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Abstract

This study proposes a multiscale topology optimization method for elec-
tromagnetic metamaterials using a level set-based topology optimization
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contrast homogenization method can express wave propagation behavior in
metamaterials for various frequencies. It can also capture unusual proper-
ties caused by local resonances, which cannot be estimated by conventional
homogenization approaches. We formulated multiscale topology optimiza-
tion problems where objective functions are defined by the macroscopic wave
propagation behavior, and microstructures forming a metamaterial are set as
design variables. Sensitivity analysis was conducted based on the concepts of
shape and topological derivatives. As numerical examples, we offer optimized
designs of metamaterials composed of multiple unit cell structures working
as a demultiplexer based on negative permeability. The mechanism of the
obtained metamaterials is discussed based on homogenized coefficients.
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1. Introduction

Electromagnetic metamaterials are structural materials that exhibit elec-
tromagnetic properties not found in natural homogeneous materials. Both
permeability and permittivity are material properties that describe the prop-
agation characteristics of electromagnetic waves. Homogeneous materials in
nature have different permittivity, and some metallic materials have a nega-
tive permittivity. However, most materials have a magnetic permeability of
1. The pioneering work by Pendry et al. [1] showed that negative permeabil-
ity could be achieved by a metamaterial with a periodic array of split-ring
resonators, which was experimentally verified by Smith et al. [2]. Later,
Bouchitté and Felbacq [3] mathematically proved that for extensive material
constant ratios in metamaterials, permeability exhibits a frequency response
because of local resonance in the unit cell, with the real part of the permeabil-
ity being negative near the resonance frequency. Furthermore, metamaterials
that exhibit such negative permeability exhibit a bandgap that does not al-
low propagation of electromagnetic waves into the metamaterial in a certain
frequency band, which may have applications such as filtering devices. Fur-
thermore, metamaterials that exhibit negative permeability and permittivity
exhibit a negative refractive index [4] and are expected to be used to realize
innovative electromagnetic devices. Such devices are super lenses [5] that en-
able image formation beyond the diffraction limit, cloaking devices [6] that
reduce scattered waves generated by obstacles, and compact antennas that
can transmit THz waves [7].

Since metamaterials exhibit unique properties depending on their unit
cell structure, the design of the unit cell is essential to realizing metamateri-
als with the desired electromagnetic properties. Conversely, it is difficult to
design a unit cell structure by trial and error because metamaterials exhibit
unique properties based on local resonance. Topology optimization is one
solution to the problem. Topology optimization has the highest flexibility
among structural optimization methods, leading to optimal design solutions
based on mathematical models and optimization methods. There are many
examples of structural problems, such as multimaterial structures [8] or struc-
tures with manufacturability [9] and other physical problems. Since Bendsøe
and Kikuchi [10] proposed a method for structural problems, topology opti-
mization has been developed for various physical fields such as heat conduc-
tion problems [11, 12] and wave problems such as sound waves [13] and elec-
tromagnetic waves [14]. It has also been applied to the design of electromag-
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netic metamaterials that exhibit negative magnetic permeability [15, 16, 17].
In topology optimization, an objective function representing the perfor-

mance and characteristics of the structure must be repeatedly evaluated,
which requires iterative analysis of the target system. Since metamaterials
are huge systems consisting of many unit cells with microstructures, metama-
terial topology optimization requires introducing an appropriate estimating
method. Smith et al. [18] proposed the S-parameter method to evaluate the
macroscopic properties of metamaterials. This method replaces heteroge-
neous metamaterial structures with homogeneous materials with equivalent
S-parameters and coefficients representing the complex reflectance and trans-
mittance properties of the structure. This method can evaluate the negative
properties of metamaterials. However, it assumes thin structures and plane
incident waves, so the accuracy of evaluation can worsen depending on the
designed metamaterial structure [19].

Another metamaterial estimating method is the homogenization method.
This method replaces periodic structures with a homogeneous material that
exhibits equivalent properties and is applied to structural problems [20, 21,
22]. In wave problems, the method was extended in several ways. The higher-
order homogenization method [23, 24, 25] considers higher-order terms in the
asymptotic expansion of the solution. However, it cannot treat the local res-
onance phenomena that cause unique properties of metamaterials. The high-
frequency homogenization method [26] also takes an asymptotic expansion
for the solution’s frequency. It can represent wave propagation behaviors
even in local resonance phenomena but is effective only near the resonance
frequency. A high-contrast homogenization method was recently proposed
by Ohlberger and Verfürth [27] based on the settings in [3]. It is a method
that introduces a scale to the material constants and can represent wave
behaviors with high accuracy even in local resonance states. This method
can be used in a wide range of frequency bands, unlike the high-frequency
homogenization method.

