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Abstract 

Quenchbody (Q-body) is a fluorophore-labeled homogeneous immunosensor, in which the 

fluorophore is quenched by tryptophan (Trp) residues in the vicinity of the antigen-binding 

paratope and de-quenched in response to antigen binding. The development of Q-bodies against 

targets on demand remains challenging due to the large sequence space of the complementarity-

determining regions (CDRs) related to antigen binding and fluorophore quenching. In this study, 

we pioneered a strategy using high-throughput screening and a protein language model (pLM) to 

predict the effects of mutations on fluorophore quenching with single amino acid resolution, 

thereby enhancing the performance of Q-bodies. We collected yeasts displaying nanobodies with 

high and low quenching properties for TAMRA fluorophore from a modified large synthetic 

nanobody library, followed by next-generation sequencing. The pre-trained pLM, connected with 

a single-layer perceptron, was trained end-to-end on the enriched CDR sequences. The achieved 

quenching prediction model focused on CDR1+3 performed best in evaluation with precision-

recall curves. Using this model, we predicted and validated effective mutations in two anti-SARS-

CoV-2 nanobodies, RBD1i13 and RBD10i14, that convert them into Q-bodies. For RBD1i13, three 

Trp mutants were predicted with high probability scores for quenching through in silico Trp 

scanning. These mutants were verified via yeast surface display to all show enhanced quenching. 

For RBD10i14, mutations at four positions close to an existing Trp gave high scores through in 

silico saturation mutagenesis scanning. Six out of eight high-score mutants, derived from two 

mutants at each of four positions, exhibited deeper quenching on yeast surface. Next, combined 

with the investigation of antigen binding of the mutants, we successfully achieved Q-bodies with 

enhanced responses. Overall, our strategy allows for the prediction of fluorescence responses 

based solely on the sequence of the antibody and will be essential for the rational selection and 

design of antibodies to achieve immunosensors with larger responses.  



 

Introduction 

Homogenous immunoassays using an antibody labeled with environment-sensitive dyes1-3 or 

rhodamine-related fluorophores4 have the advantage of simple experimental operation, but the 

engineering of the antibody is often required to make them function as an immunosensor. 

Quenchbody (Q-body) is a quench-based fluorescent homogeneous immunosensor, in which a 

fluorophore is labeled near the antigen binding site of the antibody from several animal species, 

including camelid-derived nanobodies, using an N-terminal tagged cysteine residue,5-7 

fluorophore-conjugated non-natural amino acid incorperation,4 or coiled-coil forming E4/K4 

peptides.8 Q-body functions are based on antigen-dependent fluorescence recovery from 

quenching by tryptophan (Trp) residues of an antibody through photo-induced electron transfer, 

and deep quenching of the fluorophore in the absence of antigen is essential to achieve a large 

fluorescence response upon binding. Since some Trp residues are often conserved among 

antibodies,9 such antibodies were converted into Q-bodies without extensive antibody engineering 

for the detection of various molecules ranging from proteins to small molecules.10-11 To 

demonstrate its usability in various situations, the Q-body has been recently applied in unique 

applications such as droplet-based screening and monitoring12-13 or intracellular imaging14 by 

utilizing the characteristics of homogenous immunoassays. However, in many cases, because of 

the different position and number of native Trp residues, quenching of the fluorophore is negligible 

and small, resulting in little antigen-dependent fluorescence recovery. Therefore, the 

unpredictability of the fluorescence response from the amino acid sequence of each antibody 

causes difficulty in developing a Q-body against new targets on demand. 



 

So far, we have attempted two approaches to obtain large fluorescence responses for Q-bodies. 

The first approach is to adapt antibody screening methods for finding antibodies suitable for Q-

body responses.15 When fluorophore-labeled antibodies were fabricated on the yeast cell surface 

by N-terminal labeling using coiled-coil forming peptide, antibodies suitable for Q-body 

conversion were successfully selected from a nanobody library against the target antigen based on 

quenching and de-quenching evaluations. The second approach is to increase the number of Trp 

residues in complementarity-determining regions (CDRs) of antibodies to deepen the quenching, 

which in some cases enhances fluorescence responses. Introduction of Trp mutations in the CDR16-

17 or selection from a Trp-rich antibody library whose CDRs were designed to increase the 

propensity of Trp residue was effective in fabricating a practical Q-body.18 However, introduction 

of many additional Trp residues and presence of the large number of Trp residues in CDRs often 

result in reduced antigen-binding activity and unnecessary quenching, respectively, leading to 

small fluorescence recovery, necessitating the development of a new approach for efficient 

fabrication of Q-bodies. 

