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Abstract

In this paper, a topology optimization method based on direct simulation
Monte Carlo (DSMC) is presented for rarefied gas flows. Distribution of fluid
and solid in the design domain is characterized by a pseudo density. The tradi-
tional DSMC algorithm is extended to include the pseudo density by interpreting
solid as an imaginary gas with fixed temperature and zero macroscopic velocity.
Treating the pseudo density as the design variable, design sensitivity is obtained
through the Lagrangian multiplier method and the adjoint state method. A dis-
crete version of the adjoint equations is used, so that the adjoint variables can
be evaluated using the information stored during the forward DSMC process.
The information preservation (IP) method for subsonic flow is also considered in
order to reduce random noise and simplify the discrete adjoint equations. The
extended DSMC algorithm is verified by numerical examples, and optimized
design for bent pipe is also included.
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1. Introduction

In rarefied gas flows, the mean free path of the gas molecules, which is the
average distance travelled by the molecules between intermolecular collisions,
is not negligible compared to the characteristic length of the flow field. Under
rarefied conditions, gas cannot be sufficiently described by the Navier-Stokes5

(NS) equation, and interesting phenomenon such as velocity slip occurs [1].
Study of rarefied gas flows plays an important role in design and analysis of
spacecrafts [2, 3] and micro-electro-mechanical systems (MEMS) [4, 5].
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To improve the performance of devices in rarefied gas flows, topology opti-
mization is an effective approach. Developed mainly for design problems in solid10

mechanics, topology optimization has achieved great success since then [6, 7].
Compared to traditional optimization methods, namely, sizing optimization and
shape optimization, topology optimization has the highest degree of freedom,
and allows changes in topological properties of the structure. In topology opti-
mization, structures are represented by the distribution of materials. Bendsøe15

and Kikuchi first proposed the homogenization design method to address ma-
terial distribution in optimization [8]. The density method, which is developed
later [9, 10], is another popular method. In density method, the design variable
is chosen to be a normalized density which is continuous and convex. Apart from
this, the use of level-set function to express material boundary as an iso-surface20

is also studied [11, 12].
The development of topology optimization motivated researchers to expand

its domain of influence. Problems in other fields such as heat transfer [13], elec-
tromagnetics [14], and fluid dynamics are also addressed. In fluid dynamics,
optimization of flow using the NS equations has been studied since the pioneer-25

ing work by Borrvall and Peterrson [15]. They used density method to represent
the distribution of solid and fluid, and interpreted the grayscale region as porous
medium with varying permeability. This expressions satisfies non-slip bound-
ary condition on solid-fluid interfaces implicitly. Based on their work, topology
optimization for steady [16] and unsteady [17] NS flows has been proposed.30

For optimization problems in fluid dynamics, the above-mentioned studies
obtained the flow fields by solving the NS equation using finite element meth-
ods. While for rarefied gas flows, the governing equation is the Boltzmann equa-
tion instead, which describes gas behavior by a distribution function. Despite
being very fundamental, the Boltzmann equation is difficult to solve numeri-35

cally, as it includes a highly non-linear collision term. The direct simulation
Monte Carlo (DSMC) method is one of the most popular numerical schemes
developed to solve the Boltzmann equation [18]. In DSMC, a large number of
discrete molecules are used to represent the distribution of real gas molecules,
and proper collision pairs are selected randomly while the molecules move in the40

computational domain [19]. Despite the success of DSMC in approximating the
Boltzmann equation, it is rarely used in topology optimization of rarefied gas
flows because strictly speaking, it is not a deterministic process. Randomness is
intentionally introduced during the simulation in order to resemble the behavior
of real gas molecules. Despite being crucial to a correct simulation, random-45

ness poses a challenge to sensitivity analysis, which evaluates the influence of
design variable on the objective function that is dependent on the solution of
the governing equation. As a result, deterministic numerical methods such as
the lattice Boltzmann method (LBM) is often used in topology optimization
instead [20, 21, 22, 23].50

In 2021, Caflisch et al. proposed an inverse adjoint DSMC process in his
paper [24], which throws new light on the challenge. Following a discretize-
then-optimize scheme, the molecules in DSMC calculation are treated as dis-
crete state variables, and discrete adjoint variables are assumed based on the
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Lagrangian method. Recording the details of forward DSMC process leads to55

the fomulation of a set of adjoint equations, which generate the solutions of the
adjoint variables. Design sensitivity obtained from the adjoint variables can be
viewed as the total derivative of the objective function with respect to the de-
sign variable, and can be used for numerical optimization. In Caflisch’s paper,
only the spatially homogeneous Boltzmann equation is treated. In this paper,60

we shall extend the analysis to spatially inhomogeneous cases, and construct
a topology optimization algorithm for general rarefied gas flows based on the
adjoint DSMC method using density method.

The outline of this paper is as follows. First, the traditional DSMC algo-
rithm, and the IP method that is used in the study to reduce random scatter65

will be introduced. Then a density representation of material distribution is set
up, based on which the DSMC algorithm is extended to describe rarefied gas
flow in the design domain. The design problem is formulated, and the discrete
adjoint equations, as well as the design sensitivity, are obtained. Finally, several
numerical examples are included. Namely, an analysis of two-dimensional Cou-70

ette flow is used to verify the proposed density model, analysis of flow through
an orifice is used to verify the design sensitivity, and finally, the optimization
algorithm is applied to design of a bent pipe.

2. Solution to Boltzmann equation using DSMC

2.1. Boltzmann equation75

For single-component rarefied gas flows, the governing equation is the Boltz-
mann equation,

∂f

∂t
+ v · ∇xf + F · ∇vf =W (f). (1)

f(x, v, t) is the distribution function for a single particle. It describes the prob-
ability of finding one specific gas molecule at position x with velocity v at time
t. F is the external force per unit mass acting on the gas, and W (f) is the
collision term describing the change in f due to binary collisions between gas
molecules. W is defined by

W (f) =

∫
R3

∫
S2

q(v − v1, σ)(f∗f∗1 − ff1)dσdv1, (2)

where S2 is the unit sphere, q(v − v1, σ) is the collision section. f1, f
∗, f∗1

are short-hand notations for f(x, v1, t), f(x, v
∗, t), f(x, v∗1 , t) respectively, where

v∗ and v∗1 are after-collision velocity for v and v1. q(v − v1, σ) characterizes
the likelihood of collision between molecules with relative velocity v − v1 and
deflection in the direction of unit vector σ. Detailed expressions for q depend80

on the molecule model one chooses [1, 25].
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2.2. Direct simulation Monte Carlo method

In this section, the basic DSMC algorithm used in this paper, which is based
on book by Shen [1], is briefly explained. In DSMC, the continuous distribution
function f is represented by a set of discrete molecules S = {s1, s2, · · · , sN},85

where N is the total number of molecules. Each molecule si is defined by its
position xi and velocity vi, which are vectors in R3. During the simulation, time
is divided into small steps ∆t, and the set of molecules evolve in an Eulerian
way.

The key idea of DSMC is that for sufficiently small time intervals, molecule90

motion and molecule collisions can be decoupled. For general rarefied gas flows,
each iteration in DSMC consists three steps, essentially.

• Update the positions of molecules according to their velocities. Namely,
for 1 ≤ i ≤ N ,

x′i = xi + vi∆t. (3)

Reflection at gas-solid interface is performed when the molecule attempts
to enter solid domain. For diffuse solid boundaries, after-reflection velocity
of the molecules are decided in the following way:

v′i = (vwallw1 sinφ)t̂1 + (vwallw1 cosφ)t̂2 + (vwallw2)n̂. (4)

In this expression, vwall =
√

2kTwall/m is the most probable thermal speed

at wall temperature Twall, where k is the Boltzmann constant, and m is
molecular mass. w1 and w2 are two random values generated by w1 =95

w2 =
√
− lnRand, where Rand is a uniformly distributed random number

between 0 and 1. φ is a random angle generated by φ = 2πRand. n̂
is the unit normal vector pointing into gas domain. t̂1 and t̂2 are two
perpendicular unit vectors that are tangent to the solid surface.