This study proposes a multiscale topology optimization method for elec-
tromagnetic metamaterials with a high-contrast homogenization method.
Structures of unit cells that contain metamaterials are optimized to min-
imize an objective function defined by wave propagation behavior on the
macroscale. An optimization problem in which the design variable and objec-
tive function are defined on different scales is called a multiscale optimization
problem. There are examples of optimal design of metamaterials using com-
bined homogenization and multiscale topology optimization [28, 29]. Our
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study aims to develop a method that enables the design of metamaterials
operating at broadband frequencies consisting of multiple types of unit cell
structures using high-contrast homogenization and multiscale optimization
methods.

This paper is organized as follows. In Section 2, the electromagnetic
metamaterial design problem is presented, and the high-contrast homoge-
nization method is outlined. In Section 3, multiscale topology optimization
problems are formulated, and a topology optimization method based on the
level set method [30] is introduced. The design sensitivity is derived based on
the concepts of shape and topological derivatives. In Section 4, the numer-
ical implementation of the optimization method is described. In Section 5,
the optimal design of a demultiplexer functioning at single and dual frequen-
cies, as an example of an electromagnetic metamaterial, is presented in a
two-dimensional numerical example. The resulting electromagnetic meta-
material with a periodically arranged unit cell structure is analyzed using
the Helmholtz equation to demonstrate the validity of the designed unit cell
structure.

2. High-contrast homogenization method for electromagnetic meta-
materials

2.1. Outline of the metamaterial system
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Figure 1: The sytem of an electromagnetic metamaterial.
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This section explains the electromagnetic metamaterial system that will
be optimized. As shown in Fig. 1, the system is composed of Region Ω, where
square unit cells are arranged, and Region H is made of homogeneous ma-
terial. Region G includes both regions. In Region Ω, the unit cells with size
δ composed of two dielectric materials are arranged in a square lattice. We
define the entire unit cell as Region Y and the region with an inclusion ma-
terial as Region D, and Y ∗ := Y \D. The inverse of the relative permittivity
aδ is defined in the regions as follows:

aδ(x) =


δ2ε−1

i if x ∈ D,

ε−1
e if x ∈ Ω \D,
1 if x ∈ H.

(1)

Here, ε−1
i is a complex number with positive real and imaginary parts de-

fined with the square of the size of unit cells δ, and ε−1
e is a positive real

number. By this definition, if the unit cell δ approaches 0, the permittivity
in Region D will be extremely larger than in Region Y ∗. According to the
literature [3], local resonances are evoked in unit cells when there is a large
contrast between the permittivity of materials constituting the metamaterial,
and it can exhibit a negative index. Assuming the harmonic oscillation of
angular frequency ω, the transverse magnetic waves (called TM waves) enter
the system with a component only in the x3 direction magnetic field like
H = (0, 0, u)T . The parameter u satisfies the Helmholtz equation defined in
the x1 − x2 plane as follows:

−∇ · (aδ(x)∇u)− k2u = 0 in G. (2)

Here, k expresses the wave number and satisfies k = ω/c, with the speed of
light c. The first-order approximation of the Sommerfeld radiation condition
is adopted to reduce reflected waves on the outer boundary of the analysis
domain ∂G. The weak form of Eq. (2) is given as follows:∫

G

aδ(x)∇uδ · ∇ψ − k2uδψdx =

∫
∂G

gψdΓ ∀ψ ∈ H1(G), (3)

g =


ikuδψ − 2ikuinc on Γin,

ikuδψ on Γi,

0 on ΓPEC.

(4)
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In Eq. (3), the solution u is rewritten as uδ because it depends on the size
of the unit cells δ. Γin is the inlet, and Γi is the outlet of the system. The
other boundary is made of a perfect electric conductor (denoted as PEC in
the following).

2.2. High-contrast homogenization method

We introduce a high-contrast homogenization method proposed by pre-
vious work [27] to the system defined in Section 2.1. First, we introduce the
microscale coordinate y = x/δ is to normalize the size of the unit cell and
evaluate the two-scale convergence of uδ in the extreme δ → 0. The two-scale
convergence [31] expresses the convergence of function sequences where local
resonances are evoked in microscale periodic structures.