In silico design and function prediction are useful in accelerating the protein design process 

and providing new engineering opportunities. For artificially or semi-artificially designed proteins, 

such as Q-bodies, deep neural network models may capture the relationship between the amino 

acid sequences and desired functions without the input of working mechanisms, which is ideal for 

reducing bias from limited knowledge and broadening the design space explored. Recently, after 

the successful invention of self-attention mechanism-based neural networks for natural language 

processing,19 leveraging transformer-based or transformer-inspired protein language models 

(pLM) became a promising approach for the tasks of protein function predictions20 beyond 



 

structure prediction.21-22 In this approach, sequence annotation, amino acid feature extraction, and 

multi-sequence alignment or clustering steps of the protein sequence are eliminated, which may 

be suitable for building an in silico prediction model for Q-body development and engineering. 

Through the combination of pre-trained pLMs and the output layer of a simple neural network, 

sequence-to-function predictors have been built after learning function-labeled amino acid 

sequence data.20, 23-24 

In this study, we built an original model (NanoQ-model 1.0) based on a pLM to predict the 

effects that mutations in CDRs have on fluorophore quenching by end-to-end learning of the 

relationship between quenching and amino acid sequences of antibody CDRs. In silico screening 

of single mutations in an antibody using this original model allows for the efficient introduction 

of mutations that deepen quenching. Furthermore, detailed requirements for quenching, such as 

the position of the Trp residue and the preferred amino acids around the Trp residue, were also 

revealed. We believe that the screening method, quenching prediction model, and model training 

strategy using NGS data from high-throughput screening (HTS) presented in this work will 

facilitate the development of not only immunosensors but also other unique proteins with 

designated functions beyond those found in nature. 

 

Results 

Collection of yeasts displaying nanobodies with high or low quenching for fluorophore 

To build an original model for predicting quenching, yeasts displaying nanobodies with low 

quenching or high quenching properties were collected from an E4-tagged nanobody library on 

yeasts labeled with the FITC-K4-TAMRA peptide (Figure 1A). We first enriched yeasts displaying 



 

nanobodies from the synthetic library (NbLib)25 by using magnetic beads immobilized with 

antibodies against an affinity tag fused to the nanobody (Figure S1A), resulting in an increase in 

nanobody-displaying yeasts from 12.2 % to 65.9 % (Figure S1B). Then, the E4-tagged library was 

constructed by fusing the E4-tag to the N-terminal of the above enriched nanobodies (Figure S2A). 

When evaluating the quenching efficiency of the E4-tagged library on yeasts labeled with FITC-

K4-TAMRA as previously described,15 the mean of TAMRA/FITC ratio was 0.76 (calculated from 

Figure S2B left), which is lower than that of E4 only (⋍1.24) (from Figure S2B right), suggesting 

 

Figure 1. High-throughput screening of the nanobodies with low and high quenching properties 
against TAMRA. (A) Schematic image of sorting yeasts displaying TAMRA and FITC-labeled 
nanobodies by using E4/K4 assembly. TAMRA is used to evaluate quench and FITC is to correct 
for nanobody display. Aga, a-agglutinin. (B) Flow cytometric analysis of high-quenching and 
low-quenching nanobodies sorted by TAMRA/FITC ratio. (C) TAMRA/FITC ratio of eight 
nanobodies that randomly picked from high-quenching and low-quenching nanobodies. The bar 
graphs represent the means of TAMRA/FITC ratio ± standard error of mean. The dot line 
represents the mean of the TAMRA/FITC ratio of the E4-tagged library displayed on the yeast 
cell surface before sorting. 