Assume the molecule travelled for time ∆t′ before reflection, then after
calculating the reflected velocity v′i, the updated position is

x′i = xi + vi∆t
′ + v′i(∆t−∆t′). (5)

• Update the velocities of the molecules according to external forces. Namely,
for 1 ≤ i ≤ N ,

v′i = vi + F (xi)∆t.

• Choose proper collision pairs and perform binary collisions. For each colli-
sion pair {si, sj}, the velocities of the two molecules are updated according
to

v′i =
vi + vj

2
+
|vi − vj |

2
σ̂.

v′j =
vi + vj

2
− |vi − vj |

2
σ̂.

Where σ̂ is a randomly generated unit vector indicating the direction of100

deflection.
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Once the iterations are completed, flow properties can be obtained from the
distribution of molecules in their positions and velocities. For steady flows,
usually a number of steps are sampled, and flow properties are taken as the
average value over time.105

2.3. IP method for DSMC

One inherent problem with DSMC is that flow properties obtained from
molecule distribution contain random scatter. For steady flows, one way of
reducing the uncertainty is to include a longer sampling range after the flow
reaches steady state, and calculate the time average for flow properties. How-110

ever, the effect of this method is limited, as reducing uncertainty to 1/N requires
N2 times the number of molecules sampled. Computational cost will be too high
if we want to reduce uncertainty significantly.

To tackle this problem, Fan and Shen [26, 27] proposed the IP modifica-
tion for DSMC, which is further developed by Sun and Boyd [28]. In the IP115

method, each molecule si is assigned additional information properties, namely,
information velocity Vi ∈ R3 and information temperature Ti ∈ R. During the
iterations, motion, reflection, and sampling of collision pairs are the same as
in the previous section. The information variables are updated along with the
original ones in the following way:120

• Preserved information is unchanged during molecule motion. However, if
a molecule i is reflected about a diffuse surface,

Vi = 0, (6)

Ti = Twall. (7)

• For external forces, information velocity is also updated,

V ′
i = Vi + F (xi)∆t. (8)

• For collision between si and sj , information velocity and information tem-
perature are updated by

V ′
i =

1 + Cµ cos θ

2
Vi +

1− Cµ cos θ

2
Vj , (9)

V ′
j =

1− Cµ cos θ

2
Vi +

1 + Cµ cos θ

2
Vj , (10)

T ′
i =

1 + Ck cos θ

2
Ti +

1− Ck cos θ

2
Tj +

|Vi − Vj |2

4ξR
, (11)

T ′
j =

1− Ck cos θ

2
Ti +

1 + Ck cos θ

2
Tj + (1− C2

µ cos
2 θ)
|Vi − Vj |2

4ξR
. (12)

Where Cµ and Ck are gas-specific constants, ξ is the degree of freedom
of the gas molecule (in this paper ξ = 3 is used), R is the specific gas
constant, and θ is the deflection angle, namely, the angle between vector
vi − vj and σ̂.
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To include pressure effects, the following flow properties are calculated and125

stored in each computational cell: velocity Vf , temperature Tf , pressure P , and
density ρ, where Vf is a vector in R3 and other are scalars. Flow properties
modify the molecules in the three additional steps introduced to each iteration.

• Solve the two equations simultaneously that correspond to momentum
and energy transfer concerning the information velocity and information
temperature of the molecules.

∂V

∂t
= −1

ρ
∇xP, (13)

∂

∂t

(
|V |2

2
+
ξRT

2

)
= −1

ρ
∇x · (VfP ). (14)

• Solve the advection equation for mass transfer,

∂ρ

∂t
= −∇x · (ρVf ). (15)

• Calculate flow properties by information properties of the molecules in
the cell. Assume for cell n, there are Nn molecules, whose indexs are mi,
where 1 ≤ i ≤ Nn,

Vf,n =
1

Nn

Nn∑
i=1

Vmi , (16)

Tf,n =
1

Nn

Nn∑
i=1

Tmi
, (17)

Pn = ρnTf,nR. (18)

In practice, equations (13) to (15) are solved by finite-volume approximations.
Using the IP method, flow properties are directly obtained during the calculation130

from the preserved information carried by each molecule. Once steady state is
reached, taking a time average over a sampling range can further reduce random
error.

2.4. Inlet and outlet boundary condition

To simulate low speed rarefied gas flows, it is important to introduce new135

molecules at the inlet and outlet in order to maintain the balance of number of
molecules in the computational domain. Following the study of Liou and Fang
[29, 30], the initial conditions of the introduced molecules are determined by
the information of the flow at the cells that they enter. Use a two dimensional
horizontal pipe as an example, where the inlet and outlet are effectively two140

vertical lines. At the inlet, pressure P = Pin and temperature Tf = Tin of the
flow is fixed, plus the condition that macroscopic velocity of the flow in the
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vertical direction is zero, Vf,2 = 0. While at the outlet, only the pressure is
given as P = Pout.

At the inlet, macroscopic velocity of the gas is obtained by extrapolating
the flow velocity inside the computational domain. Hence for the introduced
molecule with index i, the information velocity and information temperature
are

V ′
i,1 = Vf,1, (19)

V ′
i,2 = 0, (20)

T ′
i = Tin. (21)

At the outlet, the information velocity and information temperature of the in-
troduced molecule i are determined using the characteristics-theory-based equa-
tions,

V ′
i,1 = Vf,1 +

P − Pout

ρ
√
γRTf

, (22)

V ′
i,2 = Vf,2, (23)

T ′
i =

Pout

ρR
, (24)

where γ is the ratio of specific heats for the gas, and R is the specific gas145

constant.
The original velocities of the molecules are generated randomly using the

acceptance-rejection method. The exact number of molecules introduced at
each step is calculated using the Maxwellian distribution. The details can be
found in [29, 30].150

3. Optimization problem

3.1. Topology optimization

In topology optimization, the structure optimization problem is rephrased
into a material distribution problem. In the design domain D, a characteristic
function χ is used to indicate the presence of fluid or solid. Let the fluid domain
be Ω and solid domain be D\Ω, then χ should be defined as

χ(x) =

{
1 x ∈ Ω,
0 x ∈ D\Ω. (25)

To make the topology optimization problem convex, density method is often
used. The characteristic function χ is replaced by a normalized density α ∈
L∞(D; [0, 1]), which is chosen as the design variable. Since α can take values155

other than 0 and 1, it suggests the existence of some intermediate state between
fluid and solid. To adapt to this view, the DSMC algorithm need to be extended.
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3.2. Extension of DSMC

In traditional DSMC calculations, the boundary between solid domain and
fluid (gas) domain is explicitly expressed. Molecules move in the fluid domain160

only, and they are reflected when they attempt to cross the gas-solid inter-
face. No molecules are present in the solid domain. However, in topology
optimization, the distinction between gas and solid is blurred by the introduc-
tion of grayscale regions, which means molecules are free to travel in the entire
computational domain. However, interpreting the grayscale region as a porous165

medium where the pseudo density α is related to material permeability means
some modifications need to be applied to the molecules.

By definition, when α = 0, the medium is pure solid with zero permeability.
Macroscopic velocity of the flow should be zero, and temperature should be equal
to wall temperature Twall. When α = 1, the medium is pure gas with infinite170

permeability, flow properties should be the same as they are in traditional DSMC
calculations. Besides, the relation between pseudo density α and permeability is
expected to be continuous and monotonous. Following these criteria, we propose
the following extension of DSMC.