According to the literature [27], the two-scale convergence of uδ is ex-
pressed u ∈ H1(G)，u1 ∈ L2(Ω;H1

#,0(Y
∗))，u2 ∈ L2(Ω;H1

0 (D)#) as:

uδ
2−→ u(x) + χD(y)u2(x,y), (5)

χΩ\D̄δ
∇uδ

2−→ χY ∗(y)(∇u(x) +∇yu1(x,y)), (6)

δχDδ
∇uδ

2−→ χD(y)∇yu2(x,y), (7)

∇uδ
2−→ ∇u in G \ Ω̄. (8)

2−→ denotes two-scale convergence. χ is a characteristic function that takes 1
in the region shown by the subscript and takes 0 in the other regions. ∇y

represents the gradient in microscale y. H1
#,0(Y

∗) and H1
0 (D)# are subspaces

of H1(Y ∗) and H1(D), the Sobolev spaces satisfying periodic boundary con-
ditions in unit cell Y , respectively. They are defined as follows:

H1
#,0(Y

∗) := {z ∈ H1
#(Y

∗)|
∫
Y ∗
z = 0}, (9)

H1
0 (D)# := {z ∈ H1

#(D)|z = 0 on ∂D}. (10)

The two-scale convergence written above is valid because Region Y ∗ is con-
nected in the entire Region Ω [27]. The convergent sequences u, u1, u2 are
the solutions of the weak form equation as follows:

B((u, u1, u2)(ψ, ψ1, ψ2)) =

∫
∂G

gψ∗dΓ, ∀ψ := (ψ, ψ1, ψ2)

∈ H1(G)× L2(Ω;H1
#,0(Y

∗)× L2(Ω;H1
0 (D)#). (11)
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ψ, ψ1 and ψ2 represent test functions. B is defined with u := (u, u1, u2) as
follows:

B(u,ψ) :=

∫
Ω

∫
Y ∗
ε−1
e (∇u+∇yu1) · (∇ψ∗ +∇yψ

∗
1)dydx

+

∫
Ω

∫
D

ε−1
i ∇yu2 · ∇yψ

∗
2dydx

−k2
∫
G

∫
Y

(u+ χDu2)(ψ
∗ + χDψ

∗
2)dydx

+

∫
G\Ω̄

∇u · ∇ψ∗dx. (12)

The homogenized equation is derived from the weak form Eq. (12) by solving
u using relations u1(x,y) =

∑2
j=1

∂u
∂xi

|Ω(x)wj(y)，u2(x,y) = k2u|Ω(x)w(y)
as follows:

Beff(u, ψ) =

∫
∂G

gψdΓ ∀ψ ∈ H1(G), (13)

Beff(u, ψ) :=

∫
G

aeff∇u · ∇ψ − k2µeffuψdx. (14)

aeff ∈ R2×2 and µeff ∈ C are the homogenized coefficients that express the
inverse of permittivity and the permeability, respectively. They are defined
by the Kronecker delta δjk as follows:

(aeff(x))jk =

{∫
Y ∗ ε

−1
e (ej +∇ywj) · (ek +∇ywk)dy if x ∈ Ω,

δjk if x ∈ H,
(15)

µeff(x) =

{∫
Y
1 + k2wχDdy if x ∈ Ω,

1 if x ∈ H.
(16)

wj and w are the solutions of the Eq. (17) and (18) defined in the unit cells,
respectively: ∫

Y ∗
ε−1
e (ej +∇ywj) · ∇yψ1dy = 0

∀ψ1 ∈ H1
#,0(Y

∗), (17)∫
D

ε−1
i ∇yw · ∇yψ2 − k2wψ2dy =

∫
D

ψ2dy

∀ψ2 ∈ H1
0 (D)#. (18)
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As written above, local resonances can be evoked in Region D at a fre-
quency because the contrast of the material properties is significant [3]. The
high-contrast homogenization method can approximate the original solution
of Eq. (3) whether or not local resonances occur in Region D [27]. The

Figure 2: N unit cells of different structures Y (i) are arranged in each region Ω(i) of

metamaterial.

abovementioned homogenization procedure assumes that the metamaterial
consists of the unit cells with the same structure. For metamaterials consist-
ing of multiple unit cell structures, the homogenized coefficients should be
treated as distributed in Ω. Let Ω(i) (i = 1, · · ·, N {N ∈ N| N ≥ 1}) ∈ Ω de-
note the N regions where unit cells of different structures are arrayed, and let
Y (i) denote the unit cell of Ω(i). The corresponding homogenized coefficients
in Ω(i) are given as follows:

(a
(i)
eff(x))jk =

{∫
Y ∗(i) ε

−1
e (ej +∇yw

(i)
j ) · (ek +∇yw

(i)
k )dy if x ∈ Ω(i),

δjk if x ∈ H,

(19)

µ
(i)
eff(x) =

{∫
Y ∗(i) 1 + k2w(i)χDdy if x ∈ Ω(i),

1 if x ∈ H.
(20)

w
(i)
j and w(i) are the solutions of the following equations rewritten from
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Eqs. (17) and (18): ∫
Y ∗i