 

that the TAMRA is quenched by intrinsic amino acid residues such as Trp of the nanobodies in this 

library. After two rounds of selection based on the evaluation of quenching efficiency (Figure S2C, 

D), the mean of TAMRA/FITC ratio of the low-quenching nanobodies became 1.17 (from Figure 

1B left), and that of the high-quenching nanobodies was 0.30 (from Figure 1B right), which were 

similar with that of E4 only (⋍ 1.24) and a previously developed nano Q-body15 ( ⋍0.30), 

respectively. To evaluate the quenching efficiency of nanobodies on collected yeasts, we examined 

the TAMRA/FITC ratio of eight nanobodies on yeasts, which were randomly picked up from 

enriched high or low-quenching pools. The TAMRA/FITC ratios of all nanobodies from the low-

quenching pool were over 0.76, and those from the high-quenching pool were below 0.76, with 

variations, suggesting that the nanobodies with low and high quenching were successfully sorted 

based on TAMRA/FITC ratio. 

 

Building prediction models through end-to-end training 

The training dataset was obtained by the next-generation sequencing (NGS) analysis of 

nanobodies with high and low quenching properties (Figure 2A left). Comparing the frequency of 

amino acids in the CDR, nanobodies with high and low quenching exhibited the different 

frequency against the initial E4-tagged library (Figure 2B, Figure S3). Especially in high-

quenching nanobodies, Trp residues were enriched on the C-terminal of CDR1 and both ends of 

CDR3 (Figure 2C), and the same aromatic amino acids such as Phe and Tyr tended to be enriched 

at similar positions in CDR3. Interestingly, negatively charged amino acids such as Asp and Glu 

were less likely to be enriched in these positions. Next, to build a prediction model, a pre-trained 

pLM called ProtBert-BFD20 was used (Figure 2A right). To build a binary classification model, 



 

the pLM connected to a single-layer perceptron for probability score prediction was trained end-

to-end with the amino acid sequence of high and low-quenching nanobodies. To compare the 

contribution to quenching efficiency among CDRs, three prediction models were trained with the 

 

Figure 2. Building original models and evaluating the performance. (A) Schematic image of 
building an original model for predicting quenching. (B) Web logo of high quenching nanobodies 
after 2 rounds selections (HQ2). The red boxes represent the position where Trp residues were 
enriched. (C) Heatmap shows the frequency of amino acid changes in the enriched position. Red: 
increased; Blue: decreased. (D) Representative PR curve of CDR1, CDR2, CDR3, and CDR1+3 
models. (E) The bar graphs represent the means of the AUC value in Figure 2C and the other two 
PR curves ± standard deviation (n=3). 



 

sequences of CDR1, CDR2, or CDR3 separately. When the prediction performance was evaluated 

by plotting the PR curve (Figure 2D, 2E), the CDR3-based model showed the largest AUC value, 

followed by the CDR1- and CDR2-based models, suggesting that CDR3, CDR1, and CDR2 

contributes to quenching of TAMRA in that order. To expand the sequence space that can be 

predicted with the model, we built the additional model using the combination of CDR1 and CDR3 

(CDR1+3 model) which showed a relatively higher AUC value with lower SD than that of the 

CDR3-based model in the PR curve (Figure 2E). Therefore, we decided to use the CDR1+3 model 

named NanoQ-model 1.0 for predicting effective mutation on quenching, leading to improving the 

performance of immunosensor. 

 

Prediction of effective mutation on quenching 

To test whether the NanoQ-model 1.0 can be used to nominate mutations that achieve 

quenching, we carried out an in silico screening based on probability scores for high-quenching 

mutations in nanobodies outside the training dataset. Two nanobodies against the receptor-binding 

domain (RBD) of the SARS-CoV-2 spike (S) protein, RBD1i13 and RBD10i14, were selected. 

These two nanobodies were obtained using OrthoRep-driven antibody evolution from parental 

clones RBD1 and RBD10, which are derived from NbLib.26 Taking advantage of the fact that 

RBD1i13 does not have a Trp residue in CDR1 and 3, we performed in silico Trp scanning on 

RBD1i13 using the NanoQ-model 1.0. We found that several Trp mutations, such as I107W, 

L113W, and H115W, showed increased scores (Figure 3A). For RBD10i14 carrying one Trp 

residue in CDR3, the initial score of the wildtype was already as high as 0.67, and there was no 

obvious score increase during in silico Trp scanning (Figure S4A). Therefore, we further 



 

performed in silico single-site saturation mutagenesis on RBD10i14 to consider mutations beyond 

