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Abstract

Animal experiments have long been used as an educational tool in pharmaco-
logical education; however, from the perspective of animal welfare, it is necessary
to decrease the number of animals used. In this review, we describe free down-
loadable and commercial simulators that are currently used in pharmacological
education. Furthermore, we introduce two strategies to create simulators of animal
experiments: (1) bioassay, and (2) experiments that measure the reaction time. We
also describe five sigmoid curves (logistic curve, cumulative distribution function
[CDF] of normal distribution, Gompertz curve, von Bertalanffy curve, and CDF
of Weibull curve) to fit the results and their inverse functions. Using this strat-
egy, it is possible to create a simulator that calculates the reaction time following
drug administration. Moreover, we introduce a statisticalmodel for local anesthetic
agents using hierarchical Bayesian modeling. Considering the correlation among
estimated parameters, we suggest it is possible to create simulators that give results
more similar to those of animal experiments.

Keywords: pharmacological education; animal use alternative; simulator; statistical
model; sigmoid curve
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1 Introduction
Currently, animal experiments are performed as part of pharmacological education to
understand the effects of drugs. Representative drugs include general anesthetic agents
(inhalation and intravenous anesthetics), local anesthetic agents, muscle relaxants, au-
tonomic nervous system drugs (sympathetic and parasympathetic nervous system),
antiinflammatory drugs, analgesics, hemostatic drugs, and anticoagulants (Table 1).
Bioassay is performed to calculate effective dose 50% (ED50), toxic dose 50% (TD50),
and lethal dose 50% (LD50) from the presence or absence of a reaction to the drug.
Pharmacokinetic experiments are performed by measuring the blood concentration of
administrated reagents.

As animal welfare becomes increasingly important, a corresponding decrease in the
number of animals used for experiments is desirable. In identifying animal alternatives,
the 3Rs are an effective strategy: Replacement (directly replace or avoid the use of ani-
mals), Reduction (obtain comparable information levels from fewer animals), and Re-
finement (minimize or eliminate animals’ pain and distress, improving their welfare)
[1]. From this perspective, the usage of simulators is preferable.

In this review, we introduce the simulators used in pharmacological education; re-
view statistical models used for creating simulators, with a focus on the curves em-
ployed in fitting data; anddemonstrate the statisticalmodel and the results by computer
simulation based on our recent studies [2, 3].

2 Simulators used in pharmacology education
In this section, we introduce several simulators for animal experiments. In previous
studies, Ezeala introduced several free downloadable simulators for teaching pharma-
cology [4], and Andrews and Barta reviewed several simulators used in clinical phar-
macology [5].

2.1 Free downloadable simulators
As an alternative to animal use, computer simulations are employed in various fields,
including organ bath systems, cardiovascular systems (such as Strathclyde Pharmacol-
ogy Simulations package) [6], and pharmacokinetics [7]. Table 2 summarizes com-
monly used simulators that are available for free download. The following information
is based on the information on each simulator’s website and according to the previous
study by Ezeala [4].

TheOrgan-bath Simulator (OBSim) program [6] simulates a classical, in vitro, phar-
macological experiment using one of four different types of tissue: guinea pig ileum,
rabbit jejunum, chick biventer cervisis, and rat artery. OBSim was also used to charac-
terize the pharmacological properties of unknown drugs (1, 2, A, B, C, and D) using
guinea pig ileum. Students used the program to determine whether drugs were ago-
nists or antagonists [4].

Virtual Cat [6] is a simulation tool designed to replicate an anesthetized cat exper-
iment, representing a whole animal preparation. It is commonly used to screen the ef-
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fects of pharmaceutical compounds on the cardiovascular and skeletal muscle systems.
Virtual Cat displays the effects of 15 standard drugs and 17 unknown drugs on blood
pressure, heart rate, skeletal muscle, and nictitating membrane contractions. Students
used the program to investigate the effects of agonists, antagonists, and vasodilators on
cardiovascular function [4].

Rat Cardiovascular System, also known as RatCVS [6], is a simulation of a normal
and pithed rat experimental preparation for investigating the actions of 22 standard
drugs and 10 unknown drugs on the cardiovascular system. Using these systems, tu-
tors provided guidelines according to which the students made inquiries and provided
scientific explanations for the observations [4].

Virtual Twitch [6] is a simulation of a rat phrenic nerve-hemidiaphragm prepara-
tion. It is used to the study the actions of neuromuscular blocking and reversal agents,
and other drugs that affect neuromuscular transmission.

Virtual NMJ [6] is a simulation of an experiment recording the electrical potentials
associated with neuromuscular transmission at the skeletal neuromuscular junction.
The simulation allows students to observe the muscle action potential (AP) and end-
plate potentials (EPPs) evoked by either nerve stimulation or direct current stimulation
of themuscle fiber. The effects of a variety of drugs and of changes to ionic composition
of the extracellular solution on AP and EPPs can be studied.

Virtual Nerve, formerly known as EPSim or Rat Brain Slice Epilepsy Simulation [6],
is a simulated experiment for investigating the effects of anti-epileptic drugs on the AP
firing of a neuron within a brain slice. The intracellular membrane potential of the
neuron is recorded using a patch clamp amplifier via a glass micropipette electrode at-
tached to the cell body of the neuron and connected to an oscilloscope recording device.
The neuron can also be stimulated via this route. Drugs can be applied to the bath and
the concentration of the Na, Ca, and K ions in the bathing medium changed.