ε−1
e (ej +∇yw

(i)
j ) · ∇yψ

(i)
1 dy = 0

∀ψ(i)
1 ∈ H1

#,0(Y
∗i), (21)∫

D(i)

ε−1
i ∇yw

(i) · ∇yψ
(i)
2 − k2w(i)ψ

(i)
2 dy =

∫
D(i)

ψ
(i)
2 dy

∀ψ(i)
2 ∈ H1

0 (D
(i))#. (22)

Using the spatially distributed homogenized coefficients, the homogenized
Eq. (14) can be rewritten as follows:

Beff(u, ψ) =
N∑
i=1

[∫
G

a
(i)
eff(x)∇u · ∇ψ − k2µ

(i)
eff(x)uψdx

]
. (23)

By setting unit cells of different structures, it is possible to optimize meta-
materials of diverse structures that perform better than unit cells of the same
structure.

3. Topology optimization

3.1. Formulation of a multiscale topology optimization problem

Here, we explain a multiscale topology optimization method for metama-
terials. This method minimizes objective functions defined with macroscopic
wave propagation behaviors by optimizing microscale structures. In this
paper, we design a demultiplexer that guides incident waves to an outlet
corresponding to frequency, as shown in Fig. 3. It has one inlet Γin and two
outlets (Γ1 and Γ2). N = 16 different unit cells arrayed in Ω. The design
variables are the unit cell configurations in Regions Ω(i) (i = 1, · · ·, N). Each
Region Ω(i) is a square of the same size.

Two numerical examples are presented in Section 5. One is a metamate-
rial operating at a single wavenumber k = k1, and the other is a metamaterial
operating at two different wavenumbers k = k1 and k = k2. The objective
functions of the metamaterials acting as a demultiplexer are defined as fol-
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Figure 3: The setting of metamaterial in the optimization problem.

lows:

J1 = Jk1, (24)

J2 = Jk1 + Jk2, (25)

Jk1 =

∫
Γ1
|u|2dΓ∫

Γ2
|u|2dΓ

∣∣∣∣∣
k=k1

, (26)

Jk2 =

∫
Γ2
|u|2dΓ∫

Γ1
|u|2dΓ

∣∣∣∣∣
k=k2

. (27)

Jk1 and Jk2 express the ratio of the square of the wave amplitude on two
outlets, Γ1 and Γ2. By minimizing the objective function J1, the incident
wave from the inlet Γin almost travels through the outlet Γ2 at k1. Minimizing
J2 corresponds to designing a metamaterial that acts as a demultiplexer
switching between k1 and k2. In an optimal metamaterial, the amplitude on
Γ2 is larger than that on Γ1 at k1. Contrarily, the amplitude on Γ1 is larger
than that on Γ2 at k2.
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From the above, the optimization problem is formulated as follows:

min
Y (1),···,Y (N)

J1 or J2 ((24), (25))

subject to Governing equations in Y (i) (i = 1, · · ·, N) ((21), (22)),

Governing equations in G ((23)),

Expressions of (a
(i)
eff , µ

(i)
eff) (i = 1, · · ·, N) ((19), (20)). (28)

3.2. Level set-based topology optimization

To solve the optimization problem (28), we use the topology optimization
based on a level set method proposed by Yamada et al. [30]. In this method,
the configuration of N unit cells in each design domain Ω(i) is expressed by
an isosurface of level set functions ϕ(i) corresponding to Y (i). ϕ(i) is defined
as follows: 

0 < ϕ(i)(y) ≤ 1 if y ∈ Y ∗(i)\∂Y ∗(i),

ϕ(i)(y) = 0 if y ∈ ∂Y ∗(i),

−1 ≤ ϕ(i)(y) < 0 if y ∈ D(i)\∂Y ∗(i).

The region satisfying ϕ(i) > 0 is Y ∗(i), the region satisfying ϕ(i) < 0 is D(i),
and the boundary satisfying ϕ(i) = 0 is ∂Y ∗(i). Since unit cells are arranged
periodically, a periodic boundary condition is applied to ϕ(i). Using this
expression, the optimization problem (28) is rewritten as follows:

min
ϕ(1)(y),···,ϕ(N)(y)

J1 or J2

subject to Governing equations in Y (i) (i = 1, · · ·, N),

Governing equations in G,

Expressions of (a
(i)
eff , µ

(i)
eff) (i = 1, · · ·, N). (29)

To solve the optimization problem (29), a fictitious time t is introduced, and
ϕ(i) is updated using the design sensitivity of the objective function. The level
set function ϕ(i) is updated by the following reaction–diffusion equation.