Trp that would deepen quenching by the existing Trp residue at position 113. We found several 

mutations that increase the score, especially mutations introduced at Y112.1, E112, T114, and P116, 

which showed a relatively greater increase in score than mutations at other positions, suggesting 

that amino acids around the Trp residue are important for quenching (Figure 3C). Therefore, the 

 

Figure 3. Prediction of effective mutants on quenching. (A) Schematic image of predicting single 
mutation effect on quenching in silico. (B) The probability score during in silico Trp scanning on 
RBD1i13. The 3 highest scores were dark red, and 3 lowest scores were pink (C) The probability 
score during in silico single saturation mutagenesis on RBD10i14. The four positions selected 
for the validation were red. The 2 highest scores at the same position were dark red, and the 1 
lowest score was pink. (D) Representative attention visualization on RBD10i14-E112R 
nanobody before and after end-to-end training. Comparison of the whole layer #29 from Figure 
S5 and S6 between the pre-trained ProtBert-BFD (Before) and NanoQ-model 1.0 (After). Red 
bar show the region with significantly increased attention. The intensity of the line indicates 
attention weights. FW, framework region. [CLS], classification token representing the N-terminal 
in pLM; [SEP], separation token. 



 

NanoQ-model 1.0 is able to give prediction scores with position and sequence dependency at 

single-amino acid resolution. The self-attention visualization27 was performed to understand which 

regions of amino acids were focused more after the end-to-end training using our sequence-

quenching dataset (Figure 3D, Figure S5 and S6). We found the attention changed significantly in 

the downstream layers of the model and observed clear attention focusing on the residues 

surrounding the Trp in our NanoQ-model 1.0 compared with the template model ProtBert-BFD. 

 

Validation of predicted mutations 

To validate the predictions above, the quenching efficiency of mutants exhibiting high and 

low probability scores were evaluated on yeast cell surface (Figure 4A). In the Trp scanning 

mutants of RBD1i13, all three mutants (I107W, L113W, H115W) exhibiting the highest score 

showed a lower TAMRA/FITC ratio than wildtype, reflecting deeper quenching of TAMRA. 

Likewise, two (N37W, V106W) out of three mutants exhibiting the lowest score showed 

comparable ratio with wildtype, although one (F38W), contrary to prediction, showed lower ratio 

(Figure 4B). On the other hand, in the Trp scanning mutants on RBD10i14 carrying one native Trp 

residue, all six mutants regardless of high or low score showed lower TAMRA/FITC ratios than 

that of wildtype (Figure S4B). These results suggest that the prediction in Trp scanning is easier 

for the nanobody without Trp residue, and the prediction of higher quenching mutations with 

higher scores is more accurate than that for lower quenching mutations with lower scores in general. 



 

To validate the predictions of in silico single-site saturation mutagenesis on RBD10i14, we 

focused on four positions, Y112.1, E112, T114, and P116, where the introduction of mutations led 

to higher scores. When two mutants with the highest score and one mutant with the lowest score 

at each position were evaluated on yeast cell surface, six (E112R, E112G, T114R, T114F, P116F, 

P116C) out of eight mutants with the highest score showed lower TAMRA/FITC ratio than 

wildtype, and three (Y112.1N, T114E, P116E) out of four mutants with the lowest score showed 

higher TAMRA/FITC ratio (Figure 4C). This prediction and its validation show that the prediction 

accuracy is 75 % for both high and low scores, suggesting that the quenching efficiency of the Trp-

excluded single saturation mutagenesis for nanobodies was predicted with reliable accuracy using 

in silico saturation mutagenesis.  

 

Figure 4. Validation of effective mutation on yeast cell surface. (A) Schematic image of 
validating the prediction on yeast cell surface. (B, C) TAMRA/FITC ratio of mutants selected 
during in silico Trp scanning (B) and in silico single saturation mutagenesis (C). The bar graphs 
represents the mean of TAMRA/FITC ratio ± standard error of mean (SEM). The highest scores 
were dark red and the lowest scores were colored pink, from the prediction in Figure 3. 