Recently, we reported models based on the results of animal experiments for a local
anesthetic simulator [2, 3]. In these animal experiments, several local anesthetic agents
are injected subcutaneously into the shaved backs of guinea pigs, and the number of
reactions when stimulated with a needle were measured. Moreover, we created a sim-
ulator to use in pharmacology education based on this statistical model [8]. This has
succeeded in reducing the number of experimental animals used.

2.2 Commercial simulators
In this section, we will introduce several commercial simulators (summarized in Table
3). The representative simulators are Pharmaco-PICOS [9], BMP-VR [10], Simcyp™
[11], and PKPlus™ Module extends GastroPlus® [12]. The following information is
based on the information on each product’s website.

ThePharmacological Practice of Intestine andCardiovascularOrgan Simulator (Pharmaco-
PICOS) [9] is a web-based simulator for pharmacodynamics. Pharmaco-PICOS simu-
lates the physiological responses observed in the atrium and ileumwhen they are stim-
ulated with biologically active substances and various therapeutic drugs. In addition,
Pharmaco-PICOS simulates the alternation of blood pressure. In the ileum simulator,
papaverine, serotonin, ondansetron, chlorpheniramine, and mosapride can be used. In
the blood pressure simulator, noradrenaline, phenylephrine, angiotensin II, and losar-
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tan can be used.
The Basic Medicine Practice-Virtual Reality (BMP-VR) [10] is a simulator that in-

corporates VR. Using VR goggles, students can observe the response of mice adminis-
trated drugs such as acetaminophen, buprenorphine, diazepam, loxoprofen, morphine,
phenobarbital, phenytoin, and rocuronium. At present, BMP-VR only supports the
Japanese language.

Simcyp™ [11] is a simulator for physiologically based pharmacokinetics. Simcyp™
accurately predicts drug behavior within the human body, aiding in various stages of
drug development. Simcyp™ is used to determine optimal dosing for first-in-human
trials, optimize clinical study designs, evaluate new drug formulations, predict drug-
drug interactions, and conduct virtual bioequivalence analyses. Simcyp™ incorporates
extensive libraries on demographics, developmental physiology, and drug elimination
pathways, as well as advanced mechanistic organ models and compound files.

PKPlus™ Module extends GastroPlus™ [12] is used to rapidly estimate pharma-
cokinetic parameters for noncompartmental analysis, aswell as 1-, 2-, and 3-compartment
PK models from pharmacokinetic studies involving intravenous injection (IV) and/or
oral administration. The fitted parameters include PK properties, first order absorption
rate, bioavailability, and absorption lag time. Compartmental PK models can be fitted
to individual IV or oral data, as well as to multiple plasma concentration versus time
profiles.

3 Statistical models for computer simulation
In the following section, we describe the strategy for applying statistical models to ex-
periments where simulators do not exist. To perform a computer simulation, a process
is required in which random numbers are used to obtain results based on the statistical
models. Simulators are then created using these statistical models.

The animal experiments are divided into at least two categories based on the type
of reaction: (1) those that measure the presence or absence of a reaction to drugs, and
(2) those that measure reaction time to drugs or changes in body size over time.

Bioassay is an example of the former type (Table 1). In bioassay, ED50, TD50, and
LD50 are calculated based on reaction rates at various doses. In this case, two param-
eters are estimated using probit regression analysis. Using these two parameters, a
computer simulation can be performed (Figure 1B).

The latter examples involve several experiments, such as those involving general
anesthetic agents (induction time and duration), as well as hemostatic drugs and an-
ticoagulants (time until bleeding stops) (Table 1). In these cases, sigmoid curves are
fitted to the results by animal experiments. Using the inverse function of these curves,
a computer simulation can be performed (Figure 1D). In the experiments that measure
a change of body size, such as that caused by antiinflammatory drugs, the appropriate
curve is fitted to the results by animal experiments.

Several important details to create a simulator are summarized in Appendix B. In
this review, we do not deal with replicating animal behavior in simulators such as BMP-
VR [10].
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3.1 Statistical model for bioassay
In bioassay, the reaction rates at several doses are investigated. In our university, the
presence or absence of convulsionswas assessedwithin a specified timewhen lidocaine
(Lid) was intraperitoneally injected into mice. The strategy to simulate probit analysis
is shown in Figure 1A and B. In probit regression analysis, the cumulative distribution
function (CDF) of normal distribution is fitted to these results, and the parameters
(intercept [𝛼] and slope [𝛽]) are estimated (Figure 1A). Using these parameters, the
distribution ofminimal effective/toxic/lethal dose is determined (Figure 1B). Themean
(𝜇) and standard deviation (𝜎) of this distribution are calculated as −𝛼/𝛽 and 1/𝛽,
respectively.

In the computer simulation, minimal effective/toxic/lethal dose (threshold) is set
using a random number that follows this normal distribution (mean is 𝜇, and standard
deviation is 𝜎). Next, the presence or absence of response is determined. If the admin-
istrated dose is greater than this threshold, it is determined that there is a response.
If not, it is determined that there is no reaction (Figure 1B). Using this strategy, it is
possible to create a simulator for the probit method.

3.2 Statistical model for reaction time
In this section, we introduce a statistical model for previously reported experiments
measuring reaction time following drug administration [13, 14]. These experiments in-
clude individuals who do not respond within the observation period (censored data)
(Figure 1C). Survival analysis is useful for handling such censored data. The relative
cumulative event is calculated using survival analysis (black line). When censored data
is present, the final relative cumulative eventwill be less than 1. A sigmoid curve is then
fitted to the results of the survival analysis (blue line in Figure 1D). Various types of
curves are typically fitted to Kaplan-Meier curves; however, using relative cumulative
events instead of survival rates allows for the fitting of additional sigmoid curves. Se-
lecting the appropriate sigmoid curve to fit the obtained data is essential, and curve
fitting often involves a process of trial and error.