∂ϕ(i)

∂t
= −K(J ′(i) − τ∇2

yϕ
(i)) in Y (i), (30)

K(> 0) is a constant, and J ′ is the design sensitivity defined with topological
and shape derivatives; the details of which are given in Section 3.3. τ is an
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appropriate small positive number defined as a regularization parameter and
is used to regularize the optimization problem. The optimal level set function
ϕ(i) can be found by solving the reaction–diffusion equation (30) with periodic
boundary conditions on the outer boundary of Region Y (i).

3.3. Sensitivity analysis

We derive the shape derivative and the topological derivative used as the
design sensitivity for the optimization problem.

The shape derivative is the variation rate of the objective function when
Region D0 is transformed into Region D′ = {x + tθ(x) | x ∈ D0} based on
the vector field θ(x) (Fig. 4(a)) and is defined as follows:

DJ(D0) · θ = lim
t→0

J(D′)− J(D0)

t
. (31)

The topological derivative is the variation rate of the objective function J
when an infinitesimal circular inclusion Region Dε of radius ε is placed in
Region Y ∗ (Fig. 4(b)) and is defined as follows:

DTJ = lim
ε→0

J(Y ∗ \Dε)− J(Y ∗)

V (ε)
. (32)

V (ε) is determined such that the right side of the equation (32) exist. In this
research, we use V (ε) = −πε2. There are two reasons to use them simulta-

Figure 4: Assumed configuration changes in design sensitivity: (a) shape change assumed

in the shape derivative and (b) topological change assumed in the topological derivative.
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neously. First, the topological derivative assumes that the point is not close
to the boundaries. The shape derivative is more appropriate to the sensitiv-
ity of the boundaries. Second, we should optimize unit cell configurations
so that Y ∗(i) is connected since that is the restriction for the high-contrast
homogenization method to hold. The topological derivative in D(i) can break
this constraint, so we used the shape derivative on ∂D(i) instead. The valid-
ity of introducing topological and shape derivatives into the level set-based
topology optimization method [30] has been demonstrated previously [32].
The design sensitivity is presented as follows using the shape (34)–(39) and
topological derivatives (42):

J ′(i)(y) = g(DJ(Y ∗(i)) · θ, DJ(D(i)) · θ, DTJ
(i))(y) (33)

We derive the shape derivatives using Céa’s method [33]. The derivatives
are derived as follows:

DJ(Y ∗(i)) · θ =

∫
∂Y ∗(i)

(θ · n)j(i)1 dΓ, (34)

j
(i)
1 =2Re

[
λ(i)ajk

]
ε−1
e (δjk +

∂w
(i)
j

∂yk
+
∂w

(i)
k

∂yj
+∇yw

(i)
j · ∇yw

(i)
k ), (35)

λ(i)ajk
=

∫
Ω(i)

∂u

∂xk

∂vl
∂xj

dx, (36)

DJ(D(i)) · θ =

∫
∂D(i)

(θ · n)j(i)2 dΓ (37)

j
(i)
2 =2Re

[
λ(i)µ

]
Re
[
2k2

{
n · (ε−1

i ∇yw
(i))(n · ∇yw

(i))
}
− k2ε−1

i ∇yw
(i) · ∇yw

(i)
]
,

(38)

λ(i)µ = −
∫
Ω(i)

k2uvldx. (39)

vl is an adjoint variable and substituted by v1 or v2 corresponding to the
objective function Jk1 or Jk2. The adjoint equations corresponding to v1 and
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v2 are defined as follows:

N∑
i=1

[∫
Ω(i)

a
(i)
eff∇v1 · ∇ψ − k2µ

(i)
effv1ψdy

]
− ik

∫
Γin,Γ1,Γ2

v1ψdΓ

+
1

W2

∫
Γ1

u∗ψdΓ− W1

W 2
2

∫
Γ2

u∗ψdΓ = 0, (40)

N∑
i=1

[∫
Ω(i)

a
(i)
eff∇v2 · ∇ψ − k2µ

(i)
effv2ψdy

]
− ik

∫
Γin,Γ1,Γ2

v2ψdΓ

− W2

W 2
1

∫
Γ1

u∗ψdΓ +
1

W1

∫
Γ2

u∗ψdΓ = 0. (41)

Here W1 =
∫
Γ1
|u|2dΓ,W2 =

∫
Γ2
|u|2dΓ, and u∗ is complex conjugate of u.

Then, we derive the topological derivatives from the shape derivatives
(34)–(39). Using the method proposed by Novotny et al. [34] and Feijó et
al. [35], which derives the topological derivative from the limit of the shape
derivative, the topological derivatives can be derived as follows:

DTJ
(i) =2Re

[
λ(i)ajk

]
ε−1
e {δjk + ej · ∇yw

(i)
k + ek · ∇yw

(i)
j

+2∇yw
(i)
j · ∇yw

(i)
k + δkl

∂w
(i)
j

∂yl
+ δjl

∂w
(i)
k

∂yl
+ δjlδkl}. (42)

The details of the derivation process for the shape and topological derivatives
are given in Appendix A.

