614G increases infectivity of the COVID-19 virus. Cell 182, 812-827 (2020). DOI: 10.1016/j.cell.2020.06.043

S. S. Hassan, V. Kodakandla, E. M. Redwan, et al., Non-uniform aspects of the SARS-CoV-2 intraspecies evolution reopen question of its origin. International Journal of Biological Macromolecules 222, 972-993 (2022). DOI: 10.1016/j.ijbiomac.2022.09.184

M. Nikolaidis, A. Papakyriakou, K. Chlichlia, et al., Comparative analysis of SARS-CoV-2 variants of concern, including Omicron, highlights their common and distinctive amino acid substitution patterns, especially at the spike ORF. Viruses 14, 707 (2022). DOI: 10.3390/v14040707

A. Mella-Torres, A. Escobar, C. Barrera-Avalos, et al., Epidemiological characteristics of Omicron and Delta SARS-CoV-2 variant infection in Santiago, Chile. Front Public of Health 10, 98443 (2022). DOI:10.3389/fpubh.2022.984433

L. Liu, S. Chiou, P. Chen, et al., Epidemiology and analysis of SARS‑CoV‑2 Omicron subvariants BA.1 and 2 in Taiwan. Scientific Reports 13, 16583 (2023). DOI: 10.1038/s41598-023-43357-7

A. P. Lamarca, U. Souza, U.J.B.d., Moreira, F.R.R., et al., The Omicron Lineages BA.1 andBA.2 (Betacoronavirus SARS-CoV-2) Have Repeatedly Entered Brazil through a Single Dispersal Hub. Viruses 15, 888 (2023). DOI:10.3390/v15040888

M. T. S. Freitas, L. O. C. Sena, K. F. Fukutani, et al., The increase in SARS-CoV-2 lineages during 2020–2022 in a state in the Brazilian Northeast is associated with a number of cases. Front Public of Health (2023). DOI:10.3389/fpubh.2023.1222152

E. S. Rodrigues, S. N. Slavov, D. G. L. de La Roque, et al., Epidemiology of the SARS-CoV-2 Omicron Variant Emergence in the Southeast Brazilian Population. Microorganisms 12, 449 (2024). DOI:10.3390/microorganisms1230449

S. Zárate, B. Taboada, M. Rosales-Rivera, et al., Omicron-BA.1 Dispersion Rates in Mexico Varied According to the Regional Epidemic Patterns and the Diversity of Local Delta Subvariants. Viruses 15, 243 (2023). DOI:10.3390/v15010243

J. Tsui, J. T. McCrone, B. Lambert, et al., Genomic assessment of invasion dynamics of SARS-CoV-2 Omicron BA.1. Science 381, 336–343 (2023). DOI: 10.1126/science.adg6605

P. Elliott, O. Eales, N. Steyn, et al., Twin peaks: The Omicron SARS-CoV-2 BA.1 and BA.2 epidemics in England. Science 376, 1432 (2022). DOI: 10.1126/science.abq4411

C. Tong, W. Shi, G. H. Siu, et al., Understanding spatiotemporal symptom onset risk of Omicron BA.1, BA.2 and hamster-related Delta AY.127. Frontiers in Public Health 10, 978052 (2022). DOI: 10.3389/fpubh.2022.978052

H. Tegally, M. Moir, J. Everatt, et al., Emergence of SARS-CoV-2 Omicron lineages BA.4 and BA.5 in South Africa. Nature Medicine 28, 1785-1790 (2022). DOI: 10.1038/s41591-022-01911-2.

A. C. Chrysostomou, B. Vrancken, C. Haralambous, et al., Unraveling the Dynamics of Omicron (BA.1, BA.2, and BA.5) Waves and Emergence of the Deltacron Variant: Genomic Epidemiology of the SARS-CoV-2 Epidemic in Cyprus (Oct 2021–Oct 2022). Viruses 15, 1933 (2023). DOI: 10.3390/v15091933

L. Lopes, K. Pham, F. Klaassen, et al., Combining genomic data and infection estimates to characterize the complex dynamics of SARS-CoV-2 Omicron variants in the US. Cell Reports 43, 114451 (2024). DOI:10.1016/j.celrep.2024.114451

H. Kakeya. Anomalous US-wide prevalence of reversion mutants in the emergence of Omicron BA.1. Research Square (2024). DOI: 10.21203/rs.3.rs-4919461/v1

H. Kakeya. Anomalies in regional and chronological distributions of SARS-CoV-2 Omicron BA.1.1 lineage in the United States. medRxiv (2024). DOI: 10.1101/2024.08.14.24311991

K. J. Shan, C. Wei, Y. Wang, et al. Host-specific asymmetric accumulation of mutation types reveals that the origin of SARS-CoV-2 is consistent with a natural process. Innovation 2(4), 100159 (2021). DOI: 10.1016/j.xinn.2021.100159

A. Young. Pandora's gamble: lab leaks, pandemics, and a world at risk. Center Street (2023).

H. Kakeya and Y. Matsumoto. A probabilistic approach to evaluate the likelihood of artificial genetic modification and its application to SARS-CoV-2 Omicron variant. ISPJ Transactions on Bioinformatics, 15, 22–29 (2022). DOI: 10.2197/ipsjtbio.15.22

A. Tanaka and T. Miyazawa. Unnaturalness in the evolution process of the SARS-CoV-2 variants and the possibility of deliberate natural selection. Zenodo (2023). DOI: 10.5281/zenodo.8361577

H. Arakawa. The natural evolution of RNA viruses provides important clues about the origin of SARS-CoV-2 variants. SynBio, 2(3), 285–297 (2024). DOI: 10.3390/synbio2030017

ダウンロード

公開済


投稿日時: 2025-01-13 03:07:06 UTC

公開日時: 2025-01-15 07:25:20 UTC
研究分野
生物学・生命科学・基礎医学