 

 

Validation with fabricated Q-body 

To confirm whether the mutants showing deeper quenching improve the fluorescence response, 

we evaluated two independent functions involved in fluorescence response: antigen binding and 

fluorescence recovery. When we evaluated the antigen binding activity on the yeast cell surface 

with biotinylated RBD and streptavidin-phycoerythrin (PE) (Figure S7A), L1113W and H115W 

from RBD1i13, and E112R from RBD10i14 showed comparable PE/FITC ratio with wildtype 

(Figure S7B, C), suggesting that antigen binding activity was maintained in these mutants. Since 

 

Figure 5. Validation with fabricated Q-bodies. (A) Schematic image of fabricating Q-body using 
E4-nanobody recognizing RBD expressed in E. coli. (B) Fluorescence response of mutants 
retaining the antigen binding. (C) Dose-response curve of mutants. All data are shown as mean 
± standard deviation (n=3). 



 

validation on the yeast cell surface has been completed, E4-tagged nanobody was produced by E. 

coli to fabricate dye/antibody complex (Figure 5A). We found that all mutants in solution showed 

deeper quenching than wildtype, which is consistent with that on the yeast cell surface (Figure 5B), 

and showed larger fluorescence response than wildtype in the dose-dependent manner (Figure 5B, 

5C). The larger maximum fluorescence response and the lower limit of detection (LOD) values 

were confirmed in all 3 mutants, while an acceptable increase in EC50 was observed (Table S1). It 

was shown that the response on the yeast surface correlated with that in solution, and that the 

response and sensitivity of the fluorescent homogeneous immunosensor based on nanobody were 

successfully improved by introducing mutations exhibiting the high predicted probability score 

during in silico screening.  

 

Discussion 

In the present study, we successfully built an original model, NanoQ-model 1.0, based on a 

pLM to capture the relationship between quenching and antibody sequence, enabling the prediction 

of single mutation effects on quenching. We found Trp residues at position 38 of CDR1, and 

position 107, 113, 114 and 116 of CDR3 were enriched in high quenching mutants (Figure 2B), 

which is significant compared with other amino acids (Figure 2C). These positions are 

approximately 12-17 Å away from the N-terminus, and in the vicinity of the rigid structure of 

framework regions, which are less flexible than the center of CDR (Figure S8). The enrichment 

may be due to the optimal distance for the dye to access Trp residue and the firm interaction with 

dye caused by less movement of Trp residue, making it suitable for quenching. Indeed, this is also 

true for previously fabricated Q-body employing anti-methotrexate (MTX) nanobody, where Trp 



 

residue at position 37 of CDR1 contributes to quenching5. Therefore, the position of Trp residues 

contributing to quenching is similar among nanobodies regardless of their amino acid sequence.  

 It is observed that introducing a Trp residue is likely to produce a mutant with deeper 

quenching (Figure 3B, S4A). Interestingly, our model also successfully predicted the effective 

mutations around existing Trp residue, including mutation to Arg or Phe residue (Figure 4C). Since 

these amino acids generally do not contribute to quenching,28 they seem to work for deepening the 

quenching by the existing Trp residue. In the case of Phe mutation, since it is an aromatic amino 

acid, it probably interacts with TAMRA through pi-pi stacking to change its orientation between 

the existing Trp residue and TAMRA, and deepening quenching. On the other hand, since Arg 

residue is involved in non-specific interaction with other molecules in antibodies via many 

different types of interactions including pi-cation interaction,29-31 it would also interact with 

TAMRA, changing the orientation and deepening the quenching as well.  

We were able to predict the effect of mutations on quenching for nanobodies obtained from 

NbLib, including RBD1i13 and RBD10i14 that were affinity matured from NbLib clones. Further 

building the model employing large antibody libraries such as naïve single-chain variable region 

(scFv) libraries as well as nanobody libraries will allow the prediction of quenching for improving 

the performance of the Q-bodies based on antibodies from many species. Nevertheless, antibodies 

with quenching do not always show complete fluorescence recovery by antigen. For example, the 

L113W mutant of RBD1i13 showed less fluorescence recovery compared to H115W mutant upon 

the addition of antigen regardless of deep quenching. Since the fabricated Q-body employing this 

mutant exhibited the EC50 values comparable to wildtype (Table S1), the lower fluorescence 

recovery was not caused by the decrease in antigen binding activity derived from the introduction 



 

of mutation but due to insufficient release of TAMRA from quenching by the addition of antigen. 

We consider that this is because the Trp residue in position 113 is slightly far from the antigen 

binding site in RBD1i13, leading to the insufficient release of TAMRA from L113W even after 

binding with the antigen.  