In the computer simulation, a probability is first generated using a random number
that follows a uniform distribution between 0 and 1. This probability is then used to
determine the reaction time through the inverse function of the sigmoid curve (green
line in Figure 1D). If the probability is equal to or greater than the asymptote (𝑘 in the
Gompertz curve or 𝐿∞ in the von Bertalanffy curve), the reaction time is considered
infinite. Using this strategy, a simulator can be created to obtain reaction time based on
these principles.

4 Sigmoid curves used in statistical models
In this section, we describe several sigmoid curves used in statistical models and ex-
amples of their application. It is necessary to select an appropriate sigmoid curve to
fit the shape of the obtained data. As described in the previous section, the necessary
requirements for the fitted curve used in the statistical model are that an inverse func-
tion exists. Using this inverse function, reaction time can be calculated from randomly
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generated probability (Figure 1D). Herein, we describe five sigmoid curves: logistic
curve, CDF of normal distribution, Gompertz curve, von Bertalanffy curve, and CDF of
Weibull distribution (Tables 4 and 5). Moreover, the formulas for the inverse functions
of these curves are provided, enabling the creation of simulators.

4.1 Logistic curve
The logistic function was introduced by Pierre-François Verhulst [30]. It is a function
that converts any real number (ranging from −∞ to +∞) to a probability value (rang-
ing from 0 to 1). Logistic function is the inverse function of logit (logistic unit). The
standard logistic function is expressed by the following formula:

𝑓 (𝑥) =
1

1 + 𝑒−𝑥 (1)

The graph of the standard logistic function is shown in Figure 2 (red line).
The logit function is expressed by the following formula:

logit(𝑝) =

⎧{{{
⎨{{{⎩

−∞ (𝑝 = 0)

log(
𝑝

1 − 𝑝) (0 < 𝑝 < 1)

∞ (𝑝 = 1)

(2)

The logistic method (logistic regression analysis) is a regression analysis that uses
this function. Examples of the use of the logisticmethod are shown in Table 5. Using the
logistic method, ED50, TD50, and LD50 are calculated from the presence or absence of
a reaction to drugs. In previous studies, LD50 was calculated based on various factors,
including the time of exposure at a given temperature that resulted in death in 50% of
the animals within 24 hours after heating [15], the concentration of olefin (metabolites
of sevoflurane) at which 50% of Wistar rats died [16], and a Monte Carlo study using
data from cardiac disorder patients [17]. Moreover, a logistic curve fitting can be per-
formed on the data. In a previous study, a logistic curve was fitted to the body weight
and chest circumference of sheep [18].

As shown above, the logistic function finds applications in a range of fields, includ-
ing biology, biomathematics, chemistry, demography, economics, geoscience, mathe-
matical psychology, probability, sociology, political science, linguistics, statistics, and
artificial neural networks.

4.2 CDF of normal distribution
CDF of normal distribution is a function that convert any real number (ranging from
−∞ to +∞) to a probability value (ranging from 0 to 1). CDF of the standard normal
distribution (Φ) is expressed by the following formula:

Φ(𝑥) =
1

√2𝜋
∫

𝑥

−∞
𝑒− 𝑦2

2 𝑑𝑦 =
1
2

⎡⎢
⎣
1 + erf⎛⎜

⎝

𝑥
√2

⎞⎟
⎠

⎤⎥
⎦

(3)

where erf is the error function (eq. A1 and A2). In practice, when performing calcula-
tions using a computer, several approximate formulas are used (for example eq. A3).
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The graph of the CDF of the normal distribution is shown in Figure 2 (blue line). The
graph has a narrower base than that of the standard logistic curve.

The inverse function of the CDF of the standard normal distribution is called the
probability unit (probit) function. Probit converts a probability value (ranging from 0
to 1) to any real number (ranging from −∞ to +∞). The probit function is expressed
by the following formula:

Φ−1(𝑝) =

⎧{{
⎨{{⎩

−∞ (𝑝 = 0)
√2 erf−1 (2𝑝 − 1) (0 < 𝑝 < 1)
∞ (𝑝 = 1)

(4)

where erf−1 is the inverse error function (eq. A4). In practice, several approximate
formulas are used (for example eq. A5).

The probit method (probit regression analysis) is a regression analysis that uses the
inverse of this function. Examples of the use of the probit method are shown in Table 5.
The probit method is used to analyze the relationship between pesticide concentration
and insectmortality in biology [31, 32]. The probitmethod is also used to analyzemetal
fatigue in the field of materials science [33].

In pharmacology, ED50, TD50, and LD50 are important values in drug development
[34–36]. For example, these values are used to calculate the therapeutic index. The
therapeutic index is calculated as LD50/ED50 [34] or TD50/ED50 [35, 36] and is used
as an indicators of drug safety.

4.3 Gompertz curve
The Gompertz curve is a sigmoid function that describes growth as being slowest at the
start and end of a given time period. The right-side or future value asymptote of the
function is approached much more gradually by the curve than the left-side or lower
valued asymptote. The Gompertz curve was originally designed to describe human
mortality as 𝐿𝑥 = 𝑘𝑔𝑐𝑥 by Benjamin Gompertz [37]. Winsor demonstrated the mathe-
matical properties of the Gompertz curve and summarized examples of applying this
curve to organism growth, psychological growth, population growth and economic
growth [38]. Moreover, the Gompertz curve has been modified for use in biology, with
regard to detailing populations. The Gompertz curve is widely used in physiology, par-
ticularly and inmodeling growth curves. It is commonly applied to describe the growth
patterns of animals. Examples of the use of the Gompertz curve are shown in Table 5.
The Gompertz curve has been fitted to recovery palm skin temperature data of human
subjects, which was collected after removing the hand from cold water [22], as well as
several growth curves such as those for sheep growth [18] and tumor growth [23].