Add another correction step where macroscopic velocities are dampened and
temperature is relaxed towards wall temperature. Information velocity and
temperature are corrected by

V ′ = αpV, (26)

T ′ = αpT + (1− αp)Twall, (27)

where p is a positive number.175

For correction of true velocity v for the molecules, first the macroscopic
velocity and temperature in all directions are calculated in the cell. Assuming
at the correction step, there are Nn molecules in the cell, then the macroscopic
velocity and temperature in each direction are calculated in the cell,

vi =
1

Nn

Nn∑
j=1

vj,i. (28)

T i =
m

kNn

Nn∑
j=1

(vi − vj,i)2. (29)

A portion of the macroscopic velocity is first subtracted from the true velocities,
and the temperature is rescaled.

v′j,i = vj,i − (1− αp)vi. (30)

v′′j,i = αpvi + (1− αp)(v′j,i − vi)

√
Twall

T i

. (31)

Apart from this additional step, existing steps in the IP method need to be
modified as well. Equations used to include pressure effects, namely equation

8



(13) to (15), are based on rarefied gas flow in pure fluid domain. However, in
porous medium, mass, momentum, and energy transfer is hindered. Equations
(13) to (15) are modified as follows to include the pseudo density α

∂V

∂t
= −αp′ 1

ρ
∇xP, (32)

∂

∂t

(
|V |2

2
+
ξRT

2

)
= −αp′ 1

ρ
∇x · (PVf ), (33)

∂ρ

∂t
= −αp′

∇x · (ρVf ), (34)

where p′ is a positive number.
In the modified equations, when α = 1, equations (32) to (34) are the same

with equations (13) to (15). When α = 0, equations (32) to (34) simply mean
there is no transfer in solid domain. Similar to the density method in op-
timization of solid structures [6], the exponents p, p′ ≥ 1 help convexify the180

optimization problem, and penalizes against grayscale region. In this paper,
their values are chosen as p = 1 and p′ = 2.

In DSMC, equations (32) to (34) are usually solved using the finite volume
method. Value of the variables at the surface of computational cells are approx-
imated using neighboring cell values. For the value of α2 at cell surfaces, we185

recommend approximating it as the geometric mean of α2 at both sides of the
surface, which is the product of α in neighboring cells. This scheme has another
advantage apart from simplicity in expression. In the optimized shapes, α is
expected to be either 0 or 1 in the design domain. Using the geometric mean
ensures no direct transfer of macroscopic quantities across the cell surface, as190

long as one of the two sides is solid.
In traditional DSMC, molecules that get reflected are subject to reflection

boundary conditions. Assuming diffuse boundaries, the reflected molecules will
lose their original velocity information, and turn to follow the Maxwellian dis-
tribution at wall temperature Twall. In the extended DSMC algorithm, since195

molecules are free to travel in the entire computational domain, they are not
reflected even if they cross cell boundaries where the pseudo density α takes
different values on each side. However, different values of α means different
degrees of modification. In solid region where α = 0, molecules are modified so
that their macroscopic velocity is zero and their temperature is equal to Twall. In200

gas region where α = 1, the molecules are not modified, effectively. Therefore,
regions where α is close to zero act like sources emitting molecules that fol-
low Maxwellian distribution at Twall, and regions where α is close to 1 act like
sources emitting molecules that follow distribution representing gas flow. At
gas-solid boundaries, molecules travelling into solid region follow distribution205

representing the flow, while molecules travelling into gas follow the Maxwellian
distribution at Twall. As a result, the diffuse reflection boundary condition is
implicitly imposed in the extended DSMC algorithm by the difference in the
degree of modification applied to the molecules. The only reflections that are
needed in the extended algorithm are those that take place at the boundary of210
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the computational domain.

3.3. Summary of the extended IP-DSMC algorithm

Here, a brief outline of the extended IP-DSMC algorithm is shown, where
a total of M iterations are calculated in the simulation, and properties of the
steady flow is sampled starting from iteration number Msample < M .215

1. Discretize the computational domain. Initialize the molecules and the
cells. Set iteration number Miter = 0.

2. Introduce new molecules that enter the computational domain from the
inlet and the outlet.

3. Move the molecules according to their velocities, and perform reflection220

at the boundary of computational domain when necessary.

4. Update the velocities of the molecules according to external forces.

5. Select proper pairs of molecules in each cell and perform binary collisions.

6. Modify the information properties of the molecules according to flow pres-
sure, flow velocity, and pseudo density α.225

7. Update flow density according to flow velocity and pseudo density α.

8. Correct the molecule velocities according to pseudo density α.

9. Sample flow temperature and flow velocity in each cell, update flow pres-
sure.

10. Delete the molecules that moved out of the computational domain.230

11. Let Miter ←Miter + 1. If Miter ≥Msample, record the flow properties.

12. If Miter < M , go back to step 2.

13. Calculate the average of the recorded flow properties.

3.4. DSMC procedure as maps

In DSMC, the continuous distribution function f is represented by a finite set235

of molecules {sj}Nj=1. Each molecule j has its position xj and velocity vj , and
carries information velocity Vj and information temperature Tj . Combining
them, we can treat each molecule as a vector sj = (xj , vj , Vj , Tj)

T . In IP
method, velocity, temperature, density, and pressure of the flow are calculated
in all the cells {un}Nc

n=1. Similarly, flow properties in each cell can be written240

as a vector un = (Vf,n, Tf,u, ρu, Pu)
T . For convenience, the set of molecules

and cells are treated as two vectors from now on: S = (s1, s2, · · · , sN )T and
U = (u1, u2, · · · , uNc

)T .
During the simulation, the values associated with the molecules and the cells

are updated in every step. Let superscript k mark the variables after iteration
k (0 ≤ k ≤ M), where M is the total number of iterations. Then effectively,
the simulation process can be regarded as applying two maps recursively:

Sk+1 =Ls(S
k, Uk), (35)

Uk+1 =Lu(S
k, Uk). (36)
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During DSMC, each iteration can be further divided into several independent
steps, which makes it possible to break Ls and Lu into several maps that act on S
and U consecutively. Referring to the algorithm, 9 steps are identified: molecule
entry, streaming, reflection, collision, pressure modification, density advection,
pseudo density correction, flow property sampling, and molecule deletion. De-
noting the corresponding maps by Ls,i and Lu,i, (1 ≤ i ≤ 9), respectively, and
introducing fractional steps to represent intermediate results, equation (35) and
(36) can be expanded by

Sk+i/9 =Ls,i(S
k+(i−1)/9, Uk+(i−1)/9), (37)

Uk+i/9 =Lu,i(S
k+(i−1)/9, Uk+(i−1)/9). (38)

It should be noted that the exact effects of the above-mentioned maps are
subject to random numbers generated during simulation, and they cannot be245

regarded as completely identical. For instance, the collision step Lk
s,4 at itera-

tion k can hardly choose the same collision pairs as Lk′

s,4 does at iteration k′.
Nevertheless, the mechanisms they follow are the same. So despite the differ-
ence in the values of random numbers, they are grouped under the same class
Ls,4.250

3.5. Discrete version of the optimization problem

Using the molecules S as the representation of the distribution function f ,
the discrete version of the optimization problem can be formulated as

inf
α
K = r(SM ), (39)

subject to

Vdesign − Vmax ≤ 0, (40)

S0 = SI , (41)

U0 = U I , (42)

Sk+i/9 = Ls,i(S
k+(i−1)/9, Uk+(i−1)/9), (43)

Uk+i/9 = Lu,i(S
k+(i−1)/9, Uk+(i−1)/9), (44)

where r(SM ) represents a sampling function over all the molecules, Vdesign =∑Nc

j=1 αj/Nc is the volume fraction of fluid in the design domain, 0 < Vmax < 1
is the volume constraint, 0 ≤ k < M , and 1 ≤ i ≤ 9.