In addition to the prediction of quenching, de-quenching is also required. However, it is 

difficult to perform because there is no universal antigen for all antibodies and fluorescence 

recovery respond to antigens cannot be evaluated and learned. Since the key amino acid residues 

for antigen binding were analyzed or predictable through affinity-based screening32 and the BERT-

based antibody paratope prediction model,33 we expected de-quenching will also be predictable in 

our future study. Therefore, our original model for the prediction of the quantitative fluorescence 

response of Q-body will be the first step in selecting the optimal mutation from antibody sequence 

alone.  

Conclusions 

In conclusion, we have successfully improved the performance of Q-body by utilizing the 

prediction model based on the protein language model at the resolution of single amino acid 

mutation. The performance of Q-bodies was based on the trap of fluorophore to antibody and 

release triggered via antigen-binding, and our model has the potential to be extended to the 

prediction of the antigen-dependent switching behavior of small molecules such as peptides and 

chemicals from antibodies. Thus, this breakthrough will enable the precise prediction of switching 

behaviors in small molecules, including anti-cancer drugs, and holds promise for applications 

beyond diagnostics, extending into the field of antibody-drug development.  



 

Materials and Methods  

General procedure 

   Escherichia coli strains XL-10 Gold (Agilent, Santa Clara, CA, USA) and SHuffle T7 Express 

lysY (New England Biolabs Japan, Tokyo, Japan) were used for general cloning and protein 

expression, respectively. EBY100 (ATCC, Manassas, VA, USA) was used to develop an E4-tagged 

library. Yeast-Display Nanobody Library (NbLib) was purchased from Kerefast (Boston, MA, 

USA) and used as previously described.25 pYD1-E4-MTXVHH was constructed as previously 

described,15 and the oligonucleotides (Table S2) were synthesized by Eurofins Genomics (Tokyo, 

Japan). 

Constructing E4-tagged synthetic nanobody library 

The synthetic nanobody library for sorting based on quenching was constructed by fusing the 

E4-tag to the N-terminal of the pre-developed synthetic nanobody library (NbLib). Firstly, to 

enrich the yeasts displaying nanobody, two rounds of MACS were performed. Briefly, 1.0×1010 

induced yeast was washed and resuspended in phosphate-buffered saline (PBS) containing 0.1 % 

BSA (PBS-A) and then incubated with 250 µL Dynabeads M-280 Streptavidin (6-7×10 8 /mL) at 

4 ℃ for 2 h. After removing the yeast-expressing nanobodies that bound nonspecifically to 

magnetic beads (Pre-selection 1), the left yeast was incubated with an additional 250 µL 

Dynabeads M-280 Streptavidin which was preincubated with biotinylated anti-hemagglutinin (HA) 

IgG (Fujifilm-Wako Pure Chemicals, Japan) at 4 ℃ for 2 h, followed by washing three times with 

1 mL PBS-A (Pre-selection 2). Afterward, the magnetic beads were collected to 20 mL SD (-W) 

medium and cultured at 4 ℃, 225 rpm, overnight, and the plasmid was extracted from ~1 mL of 

the saturated yeast by general yeast miniprep. The nanobody sequences were amplified from 



 

extracted plasmid using Inf_AgeI_Krese_back and Inf_BamHI_Kruse_for, and the overhang 

sequences including E4 or FLAG-tag were amplified from pYD1-E4-MTXVHH using 

pYD1_back_long and Adapter_E4_for, or Adapter_flag_back and pYD1_for_long, respectively 

(Table S2, Library construction). Then, the three fragments were fused by overlap PCR, and the 

DNA fragment was mixed with AgeI- and BamHI-digested pYD1-E4-MTXVHH at the ratio of 

3:1 (w/w), followed by transforming them into EBY100 by electroporation (E4-tagged library) as 

previously described.34 

Analyzing and sorting yeast-display Q-body based on quenching 

The expression ratio of the pre-developed library before and after pre-selection was confirmed 

by flow cytometric analysis. Briefly, 5.0×106 induced yeast was collected by centrifugation at 

3,000 × g for 1 min at 4 °C, and the pellet was washed with 1 mL PBS-A. After the pellet was 

resuspended in 100 µL PBS-A with 1 µL of anti-HA IgG (wako), followed by incubation for 30 

min at RT, the pellet was resuspended in 100 µL PBS-A with 1 µL of goat anti-mouse IgG (Fc)-

FITC (American Qualex International, USA), followed by incubation for 30 min at 4 °C. After the 

yeast was resuspended in 500 µL of PBS containing 5% ImmunoBlock (KAC, Japan) (PBS-B), 

flow cytometric analysis was performed using an SH-800 cell sorter (Sony, Tokyo, Japan) with a 

blue laser (488 nm) and a detection filter (525/50). 