In R software, the Gompertz curve is defined using the following formula:

𝑓 (𝑥) = Asym ⋅ 𝑒−𝑏2⋅𝑏3
𝑥

(5)

where Asym is asymptote, 𝑏2 is the displacement along the x-axis, and 𝑏3 is the growth
rate. A graph of the Gompertz curve is shown in Figure 3.

The inverse function of the Gompertz curve is expressed by the following formula:
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𝑓 −1(𝑥) =

⎧{{
⎨{{⎩

log(log Asym
𝑥 /𝑏2)

log 𝑏3
(0 < 𝑥 < Asym)

∞ (𝑥 ≥ Asym)
(6)

4.4 von Bertalanffy curve
The von Bertalanffy curve (or von Bertalanffy growth function) is a type of growth
curve for a time series. It is named after Ludwig von Bertalanffy [39]. Examples of the
use of the von Bertalanffy curve are shown in Table 5. The von Bertalanffy curve has
been fitted to the data of whelk Dicathais growth [24], sheep growth [18], the growth
of chickens used for meat [25], tumor growth [26], and aquatic invertebrates [27].

The von Bertalanffy curve is expressed by the following formula:

𝐿(𝑎) = 𝐿∞ (1 − 𝑒−𝑘(𝑎−𝑡0)) (7)

where 𝑎 is age, 𝑘 is the growth coefficient, 𝑡0 is the theoretical age when size is zero, and
𝐿∞ is asymptotic size. A graph of the von Bertalanffy curve is shown in Figure 4.

The inverse function of the von Bertalanffy curve is expressed by the following for-
mula:

𝑓 −1(𝑥) =
⎧{{
⎨{{⎩

𝑡0 −
log(1 − 𝑥

𝐿∞
)

𝑘 (0 ≤ 𝑥 < 𝐿∞)

∞ (𝑥 ≥ 𝐿∞)
(8)

4.5 CDF of the Weibull distribution
The Weibull distribution is named after Waloddi Weibull [40]. It was first applied to
describe a particle size distribution by Rosin and Rammler [41]. A Weibull curve de-
scribes a broad range of random variables, especially those related to the time to fail-
ure or the time between events. Examples of its use are shown in Table 5. The CDF
of the Weibull distribution has been applied to investigate various subjects including
the failure of chicken embryos to survive incubation [28]; incidence, risk factors, and
heritability estimates of hind limb lameness caused by hip dysplasia [13]; in-hospital
cardiac arrest [14]; and themechanical properties of dental materials affected by gastric
acid [29].

The CDF of the Weibull distribution is expressed by the following formula:

𝐹(𝑥) =
⎧{
⎨{⎩

1 − 𝑒−(𝑥/𝜆)𝑘 (𝑥 ≥ 0)
0 (𝑥 < 0)

(9)

where 𝑘 > 0 is the shape parameter and 𝜆 > 0 is the scale parameter of the distribution.
The graph of CDF of the Weibull distribution is shown in Figure 5.

The inverse function of theCDFofWeibull distribution is expressed by the following
formula:
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𝐹−1(𝑝) =
⎧{
⎨{⎩

𝜆 (− log (1 − 𝑝))
1
𝑘 (0 ≤ 𝑝 < 1)

∞ (𝑝 = 1)
(10)

5 Hierarchical Bayesian model
If the statistical model is too complex to perform a regression analysis, hierarchical
Bayesian model is available. Hierarchical Bayesian model can be used instead of gen-
eralized linear model (GLM) or generalized linear mixed model (GLMM), and non-
linear regression analysis. Moreover, more flexible modeling is possible in hierarchi-
cal Bayesian model. Then, the posterior distributions of parameters are estimated by
Hamiltonian Monte Carlo (HMC) simulation.

Hierarchical Bayesian models are used in many areas such as clinical trials [42–45],
animal experiments [46–48], and genetics [49, 50]. Regarding the creation of statisti-
cal models for simulators, there are models for reproducing the movement of the my-
ocardium [48, 51]. In this section, we will introduce the statistical models of our recent
studies [2, 3], and the simulator [8].

5.1 Advantages of using the Hierarchical Bayesian model in a com-
puter simulation

In a computer simulation (including the simulator for pharmacological education), the
parameters for each individual are generated by randomnumber generators. Therefore,
the distribution of the parameters must be specified. In GLM, GLMM, and nonlinear
regression analysis, the mean and standard error of these parameters can be estimated.
However, the distribution of these estimated parameters is unknown although a normal
distribution is assumed.

The distribution of parameters can be assumed by the researchers and the hyperpa-
rameters that determine the shape of this distribution can be estimated in a hierarchi-
cal Bayesian model. The parameters can be generated using the appropriate random
number generator that follows this distribution and hyperparameters in the computer
simulation. This is one of the advantages of the hierarchical Bayesian model.

5.2 Example of a statistical model using hierarchical Bayesian model
Recently, we reported the statistical models and the results of computer simulation for
local anesthetic agents [2, 3]. Here, we explain their theoretical background and as-
sumed model (Figures 6 and 8).

5.2.1 Statistical model for local anesthetic agents and parameter estimation

The methods of animal experiments for local anesthetic agents are described below.
This is a modified description based on a previous study [2].