The objective functional K is defined directly on the final state of the255

molecules SM , which is supposed to represent the distribution function f at
the end of the simulation, and contain all the information about the flow. In
practice, the objective functional K is often evaluated at a number of steps
in the sampling range then averaged. However, in this formulation we reduce
ourselves to the case where the sampling range is equal to 1 for simplicity. The260

volume constraint is stated in stated in (40). Equation (41) and (42) state the
initial condition. And equation (43) and (44) are the governing equations for
the state variables S and U .
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3.6. Sensitivity analysis

Design sensitivity
∂K

∂α
is obtained using the Lagrangian method. Motivated

by the discrete version of the optimization problem, we formulate the discrete
Lagrangian J as

J = r(SM )︸ ︷︷ ︸
K

−Λ0 · (S0 − SI)−Ψ0 · (U0 − U I)︸ ︷︷ ︸
J1

−
M−1∑
k=0

9∑
i=1

Λk+i/9 · (Sk+i/9 − Ls,i(S
k+(i−1)/9, Uk+(i−1)/9)︸ ︷︷ ︸

J2

−
M−1∑
k=0

9∑
i=1

Ψk+i/9 · (Uk+i/9 − Lu,i(S
k+(i−1)/9, Uk+(i−1)/9)︸ ︷︷ ︸

J3

. (45)

Here, Λ and Ψ are vectors of Lagrangian multipliers corresponding to the265

molecules S and the cells U . Similar to S and U , which are vectors made up by
individual sj and un, Λ and Ψ are also constructed as Λ = (λ1, λ2, · · · , λN )T ,Ψ =
(ψ1, ψ2, · · · , ψNc

)T . Each λj is a vector, λj = (λx,j , λv,j , λV,j , λT,j)
T , which are

Lagrangian multipliers for the position, velocity, information velocity, and infor-
mation temperature of molecule j. Similarly, ψn = (ψV,n, ψT,n, ψρ,n, ψP,n)

T is270

a vector composed by Lagrangian multipliers for velocity, temperature, density,
and pressure of the fluid in cell n.

Setting the Fréchet derivative of J with respect to the state variables equal
to zero gives the adjoint equations,

∇sr(S
M )− ΛM = 0, (46)

−ΨM = 0, (47)[
∇sLs,i+1(S

k+i/9, Uk+i/9)
]T

Λk+(i+1)/9

+
[
∇sLu,i+1(S

k+i/9, ck+i/9)
]T

Ψk+(i+1)/9 − Λk+i/9 = 0, (48)[
∇uLs,i+1(S

k+i/9, Uk+i/9)
]T

Λk+(i+1)/9

+
[
∇uLu,i+1(S

k+i/9, Uk+i/9)
]T

Ψk+(i+1)/9 −Ψk+i/9 = 0, (49)[
∇sLs,1(S

0, U0)
]T

Λ1/9 +
[
∇sLu,1(S

0, U0)
]T

Ψ1/9 − Λ0 = 0, (50)[
∇cLs,1(S

0, U0)
]T

Λ1/9 +
[
∇uLu,1(S

0, U0)
]T

Ψ1/9 −Ψ0 = 0. (51)

Detailed derivations of the adjoint equations can be found in Appendix A.275

The adjoint equations form a final value problem that evolves backwards in time
from the end of the simulation. Appendix B. includes the details for solving the
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adjoint equations. When the adjoint variables are solved, sensitivity can be
obtained by evaluating the Fréchet derivative of Lagrangian J with respect to
α.280

In the extended DSMC algorithm, α appears in equations (26) to (27) and
equations (32) to (34), which correspond to maps Ls,5, Lu,6 and Ls,7. In the
discrete formulation, the design variable α is represented by its values in each
cell α = (α1 α2 · · · αNc)

T . Hence the sensitivity Q can be expressed in discrete
form as

Q =
δJ

δα

=−
M−1∑
k=0

[∇αLs,5(S
k+4/9, Uk+4/9)]T · Λk+5/9

−
M−1∑
k=0

[∇αLu,6(S
k+5/9, Uk+5/9)]T ·Ψk+6/9

−
M−1∑
k=0

[∇αLs,7(S
k+6/9, Uk+6/9)]T · Λk+7/9. (52)

Detailed evaluation of Q is included in Appendix C.

4. Numerical implementation

4.1. Optimization algorithm

Optimization algorithm to maximize objective functional K(α) is based on
the steepest gradient method with respect to α [6, 7]. The outline is as follows.285

1. Initialize the design variable α and Lagrangian multiplier µ for volume
constraint.

2. Perform DSMC calculations to obtain objective functional K and record
all the intermediate steps. If K has converged, calculation ends.

3. Use the recorded information to solve the adjoint variables.290

4. Calculate design sensitivity Q.

5. Calculate current volume Vcur =
∑Nc

j=1 αj/Nc. Update the Lagrangian
multiplier by µ← µ+ σ(Vcur − Vmax), where σ is the penalty factor.

6. Modify the Lagrangian multiplier by µ ← max(min(µ, µmax), 0), where
µmax > 0 is a prescribed maximum value.295

7. Update design variable by α← α+τ(Q/|Q|−µ), where |Q| is the Euclidean
norm of sensitivity Q, and τ is a prescribed step length.

8. Modify the design variable by α← max(min(α, 1), 0). Go back to step 2.

Convergence of objective functional K is decided by
|Kn −Kn−1|
|Kn|

< ϵ for

three consecutive loops, where n counts the number of loops, and ϵ is a pre-300

scribed small value.
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5. Numerical examples

5.1. Validation of the extended DSMC

Validity of the extended DSMC method is shown in the calculation of two-
dimensional Couette flow. As shown in Figure 1, rarefied gas flows between305

two parallel plates. The plate at the bottom is fixed, and the one above at
y = ymax moves in the x-direction with velocity uwall. Both plates are at the
same temperature Twall = 300 K and treated as diffuse reflectors. Since the
flow field does not vary in the x-direction, a section of the infinite channel
is selected as the computational domain, and periodic boundary condition is310

imposed on the left side and the right side. As a benchmark, calculation is first
performed using traditional DSMC with the lower plate explicitly expressed as
a wall at y = 0. Then, using the extended DSMC as we proposed, calculation
is performed in an extended computational domain. In the extended set-up,
distance between the plates is 1.2 times the original value, but the bottom315

1/6 of the computational domain is solid, where α = 0. In both calculations,
the computational domain is discretized using square meshes. Fluid domain is
divided into 100×100 squares, and solid domain is divided into 100×20 squares.

Figure 1: Geometry of the computational domain for plane Couette flow. Left: explicit solid
boundary. Right: solid boundary represented by α = 0.

Flow fields obtained from the two methods are compared at three different
Knudsen numbers: 0.01, 0.1, and 1.0. Flow velocity in the x-direction Vf,1 is320

calculated as the average in all the cells with the same y-coordinate. Figure 2
shows the distribution of Vf,1 with respect to y-coordinate. Results from the
proposed DSMC method are in good agreement with results from traditional
DSMC, which confirms the validity of the proposed method in representing the
distribution of solid.325

5.2. Validation of sensitivity

Sensitivity obtained from the adjoint equations is verified using the following
two-dimensional channel flow through a neck. As illustrated in Figure 3, the
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(a)

(b)

(c)

Figure 2: Comparison of flow velocity in the x-direction for the two-dimensional Couette flow
at different Knudsen numbers: (a) Kn = 0.01, (b) Kn = 0.1, (c) Kn = 1.0.
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channel has an aspect ratio of 3:1. The top and lower boundaries at y = ±h
are solid walls at Twall = 300 K as diffuse reflectors, while the left and right330

boundaries are open. Inlet boundary condition at Γin is Pin = 1.5 atm, Tin = 300
K, and Vf,2 = 0 m/s. At the outlet Γout, pressure is Pout = 1.0 atm. In the
middle of 1/3 of the channel, two solid blocks reduces represented by α = 0
reduces the width of the channel to 1/3. Other parts are pure gas domain
where α = 1.335

Figure 3: Geometry of the channel with a neck.