4. Numerical implementation

The optimization procedure is based on the algorithm as below.
step 1: Define initial configuration and parameters
step 2: Solve Eqs. (21) and (22) in N unit cells Y (i) (i = 1, · · ·, N) by the
finite element method (FEM)
step 3: Compute the homogenized coefficients (19) and (20) corresponding
to each Ω(i) (i = 1, · · ·, N)
step 4: Solve the homogenized equation (23) by FEM
step 5: Compute the objective function (24) or (25)
step 6: If the objective function converges, the optimization is terminated;
otherwise, proceed to step 7
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step 7: Solve the adjoint equation (40) by FEM
step 8: Compute the sensitivities (34)–(39) and (42) in each unit cell Y (i)

(i = 1, · · ·, N)
step 9: Update the level set functions ϕ(i) (i = 1, · · ·, N) corresponding to
configuration of N unit cells Y (i) by reaction-diffusion equation (43)
step 10: Remesh N unit cells Y (i) (i = 1, · · ·, N) based on the updated level
set functions
step 11: Back to step 2

If the objective function is J2, the processes in steps 2, 3, 4, 7, and 8
should be performed. The way to treat the sensitivities computed in step 8
for each wavenumber is explained in Section 4.2. First, the governing and
adjoint equations are solved by an open-source FEM solver FreeFem++ [36].
Then, instep 9, a remeshing procedure is introduced so that the boundary
of the finite element and the boundary of the inclusion domain ∂D(i) coin-
cide. This is necessary to impose Dirichlet boundary conditions on ∂D(i) in
Eq. (22). Additionally, reducing numerical errors that can occur because of
boundary mismatch is useful. To do so, the open-source remesher, Mmg [37],
was used.

The reaction diffusion equation (30) is discretized as follows:

ϕ(i) − ϕ(i)
pre = −K(J ′(i) − τ∇2

yϕ
(i))∆t. (43)

ϕ
(i)
pre is the previous level set function, and ∆t is the width of fictitious time

step.

4.1. Extension of shape derivatives

To stabilize the optimization, the shape derivatives derived in Section 3
were extended to the entire Region Y by solving an equation proposed in the
literature [38]:∫

Y (i)

(α2∇yQ
(i)
l · ∇yψ +Q

(i)
l ψ)dy =

∫
∂D(i)

jlψdΓ. (44)

Here, jl (l = 1, 2) is the sensitivity defined by (35) and (38), and α is a
positive parameter that expresses the magnitude of extension. Ql is the
sensitivity extended from jl. In Section 5, we used α2 = 0.05. According to
the method in the previous study [11], the calculation of boundary integral
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on the right-hand side of Eq. (44) is approximated with δ∂D(i)(y) defined by
the level set function as follows:∫

∂D(i)

jlψdΓ ≈
∫
Y (i)

δ∂D(i)(y)jlψdy, (45)

where δ∂D(i)(y) denotes the approximated delta function, defined as follows:

δ∂D(i)(y) =
1

2
|∇ySe

(i)|, (46)

Se(i) =
ϕ(i)√
ϕi2 + ϵ2δ

. (47)

where ϵδ is a parameter indicating the transition width of the approximated
delta function. In the numerical example, we set ϵδ = 0.1. Then, using
the extended sensitivity on the right-hand side of the reaction ‒ diffusion
equation (30), the optimization becomes stable.

4.2. Definition of design sensitivity

Figure 5: The setting and initial configuration of unit cell. Y ∗
N is made of matrix material

and non-design domain.

The two-scale convergence in the high-contrast homogenization method
assumes that the matrix region is all connected, as mentioned in Section 2.
Hence, configurations should be updated without breaking the connectivity
in the optimization. As shown in Fig. 5, a nondesign domain Y ∗

N with a
width of 0.05 (y-coordinate) consisting of matrix material was set outside
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the square unit cells. The design sensitivity J ′(i) was set to 0 in Region D
to restrict the unconnected configuration. In optimization, updates to the
level set functions corresponding to the generation of Y (i) in the inclusion
domain D(i) must be restricted because they break the connectivity. Thus,
we ignored the design sensitivity within D(i). To do so, we defined a region
where the design sensitivity is ignored by an approximate Heaviside function:

H(ϕ) =


1 (|ϕ| > ϕlow + ϵ),
1
2
− |ϕ|−ϕlow

2ϵ
− 1

2π
sin
[
π(|ϕ|−ϕlow)

ϵ

]
(ϕlow − ϵ ≤ |ϕ| ≤ ϕlow + ϵ),

0 (|ϕ| < ϕlow − ϵ).