(1) shave the hair on the back of the guinea pig
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(2) inject 0.1 mL of saline and 5 drugs intradermally: procaine (Pro), lidocaine
(Lid), mepivacaine (Mep), bupivacaine (Bup), and Lid + adrenaline

(3) mark each injection site papule enclosed in a circle using a magic marker

(4) stimulate six times at each papule with a needle. Count the number of skin
contractions. This number is defined as the score. The score value is 0 to 6.

(5) stimulate at 5 min intervals up to 120 min. When a score of 6 is obtained
three times in a row, the stimulation is finished, and that time is defined as
the duration

From this animal experiment, the score values are obtained. The CDF of the normal
distribution is fitted to these results for each drug and individual (Figure 6A). There-
after, the parameter values (𝜇 and 𝜎) are estimated for each drug and individual. To
estimate these parameters, the statistical model is assumed, and the hyperparameters
that determine the distribution of 𝜇 and log𝜎 (𝜇0 and 𝑠𝜇 for 𝜇; log𝜎0 and 𝑠log𝜎 for log𝜎)
are estimated by Hamiltonian Monte Carlo simulation (Figure 6B).

These hyperparameters are required to generate parameters of each drug and indi-
vidual in the computer simulation. Therefore, it is desirable to assume simple distri-
butions for 𝜇 and 𝜎. In our previous study, we assumed that 𝜇 follows a normal distri-
bution and 𝜎 follows a lognormal distribution (i.e. log𝜎 follows a normal distribution)
[2].

The statistical model for this experiment is assumed as follows (modified and cor-
rected the description in reference [2]):

(1) Drug concentration in local tissue decreases exponentially. This concentration
is determined by elapsed time (𝑡) and the presence or absence of adrenaline
(adr×𝑉adr) (Eq. 11). When adrenaline is present, the rate of decrease in local
concentration becomes smaller (the slope is decreased). Initial log concentra-
tion and slope were set to 100 and −1, respectively.

Concentration = 100 − (1 − adr × 𝑉adr) 𝑡 (11)

where

𝑡 is time (minute)
𝑉adr is the dummy variable for adrenaline

(0 when adrenaline is absent, 1 when adrenaline is present).

(2) The probability of reacting to needle stimulation (𝑝) is determined as the up-
per probability of normal distribution (mean is 𝜇[𝑖, 𝑗] and SD is 𝜎[𝑖, 𝑗]) based
on drug concentration at stimulation time (Eq. 12). The number of reactions
to stimulation (score value, Score[𝑖, 𝑗]) follows a binomial distribution at this
probability (Eq. 13).

𝑝 = 1 − Φ (
Concentration − 𝜇[𝑖, 𝑗]

𝜎[𝑖, 𝑗] ) (12)

Score[𝑖, 𝑗] ∼ 𝐵𝑖(𝑝, 6) (13)
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where

𝑖 = 1, 2, 3, 4 (drug number; 1: Pro; 2, Lid: 3, Mep, 4: Bup)
𝑗 = 1, 2, ⋯ , 51 (individual number)

𝐵𝑖 is the probability mass function for the binomial distribution.

(3) The parameters (𝜇[𝑖, 𝑗] and 𝜎[𝑖, 𝑗]) for distribution of each drug and indi-
vidual follow normal and lognormal distributions, respectively (Figure 6B).
𝜇[𝑖, 𝑗] follows a normal distribution (mean is 𝜇0 and SD is 𝑠𝜇) (Eq. 14). As
𝜎[𝑖, 𝑗] must be positive, 𝜎[𝑖, 𝑗] was assumed to follow a lognormal distribution
(mean is log𝜎0[𝑖] and SD is 𝑠log𝜎[𝑖]) (Eq. 15).

𝜇[𝑖, 𝑗] ∼ Normal (𝜇0[𝑖], 𝑠𝜇[𝑖]) (14)

𝜎[𝑖, 𝑗] ∼ LogNormal (log𝜎0[𝑖], 𝑠log𝜎[𝑖]) (15)

(4) The following distributions are assumed for the prior distribution of parame-
ters. 𝜇0[𝑖] follows a Cauchy distribution (Eq. 16). 𝑠𝜇[𝑖] follows a half Cauchy
distribution (Eq. 17). log 𝑠𝜇[𝑖] follows a normal distribution (Eq. 18). 𝑠log𝜎[𝑖]
and adr follow uniform distributions (Eq. 19 and Eq. 20).

𝜇0[𝑖] ∼ Cauchy(50, 20) (16)
𝑠𝜇[𝑖] ∼ HalfCauchy(0, 1) (17)
log𝜎0[𝑖] ∼ Normal(2.5, 1) (18)
𝑠log𝜎[𝑖] ∼ Uniform(> 0) (19)

adr ∼ Uniform(0, 1) (20)

5.2.2 Computer simulation for local anesthetic agents

Using the hyperparameters estimated by HMC simulation, the parameters (𝜇 and 𝜎)
in each drug and individual were generated by a random number generator (Figure
6C). Since the shape of CDF of the normal distribution is determined by these generator
parameters, the probability can be calculated at any time. Then, the number of reactions
to a stimulus (score values) are determined by a randomnumber generator that follows
a binomial distribution at a specified time intervals (Figure 6C). From the obtained
score values, the duration of the drug is determined.

In the simulator, the reaction is determined by accounting to a random number that
follows a Bernoulli distribution based on the calculated probability:

The computer simulation is performed as follows (modified from the description
in a previous study [2]):

(1) the parameters (𝜇[𝑖, 𝑗] and 𝜎[𝑖, 𝑗]) are generated by a random number gener-
ator following a normal or lognormal distribution, respectively.