Considering the maximization of flow rate, the objective function is defined
as the average flow velocity in the x-direction at the inlet, where the upwind
flow density is a fixed value due to inlet boundary conditions.

K =

∫
Γin

Vf,1 dΓ∫
Γin

dΓ
. (53)

In DSMC calculation, the objective functional is evaluated by the average in-
formation velocity in the x-direction of all the molecules that are at the inlet.
Suppose there are Nin molecules at the inlet, and their indexes are mi, where
1 ≤ i ≤ Nin. K is then expressed by

K =
1

Nin

Nin∑
i=1

Vmi,1. (54)

With the discrete expression for objective function, sensitivity Q can be cal-
culated using the adjoint equations. Q is compared with the finite-difference
sensitivity QFD, which is defined as

QFD(x′) =
K[α+ 1(x− x′)∆α]−K[α− 1(x− x′)∆α]

2∆α
, (55)

where

1(x) =

{
1, x = 0
0, x ̸= 0,

(56)

is the Dirac’s delta, and ∆α = 0.1.
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(a) Sensitivity along the x-axis

(b) Sensitivity along the y-axis

Figure 4: Comparison of Q and QFD (a): along the x-axis. (b): along the y-axis.
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Values of Q and QFD along the x and y axis at Knudsen number 0.1 are
shown in Figure 4. Sensitivity calculated from the adjoint equations agrees with
sensitivity calculated from finite difference of the design variable α. Therefore
the validity of the derived sensitivity is confirmed.340

5.3. Bent pipe optimization

Consider the optimization problem of a bent pipe as is illustrate in Figure 5.
The computational domain consists of a square design domain and two smaller
non-design domains, where α = 1. Apart from the gas inlet Γin and outlet
Γout, the computational domain is enclosed by diffuse wall boundaries with345

Twall = 300 K. At the inlet, Pin = 1.5 atm, Tin = 300 K, and Vf,2 = 0. At the
outlet, Pout = 1.0 atm. The objective is to design a bent pipe that maximizes
mass flow rate under the volume constraint Vmax = 0.25.

In DSMC calculation, the design domain is discretized by a 100×100 square
lattice, and the two non-design domains are discretized by a 20 × 20 square
Lattice. Since the upwind gas density is a fixed value at the inlet, given Pin

and Tin, the objective function is replaced by the average flow velocity in the
x-direction at the inlet.

K =

∫
Γin

Vf,1 dΓ∫
Γin

dΓ
. (57)

In discrete formulation, K is obtained by the average information velocities in
the x-direction of all the molecules that are at the inlet. Suppose there are Nin

molecules at the inlet, and their indexes are mi, where 1 ≤ i ≤ Nin,

K =
1

Nin

Nin∑
i=1

Vmi,1. (58)

The optimized structure of the bent pipes at different Knudsen numbers are
shown in Figure 6. As the Knudsen number increases, the curvature of the350

bent pipe decreases, which is in agreement with the results obtained by Sato
et al. using LBM [20]. To check the performance of the obtained designs, the
obtained structures are tested at different Knudsen numbers, and values of the
objective function are compared. The results are shown in Table 1. At each
Knudsen number, the maximum objective functional is achieved by the design355

that is obtained at the same Knudsen number, which confirms the validity of
the optimization algorithm.

Design obtained at Kn Tested at Kn
0.1 1.0 10.0

0.1 20.6 9.62 8.16
1.0 20.1 9.91 8.32
10.0 20.0 9.55 8.44

Table 1: Comparison of objective functional for the optimized bent pipe designs at different
Knudsen numbers. The maximum value at each tested Knudsen number is shown in bold.
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Figure 5: Geometry setting of the bent pipe optimization problem.

(a) (b) (c)

Figure 6: Optimized design for bent pipe at different Knudsen numbers: (a) Kn = 0.1, (b)
Kn = 1.0, (c) Kn = 10.0. Shaded region represents solid, and white region represents gas.
Only the design domain is shown.
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6. Conclusion

In this paper, a topology optimization method for rarefied gas systems based
on DSMC is proposed. In order to describe distribution and gas in the design360

domain, a pseudo density model is introduced, in which solid is treated as gas
with zero macroscopic velocity and fixed wall temperature. Traditional IP-
DSMC algorithm is extended to incorporate the density expression of material
distribution. Topology optimization problem is formulated by treating the par-
ticles as discrete state variables and the DSMC process as a series of maps that365

act on the particle set consecutively.
Topology optimization algorithm is constructed by choosing the pseudo den-

sity as design variable directly. Following the discrete view of the optimization
problem, discrete adjoint variables are defined for each molecule in the simula-
tion, and adjoint equations are formulated. Design sensitivity is obtained after370

solving the adjoint variables. The design variable is updated by the steepest
gradient method using Lagrangian multipliers.

The validity of the introduced pseudo density, as well as the proposed exten-
sion of DSMC is confirmed through numerical examples. Sensitivity obtained
from the adjoint variables is also confirmed by comparison with sensitivity calcu-375

lated from finite difference of the design variable. Bent pipe optimization shows
the change of curvature with Knudsen number, which is in line with previous
research results.

The proposed topology optimization method can assist the design of micro
structures or aircrafts at high altitudes, where rarefied gas flow plays an impor-380

tant role. It may also be applied to other systems governed by the Boltzmann
equation that can be solved by DSMC.
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Appendix A. Derivation of the adjoint equations

The discrete adjoint equations are formulated by calculating the Fréchet
derivatives of Lagrangian J with respect to the state variables S and U at every
step of the simulation, and letting the derivatives equal zero according to first-
order optimum conditions. Start by derivatives of K, which is only dependent
on SM . Since K is a scalar function, its Fréchet derivative with respect to SM

is simply the gradient of r evaluated at SM .

δK

δSM
= ∇sr(S

M ). (59)

The initial condition term J1 in equation (45) is only dependent on the initial
state of the simulation, S0 and U0, and the derivatives are

δJ1
δS0

= Λ0, (60)

δJ1
δU0

= Ψ0. (61)

J2 and J3 in (45) have similar formulations. Generally, Sk+i/9 and Uk+i/9

appear in the dot product with Λk+i/9,Ψk+i/9, Λt+(i+1)/9, and Ψk+(i+1)/9, ex-
cept when k =M − 1 and i = 9. The derivatives are

δJ2
δSk+i/9

= −
[
∇sLs,i+1(S

k+i/9, Uk+i/9)
]T

Λk+(i+1)/9 + Λk+i/9, (62)

δJ2
δUk+i/9

= −
[
∇uLs,i+1(S

k+i/9, Uk+i/9)
]T

Λk+(i+1)/9, (63)

δJ3
δSk+i/9

= −
[
∇sLu,i+1(S

k+i/9, Uk+i/9)
]T

Ψk+(i+1)/9, (64)

δJ3
δUk+i/9

= −
[
∇uLu,i+1(S

k+i/9, Uk+i/9)
]T

Ψk+(i+1)/9 +Ψk+i/9. (65)

k = M − 1 and i = 9 correspond to the final state of the simulation: SM

and UM . They do not appear as the argument of the maps, so the derivatives
with respect to them are simpler:

δJ2
δSM

= ΛM , (66)

δJ3
δUM

= ΨM . (67)

Similarly, in J2 and J3, the initial state S
0 and U0 only appear as arguments
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of Ls,1 and Lu,1, so the corresponding derivatives are

δJ2
δS0

= −
[
∇sLs,1(S

0, U0)
]T

Λ1/9, (68)

δJ2
δU0

= −
[
∇uLs,1(S

0, U0)
]T

Λ1/9, (69)

δJ3
δS0

= −
[
∇sLu,1(S

0, U0)
]T

Ψ1/9, (70)

δJ3
δU0

= −
[
∇uLu,1(S

0, U0)
]T

Ψ1/9. (71)

Now, combining all four parts together, we get the discrete adjoint equations
for the problem. Derivatives with respect to final state SM and UM being equal
zero requires

δJ

δSM
= ∇sr(S

M )− ΛM = 0, (72)

δJ

δUM
= −ΨM = 0. (73)

Derivative with respect to S and U at an intermediate step k + i/9 equaling
zero requires

0 =
δJ

δSk+i/9
=
[
∇sLs,i+1(S

k+i/9, Uk+i/9)
]T

Λk+(i+1)/9

+
[
∇sLu,i+1(S

k+i/9, ck+i/9)
]T

Ψk+(i+1)/9 − Λk+i/9, (74)

0 =
δJ

δUk+i/9
=
[
∇uLs,i+1(S

k+i/9, Uk+i/9)
]T

Λk+(i+1)/9

+
[
∇uLu,i+1(S

k+i/9, Uk+i/9)
]T

Ψk+(i+1)/9 −Ψk+i/9. (75)

Derivative with respect to initial state S0 and U0 equaling zero requires

0 =
δJ

δS0
=
[
∇sLs,1(S

0, U0)
]T

Λ1/9 +
[
∇sLu,1(S

0, U0)
]T

Ψ1/9 − Λ0, (76)

0 =
δJ

δU0
=
[
∇cLs,1(S

0, U0)
]T

Λ1/9 +
[
∇uLu,1(S

0, U0)
]T

Ψ1/9 −Ψ0. (77)

The adjoint equations can be treated as a final value problem that evolves
backward in time. The final state of the adjoint variables ΛM ,ΨM are given385

in equations (72) and (73). Then according to equations (74) and (75), values
of Λ and Ψ at the previous step can be calculated from the current step. The
equations can be solved one after another until Λ0 and Ψ0 are obtained.

In practice, DSMC calculations usually take a number of steps towards the
end as a sampling range, where flow properties are sampled and averaged. How-390

ever, due to the linearity of the equations in the pair (Λ,Ψ), the derivation only
covers the case where the objective function depends on the final state of the
simulation. The more general case, where the objective function depends on a
number of sampled iterations, can be easily derived following the superposition
principle.395

22



Appendix B. Evaluating the adjoint variables

To evaluate the adjoint variables, assume that the forward DSMC process
is completed, values of the state variables S and U , as well as and the random
numbers generated at every step are recorded. Gradients involved in the adjoint
equations are giant vectors and matrices. But fortunately, they can be simplified400

to make calculation easier.
In IP DSMC, flow properties are sampled from information variables of the

molecules. This means r(SM ) only depends on VM
j and TM

j . Therefore, for

the adjoint variables λMx,j and λMv,j , their final conditions must be zero. Besides,
during the simulation, values of the information variables Vj and Tj are inde-405

pendent of the original variables xj and vj . xj and vj have no direct influence
on U , either. Therefore, in ∇sLs,n and ∇sLu,n (1 ≤ n ≤ 9), rows corresponding
to xj and vj are all zero. As a result, adjoint variables λx,j and λv,j are zero
at every step. For this reason, they are omitted for simplicity in the following
parts. For two dimensional flows, the information velocity has only two compo-410

nents, so each λj can be treated as a vector (λV,j,1 λV,j,2 λT,j)
T ∈ R3, and Λ as

a vector in R3N from now on.
Without loss of generality, the gradients ∇sLs,n can be written in block

matrix form

∇sLs,n = A =


A11 A12 · · · A1N

A21 A22 · · · A2N

...
...

. . .
...

AN1 AN2 · · · ANN

 . (78)

Where each Aij = is a 3 × 3 matrix corresponding to the gradient of molecule
si in the output with respect to input molecule sj = (Vj,1, Vj,2, Tj)

T . Formally,

Aij = ∇vj

 V ′
i,1

V ′
i,2

T ′
i

 =

 A11
ij A12

ij A13
ij

A21
ij A22

ij A23
ij

A31
ij A32

ij A33
ij

 . (79)

Gradient ∇uLs,n can be written as a N × Nc block matrix B. Each block
Bij is a 3 × 5 matrix that corresponds to the gradient of the molecule i in the
output with respect to cell uj = (Vf,j,1, Vf,j,2, Tf,j , ρj , Pj)

T in the input.

Bij = ∇uj

 V ′
i,1

V ′
i,2

T ′
i

 =

 B11
ij B12

ij B13
ij B14

ij B15
ij

B21
ij B22

ij B23
ij B24

ij B25
ij

B31
ij B32

ij B33
ij B34

ij B35
ij

 . (80)

Gradient ∇sLu,n can be written as a Nc × N block matrix C. Each block
Cij is a 5 × 3 matrix that corresponds to the gradient of cell ui in the output
with respect to molecule sj = (Vj,1, Vj,2, Tj)

T in the input.415
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Cij = ∇sj


V ′
f,i,1

V ′
f,i,2

T ′
f,i

ρ′i
P ′
i

 =


C11

ij C12
ij C13

ij

C21
ij C22

ij C23
ij

C31
ij C32

ij C33
ij

C41
ij C42

ij C43
ij

C51
ij C52

ij C53
ij

 . (81)

Gradient ∇uLu,n can be written as a Nc ×Nc block matrix D. Each block
Dij is a 5 × 5 matrix that corresponds to the gradient of cell ui in the output
with respect to cell uj in the input.

Dij = ∇uj


V ′
f,i,1

V ′
f,i,2

T ′
f,i

ρ′i
P ′
i

 =


D11

ij D12
ij D13

ij D14
ij D15

ij

D21
ij D22

ij D23
ij D24

ij D25
ij

D31
ij D32

ij D33
ij D34

ij D35
ij

D41
ij D42

ij D43
ij D44

ij D45
ij

D51
ij D52

ij D53
ij D54

ij D55
ij

 . (82)

With these notation introduced, it is easier to write out the expressions for the
gradients of the functions Ls,n and Lu,n (1 ≤ n ≤ 9). In the following parts, the
expressions for the gradients will be given in terms of block matrices A,B,C,
and D.

B.1. Molecule entry step420

In the molecule entry step, maps Ls,1 and Lu,1 introduce new molecules into
the simulation from the inlet and the outlet. In this step, flow properties are not
changed, Lu,1(S

t, U t) = U t. Therefore, ∇sLu,1 = C = 0 and ∇uLu,1 = D = 1.
For the map Ls,1, information variables of existing molecules are not changed.