(48)

ϵ is a parameter that indicates the variation width and is set as ϵ = 0.01.
H(ϕ) equals 1 in the Regions Y ∗

N , Y
∗, andD, except for the boundary ∂D and

0 on the boundary ∂D. After all, the sensitivity J ′(i) used on the right-hand
side of the reaction ‒ diffusion equation is defined as follows:

J ′(i) = g(DJ(Y ∗(i)) · θ, DJ(D(i)) · θ, DTJ
(i))(y)

DTJ
(i)

AbsDTJ
χY ∗H(ϕ(i)) +

(
Q

(i)
1

AbsQ1

− Q
(i)
2

AbsQ2

)
(1−H(ϕ(i))), (49)

AbsDTJ =
1

N

N∑
i=1

∫
Y ∗(i) DTJ

(i)dy∫
Y ∗(i) dy

,

AbsQ1 =
1

N

N∑
i=1

∫
Y (i) Q

(i)
1 (1−H(ϕ(i)))dy∫

Y (i)(1−H(ϕ(i)))dy
, AbsQ2 =

1

N

N∑
i=1

∫
Y (i) Q

(i)
2 (1−H(ϕ(i)))dy∫

Y (i)(1−H(ϕ(i)))dy
.

Q
(i)
1 and Q

(i)
2 are calculated by Eq. (44), substituting j

(i)
1 , j

(i)
2 , respectively.

AbsDTJ , AbsQ1 and AbsQ2 are used for the normalization.
In the optimization of J = J2, the sensitivities of Jk1 and Jk2 are calcu-

lated respectively, and their sum is substituted in J ′(i).

5. Numerical examples

In this section, the effectivity of the proposed optimization method is
demonstrated with numerical examples. We offer two optimization examples
for metamaterials that work as demultiplexers. In Section 5.1, the objective
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function J1 is minimized for a single-frequency input wave. In Section 5.3, we
minimized J2 to obtain the optimized design of a metamaterial operating at
two frequencies. Fig. 6 shows the setting of the computational domain. Γin is
the inlet, and Γ1 and Γ2 are the outlets. The white regions are H consisting
of homogeneous material, and the gray region is the design domain Ω divided
into 16 regions Ω(i). Additionally, the optimal configuration in Section 5.1
obtained by the proposed method based on the high-contrast homogenization
method is verified by solving the Helmholtz equation (3) for the metamaterial
composed of finite numbers of a periodic array of optimized unit cells.

The inverse permittivities and the wavenumbers are given as ε−1
e = 10[m/F],

ε−1
i = 10 − 0.01i[m/F], k1 = 28 and k2 = 38. The regularization parameter
in Eq. (43) is given as τ = 1.0 × 10−4, and the width of fictitious time step
∆t in Eq. (43) is given depending on the value of the objective functions. In
Section 5.1, ∆t = 1.0× 10−3 if J1 ≤ 0.3, or ∆t = 5.0× 10−3. In Section 5.3,
∆t = 1.0× 10−3 if Jk1 ≤ 0.5 and Jk2 ≤ 0.5, or ∆t = 5.0× 10−3. The incident
wave is given as a plane wave uinc = exp(ikx1).

5.1. Single-frequency optimization

Figure 6: The setting of the computational domain. The units are in [m].

Here, we demonstrate that our optimization method is valid for designing
metamaterials. The initial configuration of each unit cell is the same as shown
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Figure 7: Distribution of real part of u at k = k1; (a): the intial configuration (b): optimal

configurations.

Figure 8: The optimal configrations of unit cells Y (i) obtained in single-frequency opti-

mization
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Figure 9: (a): Distribution of real part of u obtained with the homogenized equation and

the optimal configurations; (b): the solution of Helmholtz equation in the arrayed optim

unit cells.

in, where the circular inclusion Region D(i) of radius 0.25 is placed in the cen-
ter. The homogenized coefficients of the initial configuration are a11 = 6.65,
a12 = −3.49× 10−5, a21 = 2.62× 10−3, a11 = 6.65, and µ = 1.76 + 0.00490i,
and Fig. 7(a) shows the wave propagation behavior Re(u). The objective
function is J1 (Eq. (24)), and the value is 1.00 with the initial configuration
consistent with the symmetry of the geometry and the boundary condition.

As a result of optimization, we obtained the optimal configuration, as
shown in Fig. 8. Compared with the initial configuration, the radius and
aspect ratio of Region D(i) were changed. The value of the objective function
is 0.0163, and Fig. 7(b) shows the wave propagation in the optimized system.