• 𝑖 = 1, 2, 3, 4 (drug number; 1: Pro; 2, Lid: 3, Mep, 4: Bup)
• 𝑗 = 1, 2, ⋯ , 100 (individual number)

(2) score values are determined by a random number generator following a bi-
nomial distribution for this probability
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• determine how many responses occur when stimulated six times

(3) repeat this operation 100 times (for 100 individuals)

(4) determine the duration of each drug and individual

• compare the median of duration among drugs by survival analysis
• evaluate the differences in duration among drugs and the effect of a vaso-

constrictor (adrenaline) on duration

In the survival analysis, the results obtained from the computer simulation were
similar to those from the animal experiments (Figure 7) since the parameter values
were properly adjusted [2]. These findings suggest that the simulator, utilizing this
statistical model, can serve as a viable alternative to animal experiments in pharmaco-
logical education.

5.2.3 Improved statistical model considering the correlation among parameters

The simulationdescribed in the previous sectiondoes not consider the correlation among
parameters — the parameter values were generated by random numbers with the cor-
relation coefficients between drugs set to zero (Figure 8: upper panel). However, indi-
viduals who tend to respond to one local anesthetic agent are likely to respond to other
drugs and, the duration of drugs is also correlated. Therefore, it is desirable to consider
this correlation when creating a simulator.

In our recent study [3], the correlations among estimated parameters were inves-
tigated: (1) correlation among 𝜇 in all drugs (𝑟𝑖𝑗), (2) correlation among log𝜎 in all
drugs (𝑠𝑖𝑗), and (3) correlation between 𝜇 and log𝜎 in each drug (𝑢𝑖). In the computer
simulation, the parameters in each individual were generated using a random number
generator that follows themultivariate normal distribution. For generating parameters,
the correlation matrix is set using these correlation coefficients (Figure 8: lower left).
Next, the score values and duration were determined. By accounting for the correla-
tion among drugs, the correlation in duration among drugs was enhanced (Figure 8:
lower right). These results suggest that parameter generation considering the correla-
tion among parameters is important to reproduce the results of animal experiments in
the computer simulation and the simulator.

Recently, we created a simulator for local anesthetic agents based on this improved
statistical model as a web-based simulator [8]. We hope that this simulator is an effec-
tive alternative to animal experiments in pharmacological education.

6 Conclusion
In this review, we introduced the simulators used in pharmacological education, aswell
as two types of strategies (bioassay and experiments that measure reaction time) for
creating simulators of animal experiments. We also described five sigmoid curves (for
fitting the relative cumulative event by survival analysis) and their inverse functions.
Using this strategy, it is possible to develop a simulator that predicts reaction times fol-
lowing drug administration. Additionally, a statisticalmodel for local anesthetic agents,
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utilizing a hierarchical Bayesian approach, was demonstrated. Considering the corre-
lation among estimated parameters, it is possible to create simulators that give results
more similar to those of animal experiments. We hope this review will be useful when
creating a simulator in pharmacological education.
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A Approximate formulas

A.1 CDF of the standard normal distribution
• Error function [52]

erf(𝑥) =
2

√𝜋
∫

𝑥

0
𝑒−𝑡2 d𝑡 (A1)

• Error function (Taylor series) [52, 53]

erf(𝑥) =
2

√𝜋

∞
∑
𝑛=0

(−1)𝑛𝑥2𝑛+1

𝑛!(2𝑛 + 1) =
2

√𝜋
(𝑧 −

𝑧3

3 +
𝑧5

10 −
𝑧7

42 +
𝑧9

216 − ⋯) (A2)

• Approximation formula of normal probability function in Abramowitz and Ste-
gun 26.2.17 [54]

𝑃(𝑥) = 1 − 𝑍(𝑥)(𝑏1𝑡1 + 𝑏2𝑡2 + 𝑏3𝑡3 + 𝑏4𝑡4 + 𝑏5𝑡5) + 𝜖(𝑥) (A3)

𝑍(𝑥) =
1

√2𝜋
𝑒− 𝑥2

2 , 𝑡 =
1

1 + 𝑝𝑥

|𝜖(𝑥)| < 7.5 × 10−8

𝑝 = 0.2316419
𝑏1 = 0.319381530, 𝑏2 = −0.356563782, 𝑏3 = 1.781477937
𝑏4 = −1.821255978 𝑏5 = 1.330274429

A.2 Probit function
• Inversed Error function (Taylor series) [55]

erf−1(𝑥) =
√𝜋
2 (𝑧 +

𝜋
12𝑧3 +

7𝜋2

480 𝑧5 +
127𝑧7

42 +
4369𝜋4

5806080𝑧9 +
34807𝜋5

182476800𝑧11 + ⋯) (A4)

• Approximation formula of probit function by Toda [56]

𝑢(𝑝) ≅ [𝑦(𝑏0 + 𝑏1𝑦 + 𝑏2𝑦2 + ⋯ + 𝑏10𝑦10)]
1
2

𝑦 = − log 4𝑝(1 − 𝑝)
(A5)

𝑏0 = 0.1570796288, 𝑏1 = 0.3706987906 × 10−1

𝑏2 = −0.8364353589 × 10−3, 𝑏3 = −0.2250947176 × 10−3

𝑏4 = 0.6841218299 × 10−5, 𝑏5 = 0.5824238515 × 10−5

𝑏6 = −0.1045274970 × 10−5, 𝑏7 = 0.8360937017 × 10−7

𝑏8 = −0.3231081277 × 10−8, 𝑏9 = 0.3657763036 × 10−10

𝑏10 = 0.69362339826 × 10−12

B Things to consider when creating a simulator
There are several things to consider when creating a simulator for pharmacological
education:

(1) Distribution of parameters — Which distribution do parameters follow?
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(2) Selection of program language including execution environment

(3) Function to generate random numbers including the usage of extra packages

(1) As previously described, the distribution of parameters is the most important
factor. Since the parameters are generated using this distribution, the distributionmust
be simple enough to be generated by a computer program. In many cases, the param-
eters are assumed to follow a normal distribution or lognormal distribution.