Therefore, Aii = 1 for all i representing an existing molecule. Other parts of A425

are zero.
The introduced molecules get their initial values according to the boundary

conditions. Use a horizontal pipe as an example, where the inlet and outlet
are in the vertical direction. At the inlet, if molecule i is introduced to cell j,
its initial information velocity in x-direction V ′

i,1 is equal to the flow velocity
in cell j, Vf,j,1. Information velocity in y-direction is zero, and information
temperature is equal to prescribed value Tin. At the outlet, the initial value for
the information variables of molecule i follow the characteristics-theory-based
equations [29, 30],

V ′
i,1 = Vf,j,1 +

Pj − Pout

ρj
√
γRTf,j

, (83)

V ′
i,2 = Vf,j,2, (84)

T ′
i =

Pout

ρjR
, (85)

where Pout is prescribed pressure at the outlet, γ is the ratio of specific heats
for the gas, and R is the specific gas constant. From the equations (83) to (85),
the related partial derivatives can be calculated.
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For molecule i introduced to cell j at the inlet, matrix Bij has only one
non-zero component,

B11
ij = 1. (86)

For molecule i introduced to cell j at the outlet, the non-zero components of
Bij are

B11
ij = B22

ij = 1, (87)

B13
ij = −Pj − Pout

ρj
√
γR

(
1

Tf,j

)3/2

, (88)

B14
ij = −Pj − Pout√

γRTf,j

(
1

ρj

)2

, (89)

B15
ij =

1

ρj
√
γRTf,j

, (90)

B34
ij = −Pout

ρ2jR
. (91)

For other cells cj where no new molecule is introduced, Bij = 0.430

B.2. Streaming step

In the streaming step, Ls,2, Lu,2 change the positions of the molecules ac-
cording to their velocities. Cell variables and the information variables of the
molecules do not change, hence A = 1, B = 0, C = 1, D = 0. As a result,
adjoint variables do not change from step k + 2/9 to k + 1/9.435

B.3. Reflection step

In the reflection step, Lp,3 and Lu,3 assign new velocities to molecules if they
attempt to cross the wall boundary. For molecule i that get reflected, the new
information variable are set according to diffuse reflection condition:

V ′
i = 0, (92)

T ′
j = Twall. (93)

The information variables after reflection do not depend on the values before
reflection. Hence, Amm = 1 for all molecule m that is not reflected. Other parts
of A are zero. Molecular Information variables do not depend on flow properties
in this step, hence B = 0. Cell variables do not change in this step, so C = 0,440

and D = 1.

B.4. Collision step

Ls,4 and Lu,4 perform collisions between molecules. If molecule i and j col-
lide, their information variables after collision are updated according to equa-
tions (9) to (12). From these equations we can derive the partial derivatives
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with respect to pre-collision values. In Aii and Ajj , the non-zero components
are:

A11
ii = A22

ii = A11
jj = A22

jj =
1 + Cµ cos θ

2
, (94)

A31
ii = (Vi,1 − Vj,1)/(2ξR), (95)

A32
ii = (Vi,2 − Vj,2)/(2ξR), (96)

A31
jj = (1− C2

µ cos
2 θ)(Vi,1 − Vj,1)/(2ξR), (97)

A32
jj = (1− C2

µ cos
2 θ)(Vi,2 − Vj,2)/(2ξR), (98)

A33
ii = A33

jj =
1 + Ck cos θ

2
. (99)

Non-zero components in Aij and Aji are:

A11
ij = A22

ij = A11
ji = A22

ji =
1− Cµ cos θ

2
, (100)

A31
ij = −(Vi,1 − Vj,1)/(2ξR), (101)

A32
ij = −(Vi,2 − Vj,2)/(2ξR), (102)

A31
ji = −(1− C2

µ cos
2 θ)(Vi,1 − Vj,1)/(2ξR), (103)

A32
ji = −(1− C2

µ cos
2 θ)(Vi,2 − Vj,2)/(2ξR), (104)

A33
ij = A33

ji =
1− Ck cos θ

2
. (105)

For molecule i that did not involve in any collision, its information variables
do not change, hence Aii = 1. Other parts of A are zero. Flow information
does not influence collision pairs, and remains the same during this step, hence445

B = 0, C = 0 and D = 1.

B.5. Pressure modification step

In the pressure modification step, Ls,5 and Lu,5 modify the information
variables of the molecules according to cell pressure according to equations (32)
and (33). During the simulation, finite volume approximations are used to solve
the two equations. In the square mesh, pressure gradient is replaced by the
difference in neighboring cells. For instance, x-direction information velocity of
a molecule i in cell j is modified by

V ′
i,1 = Vi,1 +∆V1 = Vi,1 +

∆t

∆x

1

ρj
(Pa − Pb)αaαb. (106)

Here, ∆t is the time step for DSMC simulation, ∆x is the size of the cell. a and
b denote the index of the left cell and the right cell, respectively. The left and
right cell are defined in the following way,450

• If molecule i is in the left half of cell j, then the left cell is the cell to the
left of cell j, and the right cell is cell j.
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• If molecule i is the right half of cell j, then the left cell is cell j, and the
right cell is the cell to the right of j.

Using this expression for pressure gradient avoids the central difference scheme.455

Using the central difference scheme creates a undesirable situation, where the
pressure gradient at cell j is independent of pressure in cell j. This may result
in checkerboard pattern of flow pressure.

Similarly, the y-direction information velocity of i is modified by

V ′
i,2 = Vi,2 +∆V2 = Vi,2 +

∆t

∆x

1

ρj
(Pc − Pd)αcαd. (107)

In the subscript, c and d denote the index of the bottom cell and the top cell,
which are defined similarly:460

• If molecule i is in the lower half of cell j, the bottom cell is the cell to
below cell j, and the up top is cell j.

• If molecule i is in the upper half of cell j, the bottom cell is cell j, and
the top cell is the cell above cell j.

After calculating the changes in information velocity, information temperature
of cell i is modified by the following approximation,

∆T =
2

ξR

∆t

∆x

1

ρj
[(Vf,a,1Pa − Vf,b,1Pb)αaαb + (Vf,c,2Pc − Vf,d,2Pd)αcαd] ,

(108)

T ′
i = Ti +

|Vi|2 − |V ′
i |2

ξR
+∆T. (109)

Following the equations (106) to (109), the gradients can be calculated as
follows. For molecule i modified, the non-zero components of Aii are

A11
ii = A22

ii = A33
ii = 1 (110)

A31
ii = −∆V1/(ξR) (111)

A32
ii = −∆V2/(ξR). (112)

Modification of temperature of molecule i involves many cells, the corre-
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sponding non-zero components are

B14
ij = −∆V1/ρj , (113)

B24
ij = −∆V2/ρj , (114)

B34
ij = −∆T/ρj , (115)

B15
ia = −B15

ib =
∆t

∆x

1

ρj
αaαb, (116)

B35
ia = −B35

ib = − 2

ξR

∆t

∆x

1

ρj
∆V1αaαb, (117)

B25
ic = −B25

id =
∆t

∆x

1

ρj
αcαd, (118)

B35
ic = −B35

id = − 2

ξR

∆t

∆x

1

ρj
∆V2αcαd, (119)

B31
ia =

2

ξR

∆t

∆x

1

ρj
Paαaαb, (120)

B31
ib = − 2

ξR

∆t

∆x

1

ρj
Pbαaαb, (121)

B32
ic =

2

ξR

∆t

∆x

1

ρj
Pcαcαd, (122)

B32
id = − 2

ξR

∆t

∆x

1

ρj
Pdαcαd. (123)

Other parts of the matrix B are zero.465

In this step, the flow properties do not change, hence C = 0, and D = 1.

B.6. Density advection step

In the advection step, the gas density is updated in the computational do-
main by Ls,6 and Lu,6 according to the modified advection equation (34).