High-quenching and low-quenching nanobodies were selected from the E4-tagged library by 

cell sorting. Firstly, after inducing the display, the yeast cells (~1 × 108 cells) were collected by 

centrifugation at 3,000 × g for 1 min at 4 °C, and the pellet was washed with 1 mL PBS-B. After 

the pellet was resuspended in 1 mL PBS-B, FITC-K4-TAMRA was added at a final concentration 

of 100 nM, followed by incubation for 1 h at 4 °C. After two washings with 2 mL PBS-B, the 



 

yeast-displayed Q-body was resuspended in 8 mL of PBS-B to perform cell sorting using an SH-

800 cell sorter (Sony). In the first selection, 7.9 × 107 events were measured to select 2.5 × 105 

cells of high quenching nanobody and 2.0 × 105 cells of low quenching nanobody. In the second 

selection, 5.9 × 106 events of high quenching nanobody were measured to select 2.5 × 105 cells, 

and 6.5 × 106 events of low quenching nanobody were measured to select 1.4 × 105 cells using the 

same gate in the first selection. A blue laser (488 nm) and two detection filters (525/50 and 585/30) 

were used to measure the fluorescence intensities of FITC and TAMRA, respectively. The 

obtained data were analyzed using the control software, and the means of FITC and TAMRA 

whose fluorescence intensity is over 103 were calculated to check the quenching. The yeast cells 

selected by fluorescence-activated cell sorting (FACS) were cultured in 2 mL SD (-W, -U) medium 

for 2 days, and subsequently cultivated on SD (-W, -U) agar plates for 2 days. A single colony was 

picked, and a nanobody display was performed. 

Next-generation sequence (NGS) and Bioinformatic analysis 

 NGS analysis was performed to confirm the nanobody sequences comprehensively. Initially, 

the plasmids encoding the nanobody sequence were extracted from ~1 mL of the saturated yeast 

by general yeast miniprep, and the sequences were amplified by PCR, in which a barcode sequence 

was added at the edge of the DNA fragment to discriminate each library (Table S2, NGS). After 

performing agarose gel purification, the concentration was quantified using the QuantiFluor 

dsDNA System. Next, the purified DNA and NEBNext Ultra II End Repair/dA-tailing Module 

(NEB) were mixed to perform the phosphorylation and dA-tailing at the ends of the DNA, followed 

by purification using AMPPure XP Beads (SQK-LSK114 kit). Then, an adapter sequence was 

added to the end of the DNA by reacting with Ligation Adapter (SQK-LSK114 kit) and NEBNext 



 

Quick T4 DNA Ligase for 10 minutes at RT, followed by purification again using AMPPure XP 

Beads. Finally, MinION Flow Cell (R10.4.1) (Oxford Nanopore Technologies) was primed with 

a solution containing flush buffer, flush tether (SQK-LSK114 kit), and UltraPure BSA 

(ThermoFisher) to apply the ligation reaction mixture and Library beads (SQK-LSK114 kit). The 

sequence was read on a MinION sequencing device. 

The basecalling was performed using Guppy with supper accurate (SUP) model. Then, the 

obtained fastq data was prepared for data processing using FASTQ Groomer (v1.1.5) on Galaxy.35 

The fastq data derived from the initial E4-tagged library, Selection 1H, Selection 1L, Selection 2H 

(High quench) and Selection 2L (Low quench) was sorted with barcode sequence (9/11 bases, 

Table S3) using Manipulate FASTAQ (v1.1.5) (Maximum error rate = 0.0), followed by trimming 

with the same barcode sequence using Cutadapt (v4.4) (Maximum error rate = 0.12).36 Next, CDR1, 

CDR2, CDR3 and CDR1+3 sequence was extracted by character sequences (Table S3) of the FR 

before and after CDR sequence using Cutadapt. They were translated from frame 1, and the 

sequences were further sorted in Excel based on the number of sequences and amino acids in the 

original NbLib sequence25 to eliminate sequence errors and the number of valid sequences was 

calculated (Table S4). Sequence logo (v3.5.0)37 was then used to indicate the frequency of the 

amino acid sequence at each location.  