(2) The selection of program language should be considered. If the simulator is
written using R or Python programing languages, these languages must be installed in
the computer or bundled with the simulator. If the simulator is written using C/C++
languages, this simulator must be compiled in each operating system indluding Win-
dows, Mac, and Linux. Therefore, these simulators are environment dependent. If the
simulator is written by JavaScript/TypeScript languages, the simulator is environment-
independent since it runs on a web browser.

(3) It is important to confirm whether the functions to generate random numbers
— including the usage of extra packages— exist or not. In many cases, it is sufficient to
have functions for a random numbers that follow uniform distribution for the probabil-
ity and normal distribution and lognormal distribution for the parameters. However,
the function for a random number generator that follows a multivariate normal distri-
bution may be required [3]. For reference, the packages/library for generating random
numbers that follow the multivariate normal distribution are detailed in the following
section.

B.1 External packages for multivariate normal distribution
The following list is some representative packages/libraries for generating randomnum-
bers that follow multivariate normal distribution in various languages:

• C++: EigenMultivariateNormal function in Eigen library [57]

• R: rmvnorm function in mvtnorm package [58]

• Python: random.multivariate_normal function in numpy package [59]

• JavaScript/TypeScript: MultivariateNormal function in multivariate-normalpack-
age [60]
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Table 1: Examples of animal experiments in pharmacological education
Drugs/Experiments* Measurements (animals used)

General anesthetic agent induction time and duration (mouse)
inhalation anesthetics
intravenous anesthetics

Local anesthetic agents blink reflex to stimulation of cornea by hair (rabbit)
reaction to stimulation by needle (guinea pig)

Muscle relaxants contraction and relaxation of rectus abdominis (frog)

Autonomic nervous system drugs contraction and relaxation of intestinal tract (guinea pig)
Magnus method

Antiinflammatory drugs edema of footpad induced by carrageenin (rat)
dye leakage from blood vessels in the ear (rabbit)

Analgesics reaction to stimulation
hot plate test / tail flick test (mouse)
writhing method / formalin method (mouse)
tail pinch method (mouse)

Hemostatic drugs time until bleeding stops from cut tail (mouse)
anticoagulants similar to Duke method

Bioassay
effective dose 50% (ED50) effect of analgesics (mouse)
toxic dose 50% (TD50) convulsions induced by pentetorazol or lidocaine (mouse)

Pharmacokinetics blood concentration of administrated reagent (mouse/rat)

*Boldface means that simulators exist in these experiments (see Tables 2 and 3).

Table 2: Free downloadable simulators in pharmacological education
Simulator Contents

OBSim [6] organ bath simulator
effect of mainly autonomic nervous drugs on intestinal tract

Virtual Cat [6] simulator of anaesthetized cat
effect of drugs on cardiovascular and skeletal muscle systems

RatCVS [6] simulator of normal and pithed rat
effect of drugs on cardiovascular system

Virtual Twitch [6] simulator of rat phrenic nerve-hemidiaphragm preparation
effect of neuromuscular blocking and reversal agents

Virtual NMJ [6] simulator of electrical potentials at the skeletal neuromuscular junction
effect of various drugs
effect of changes to ionic composition of the extracellular solution

Virtual Nerve [6] simulator of action potential firing of a neuron within a brain slice
effect of anti-epileptic drugs
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Table 3: Commercial simulators in pharmacological education
Simulator Contents

Pharmaco-PICOS [9] web-based simulator for pharmacodynamics
intestinal motility and blood pressure

BMP-VR (Japanese only) [10] virtual reality simulator of drug-administrated mice
acetaminophen, buprenorphine, diazepam, loxoprofen,
morphine, phenobarbital, phenytoin, rocuronium

Simcyp™ [11] physiologically based pharmacokinetics

PKPlus™ Module compartment and non-compartment analysis
extends GastroPlus® [12]

Table 4: Example of statistical model and proposed fitting curve
Analysis method Fitting curve Formula

Logistic regression analysis logistic curve 𝑓 (𝑥) =
1

1 + 𝑒−𝑥

Probit regression analysis CDF of normal distribution 𝑓 (𝑥) = Φ(𝑥)

Nonlinear regression analysis Gompertz curve 𝑓 (𝑥) = 𝑘𝑔𝑐𝑥

von Bertalanffy curve 𝐿(𝑎) = 𝐿∞ (1 − 𝑒−𝑘(𝑎−𝑡0))

CDF of Weibull distribution 𝐹(𝑥) = 1 − 𝑒−(𝑥/𝜆)𝑘 (𝑥 ≥ 0)
𝐹(𝑥) = 0 (𝑥 < 0)

Bayesian Hierarchical model any function any formula

Φ: Cumulative distribution function (CDF) of the normal distribution
𝑘 in Gompertz curve: asymptote