During the simulation, the advection equation is solved by a finite volume
approximation. Using the square meshes, we only need to calculate the flux
across the four surfaces of the cell. Using the upwind scheme in density, and a
simple average in velocity, the expression for new density is,

ρ′i =ρi +∆ρ, (124)

∆ρ =
∆t

∆x

(
ρl′
Vf,a,1 + Vf,i,1

2
αa − ρr′

Vf,b,1 + Vf,i,1
2

αb

+ ρd′
Vf,c,2 + Vf,i,2

2
αc − ρu′

Vf,d,2 + Vf,i,2
2

αd

)
αi. (125)

For flow velocities Vf and pseudo density α, a, b, c and d in the subscripts470

stand for the index of the cell that is to the left of i, to the right of i, below
i, and above i, respectively. In flow density, subscripts a′, b′, c′, d′ stand for the
index of the cells where density is chosen as the upwind value. For instance, if
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Vf,a,1 + Vf,i,1 > 0, a′ is the index of the cell to the left of cell i, otherwise, a′ is
i.475

In this step, the molecule variables are not changed, hence A = 1, and
B = 0. Cell variables are independent of molecule variables, so C = 0. The
change of density for cell i is dependent on the velocities and densities of the
neighboring cells. Therefore, the following parts of D can be expressed as:

D44
ii = 1, (126)

D41
ii =

∆t

∆x

(ρl′
2
αaαi −

ρr′

2
αbαi

)
, (127)

D42
ii =

∆t

∆x

(ρd′

2
αcαi −

ρu′

2
αdαi

)
, (128)

D41
ia =

∆t

∆x

ρl′

2
αaαi, (129)

D44
ia′ =

∆t

∆x

Vf,l,1 + Vf,i,1
2

αaαi, (130)

D41
ib = −∆t

∆x

ρr′

2
αaαi, (131)

D44
ib′ = −

∆t

∆x

Vf,r,1 + Vf,i,1
2

αbαi, (132)

D42
ic =

∆t

∆x

ρd′

2
αcαi, (133)

D44
ic′ =

∆t

∆x

Vf,d,2 + Vf,i,2
2

αcαi, (134)

D42
id = −∆t

∆x

ρu′

2
αdαi, (135)

D44
id′ = −

∆t

∆x

Vf,u,2 + Vf,i,2
2

αdαi. (136)

Note that, due to the definition of cells a, b, c, d and a′, b′, c′, d′, it is possible
for an element in matrix D to be double defined. In that case, instead of
overwriting, the values should be added. Other parts of matrix D are zero.

B.7. Pseudo density correction

In the pseudo density correction step, the information variable of the molecules
are correcting by Ls,7 and Lu,7 according to the following equations. For
molecule i in cell j,

V ′
i = αjVi, (137)

T ′
j = αjT

′
j + (1− αj)Twall. (138)

Information variables of the molecules after the step are dependent on their
values before. Hence the matrix Aii has the following non-zero components:

A11
ii = A22

ii = A33
ii = αj . (139)

Other parts of A are zero. Since the cell properties are not changed in this step,480

B = 0, C = 0, and D = 1.
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B.8. IP sampling step

In the IP sampling step, Ls,8 and Lu,8 updates the flow properties according
to the information variables of the molecules inside. Suppose molecule sin are
in cell j, where 1 ≤ n ≤ Nj . The flow properties are updated by

V ′
f,j =

1

Nj

Nj∑
n=1

Vin , (140)

T ′
f,j =

1

Nj

Nj∑
n=1

Tin , (141)

P ′
j = ρjRT

′
f,j . (142)

Since the molecule variables do not change in this step, A = 1 and B = 0. For
flow properties, velocity, temperature, and pressure are dependent on molecule
variables, so for matrix Cjin the non-zero components are,

C11
jin = C22

jin = C33
jin = 1/Nj , (143)

C53
jin = ρjR/Nj . (144)

Other parts of matrix C are zero.
Density in each cell is not changed, and it also influences the new pressure

in the cell, hence for Djj , the non-zero components are,

D54
jj = RT ′

f,j , (145)

D55
jj = 1. (146)

Other parts of matrix D are zero.

B.9. Molecule deletion step485

In the molecule deletion step, Ls,9 and Lu,9 removes the molecule from
memory if it moves out of the computational domain. For molecule i that is
deleted. All its information variables are cleared to zero.

V ′
i = T ′

i = 0. (147)

Hence for matrix A, only Aii = 1 only for i such that molecule i is not deleted.
Other parts of A are zero. Since the deletion of molecules is independent of
flow properties, B = 0. Flow variables in each cell are also not changed, hence
C = 0, D = 1.

Appendix C. Detailed formulation of sensitivity490

In equation (52), sensitivity Q is defined by the gradients of functions with
respect to design variable α. To get the detailed expressions, we use the similar
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block matrix expression. The gradient ∇αLs,5 and ∇αLs,7 can be written as a
N ×Nc block matrix G.

∇sLs,n = G =


G11 G12 · · · G1Nc

G21 G22 · · · G2Nc

...
...

. . .
...

GN1 GN2 · · · GNNc

 . (148)

Each block Gij is a column vector corresponding to the partial derivative of
s′j = (V ′

j,1, V
′
j,2, T

′
j)

T in the output with respect to design variable αj in cell j.

Gij =
∂

∂αj

 V ′
i,1

V ′
i,2

T ′
i

 =

 G1
ij

G2
ij

G3
ij

 . (149)

Similarly, gradient ∇αLu,6 can be written as a Nc ×Nc block matrix H. Each
block Hij is a column vector corresponding to the partial derivative of flow
variables in cell i in the output, (V ′

f,i,1, V
′
f,i,2, T

′
f,i, ρ

′
i, P

′
i )

T , with respect to αj .

Hij =
∂

∂αj


V ′
f,i,1

V ′
f,i,2

T ′
f,i

ρ′i
P ′
i

 =


H1

ij

H2
ij

H3
ij

H4
ij

H5
ij

 . (150)

In the pressure modification step Ls,5, the information variables of molecule
i in cell j is updated according to equations (106) to (109), which gives the
following non-zero components in G:

G1
ia = ∆V1/αa, (151)

G1
ib = ∆V1/αb, (152)

G2
ic = ∆V2/αc, (153)

G2
id = ∆V2/αd, (154)

G3
ia =

2

ξR
V ′
1,i∆V1/αa +

2

ξR

∆t

∆x

1

ρj
(Vf,l,1Pl − Vf,r,1Pr)αb, (155)

G3
ib =

2

ξR
V ′
1,i∆V1/αb +

2

ξR

∆t

∆x

1

ρj
(Vf,l,1Pl − Vf,r,1Pr)αa, (156)

G3
ic =

2

ξR
V ′
2,i∆V2/αc +

2

ξR

∆t

∆x

1

ρj
(Vf,d,2Pd − Vf,u,2Pu)αd, (157)

G3
id =

2

ξR
V ′
2,i∆V2/αd +

2

ξR

∆t

∆x

1

ρj
(Vf,d,2Pd − Vf,u,2Pu)αc. (158)

For density advection step Lu,6, the change in cell density i is calculated
according to equations (124) and (125). Following their expressions, the non-
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zero components in matrix H should be

H4
ii = ∆ρ/αi, (159)

H4
ia =

∆t

∆x
ρa′

Vf,a,1 + Vf,i,1
2

αi, (160)

H4
ib = −

∆t

∆x
ρb′

Vf,b,1 + Vf,i,1
2

αi, (161)

H4
ic =

∆t

∆x
ρc′

Vf,c,2 + Vf,i,2
2

αi, (162)

H4
id = −∆t

∆x
ρd′

Vf,d,2 + Vf,i,2
2

αi. (163)

In the pseudo density correction step, Ls,7 changes the information variables
of the molecules by the pseudo density of the cell. For molecule i in cell j, the
correction result in the following non-zero components in Gij ,

G1
ij = Vi,1, (164)

G2
ij = Vi,2, (165)

G3
ij = Tj − Twall. (166)

Other parts of matrix G are zero.
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