Building quench predicting classifier (predictor) based on protein language model 

   Initially, the enrichment factor (EF) was calculated for the CDR1, CDR2, CDR3, and the 

combination of CDR1 and CDR3 according to the following formula (eqn 1).  

𝐸𝐹 =
(ி௥௘௤௨௘௖௬ ௜௡ ௌ௘௟௘௖௧௜௢௡ ଶ)×(்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௥௘௔ௗ௦ ௜௡ ௌ௘௟௘௖௧௜௢௡ ଵ)

(ி௥௘௤௨௘௖௬ ௜௡ ௌ௘௟௘௖௧௜௢௡ ଵ)×(்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௥௘௔ௗ௦ ௜௡ ௌ௘௟௘௖௧௜௢௡ ଶ)
 (eqn 1) 



 

   Then, the training dataset for end-to-end training of the pLM was created using the sequences 

in selection 2 with an EF greater than 1, followed by labeling them as 1.0 for high quenching and 

0.0 for low quenching (Table S5). The training dataset was divided into training (60 %), validation 

(20 %), and test dataset (20 %), respectively. The seed for random data split was set to 42, 4259, 

and 88 for the repeated training of each dataset. A pre-trained pLM, ProtBert-BFD,20 with 420 

million parameters was used in our study, and a single-layer perceptron with one hidden layer was 

used as the output neural network. The maximum of the sequence length was set to 512 and the 

batch size was 32 or 64. The trainings were repeated until the validation loss didn’t decrease after 

five consecutive rounds. The test dataset was used to depict the ROC/PR curves for model 

evaluation. The multiscale attention visualization was performed using the BertViz tool (v1.4.0).27 

Q-body preparation and dose-dependency measurement of anti-RBD nanobody 

The quenching activity was evaluated for the nanobodies exhibiting high score on yeast 

cell surface. Initially, pYD1-E4-RBD1i13 and pYD1-E4-RBD10i14 were constructed from pYD1-

E4-MTXVHH by exchanging the MTXVHH with RBD1i13 or RBD10i14 (Table S6). Then, the 

nanobody sequence containing the mutation was prepared by overlapping PCR from pYD1-E4-

RBD1i13 or pYD1-E4-RBD10i14 and mixed with NheI- and BamHI-restricted pYD1-vector at 

the ratio of 3:1 to transformed into EBY100 as previously described.15  

The antigen-binding activity of the anti-RBD nanobody was evaluated by reacting with 

biotinylated RBD, which was made using NHS-PEG4 biotin (ThermoFisher) at a final 

concentration of 10 nM for 1 hour. Evaluation of quenching efficiency and their flow cytometric 

analysis were the same with the previous research.15 TAMRA / FITC and PE / FITC were 

calculated from the mean values of TAMRA, FITC and PE, which are measured employing the 



 

yeasts showing the fluorescence intensity as more than 103. Standard error (SEM) of TAMRA / 

FITC and PE / FITC was calculated from the mean, standard deviation, and number of analyses of 

FITC and TAMRA or PE calculated as the following formula (eqn 2). 

𝑆𝐸𝑀 =  
ெ௘௔௡ (்஺ெோ஺ ௢௥ ௉ா)

ெ௘௔௡ (ிூ்஼)
× ටቀ

ௌ஽ (ிூ்஼)

ெ௘௔௡ (ிூ்஼)
ቁ

ଶ

+ ቀ
ௌ஽ (்஺ெோ஺ ௢௥ ௉ா)

ெ௘௔௡ (்஺ெோ஺ ௢௥ ௉ா)
ቁ

ଶ

×
ଵ

ඥே௢.௢௙ ஺௡௔௟௬௦௜௦
 

(eqn2) 

The mutants showing deeper quenching and antigen binding ability comparable to that of wildtype 

were transferred to E. coli expression vectors containing the E4-tag (Table S6) by general cloning 

using Inf_E4_AgeI_back and Inf_Kruse_XhoI_for (Table S4, Sub-cloning), and their function as 

Q-bodies was evaluated as previously described.8 
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