𝐿∞ in von Bertalanffy curve: asymptote size
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Table 5: Examples of fitting a curve to data (not limited to pharmacology)
Fitting curve Contents References

logistic curve LD50: exposure time where rats die at given temperatures [15]
(logistic method) LD50: concentration of olefin at which rats die [16]

LD50: Monte Carlo study based on cardiac disorder data [17]

modeling of animal growth curve [18]

probit curve radiation resistance values of microorganisms [19]
(probit method) period of rabbit bilateral hind-limb ischemia [20]

effect of vasoconstrictors on local anesthetic toxicity [21]

Gompertz curve modeling of animal growth curve [18]
skin temperature after removing hand from cold water [22]
population modeling of tumor growth curves [23]

von Bertalanffy curve modeling of whelk Dicathais growth curve [24]
modeling of animal growth curve [18, 25]
modeling of tumor growth curve [26]
modeling of aquatic invertebrates growth curve [27]

CDF of modeling of incidence, risk factors, and heritability [13]
Weibull distribution modeling of failure of chicken embryo [14]

modeling of mechanical properties of dental materials [28]
modeling of in-hospital cardiac arrest risk prediction [29]
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Figure 1: Strategies and statistical models for computer simulation. (A, B) Bioassay
to estimate effective dose 50% (ED50) or lethal dose 50% (LD50): Cumulative distribu-
tion function (CDF) of normal distribution is fitted to reaction rate (𝑝) (A). Φ is CDF
of normal distribution, and the parameters (intercept [𝛼] and slope [𝛽]) are estimated
by probit regression analysis. Using these parameters, the distribution of minimal ef-
fective/lethal dose is determined. The mean (𝜇) and standard deviation (𝜎) of this
distribution are calculated as −𝛼/𝛽 and 1/𝛽, respectively. In the computer simulation,
minimal effective/lethal dose is set using a randomnumber that follows this normal dis-
tribution. The presence or absence of a reaction is determined by comparison between
the administrated dose and the value of minimal effective/lethal dose (B). (C, D) Ex-
periments measuring reaction time from drug administration: When no reaction was
observed within the measurement period, the data was treated as censored (C). The
determination of reaction time in computer simulation: In this case, a sigmoid curve
(blue line) is fitted to the results of survival analysis (black line). In the computer sim-
ulation, using the inverse function of this sigmoid curve, reaction time is determined
from the random number that follows to uniform distribution between 0 to 1 (D).

Figure 2: Standard logistic curve and cumulative distribution function (CDF) of nor-
mal distribution
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Figure 3: Gompertz curve: 𝑓 (𝑥) = Asym ⋅ 𝑒−𝑏2⋅𝑏3
𝑥
(eq. 5). (A) Graph when 𝑏2 = 2

and 𝑏3 = 0.2 and Asym is changed, (B) Graph when Asym = 1 and 𝑏3 = 0.4 and 𝑏2 is
changed, (C) Graph when Asym = 1 and 𝑏2 = 2 and 𝑏3 is changed.

Figure 4: von Bertalanffy curve: 𝐿(𝑥) = 𝐿∞ (1 − 𝑒−𝑘(𝑥−𝑡0)) (eq. 7). Graphwhen 𝐿∞ = 1
and 𝑡0 = 0 and 𝑘 is changed.

Figure 5: CDF of Weibull distribution: 𝐹(𝑥) = 1 − 𝑒−(𝑥/𝜆)𝑘 (𝑥 ≥ 0) (eq. 9). Graph
when 𝜆 = 1 and 𝑘 is changed.
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Figure 6: Strategy used in the simulation for local anesthetic agents using a hierar-
chical Bayesian model. (A) Fitting the sigmoid curve (CDF of normal distribution)
to each result of animal experiments. The curve shows the probability of responding
to a stimulus at any time. The parameters that determine the shape of the curve are
the mean (𝜇) and standard deviation (𝜎). (B) Estimation of parameters: The distribu-
tions of these parameters (𝜇 and 𝜎) are estimated by hierarchical Bayesian model and
Hamiltonian Monte Carlo (HMC) simulation. Estimated parameters are 𝜇0 and 𝑠𝜇 for
the distribution of 𝜇, and log𝜎0 and 𝑠log𝜎 for the distribution of 𝜎. In addition, corre-
lation coefficients among these parameters are calculated. (C) Computer simulation
procedure: The parameters for simulation (𝜇𝑖 and 𝜎𝑖) are set using the random num-
ber generator that follows tomultivariate normal distribution. The shape of cumulative
normal distribution curve for each individual is determined by the values of generated
𝜇 and 𝜎. Next, the number of reactions to a stimulus (score value) are determined by
the random number generator that follows to binomial distribution. This strategy is
modification of previous studies [2, 3].
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Figure 7: A comparison of the results by survival analysis between animal experiments
and computer simulation. These results are modifications of previous study [2].
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Figure 8: The strategy used in the simulation for local anesthetic agents. (Left) Cor-
relation matrix among parameters estimated by animal experiments is shown. In this
case, the correlations (1) among 𝜇 of drugs (𝑟𝑖𝑗 in blue box), (2) among log𝜎 of drugs
(𝑠𝑖𝑗 in green box), and (3) between 𝜇 and log𝜎 (𝑢𝑖 in red box) are set. Using this cor-
relation matrix, the parameters are set by generating random numbers that follow the
multivariate normal distribution. (Middle) The distributions of generated parameters
are shown. A case without considering these correlations is shown in the upper panel,
and a case considering these correlations is shown in the lower panel. (Right) Corre-
lations of drug duration obtained by the computer simulation are shown for the case
without considering the correlations (Upper panel) and for the case considering the
correlations (Lower panel).
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