Fig. 10 shows the homogenized coefficients of the optimal configuration. a
(i)
11

and a
(i)
22 did not change significantly. The range of the values is 5.52 ≤

a
(i)
11 ≤ 6.94 and 6.12 ≤ a

(i)
22 ≤ 6.95. Conversely, the range of a

(i)
12 and a

(i)
21 are

−0.120 ≤ a
(i)
12 ≤ 0.138 and −0.120 ≤ a

(i)
21 ≤ 0.138, that is larger than the

initial configuration but the effect of the values is small. Re
[
µ(i)
]
is in the

range 1.5 ≤ Re
[
µ(i)
]
≤ 3.0 in most regions. However, there are some regions

local resonance occurs, where absolute value of Re
[
µ(i)
]
may be large, or

the sign may differ from the relative permeability of the materials that make
up the unit cell. In Ω(9), µ shows large value: Re

[
µ(9)
]
= 14.0. And as

an remarkable point, µ has negative real part in Ω(3) and Ω(8): Re
[
µ(3)
]
=

−0.832, Re
[
µ(8)
]
= −2.16, respectively.

One of the factors contributing to the decrease in the objective func-
tion is the bandgap region. The propagation of waves corresponding to the
wavenumber k = k1 is forbidden in regions where µ(i) calculated by the
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Figure 10: Distribution of the homogenized coefficients. (a): a
(i)
11 ; (b): a

(i)
12 ; (c): a

(i)
21 ; (d):

a
(i)
22 ; (e): Re

[
µ(i)
]
.

high-contrast homogenization method is negative [27]. Fig. 9 shows little
wave transmission in Ω(3) and Ω(8). The bandgap prevents the wave from
propagating to Γ1.

The contrast between Re
[
µ(12)

]
and Re

[
µ(16)

]
is also a factor as it causes

wave impedance in Ω(16) larger than that in Ω(12), guiding the wave in the
direction of Γ2. The wave impedance is given by the bandgap in Ω(3) and
Ω(8) cannot block the wave traveling to Γ1 through Ω(12) and Ω(16). Hence,
the second factor is also important to the optimization results.

5.2. The verification for the optimal configurations

Here, we compare the wave propagation behavior obtained by the homog-
enized equation (23) with the solution obtained by the Helmholtz equation
in Eq. (2) in a 12 × 12 system with an array of optimized unit cells in each
region. The size of the unit cell is set to δ = 1/24. Fig. 9(b) presents the
solution of the Helmholtz equation. The performance guiding the wave to
the border of Γ2 is observed in both solutions as the most important point.
Fig. 11 shows the frequency response of the objective function J1 calculated
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Figure 11: Frequency response of the object function Jk1 calculated with the solutions of

the homogenized equation and Helmholtz equation.

from the solutions of the homogenized equation (23) and the Helmholtz equa-
tion in Eq. (2). Both have a peak at the target frequency k = 28, and the
responses are similar overall. The value of the object function (24) calculated
from the solution of the homogenized equation (Fig. 9(a)) is 0.0163, and that
calculated through verification (Fig. 9(b)) is 0.0461. The two values of the
objective function do not match exactly, and there is a gap between them.
There are some possible reasons for this. First, the numerical analysis of
the Helmholtz equation does not meet the homogenization assumption that
the unit cells are almost zero in size, and the unit cells are arranged in an
infinite array. Second, the region unit cells are arranged touching other re-
gions or PEC walls. This situation is not considered in the homogenization
method. The second reason cannot be solved in the setting of the optimiza-
tion problem, but the first reason can be improved by reducing δ. Despite
some problems, the differences are quite small to demonstrate the validity
of estimating the performance of metamaterials with the high-contrast ho-
mogenization method. The optimized metamaterial behaved as intended,
indicating the effectiveness of the optimization method.
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Figure 12: Distribution of real part of u. (a): with initial configurations, k = k1; (b): with

initial configurations, k = k2; (c): with optimal configurations, k = k1; (d): with optimal

configurations, k = k2.

5.3. Two-frequency optimization

We present the optimal configuration of the metamaterial operating at
two frequencies here. The initial configuration is the same as in Section 5.1.
The homogenized coefficient µ depends on wavenumber: µ = 0.635+0.000694i
at k = k2. Fig. 12(a) and (b) shows the wave propagation behavior in the
initial configuration. The value of the objective function J2 in Eq. (25) is
2.00 with each term Jk1 = 1.00 and Jk2 = 1.00.

We obtained the optimal configuration as a result of optimization, as
shown in Fig. 13. Compared with the optimal configuration in Section 5.1,
the changes in radius, slope, and aspect ratio of Region D(i) are bigger than
the initial configuration. The value of the objective function is 0.0602 with
Jk1 = 0.0343 and Jk2 = 0.0258. Fig 12(c) and (d) shows the wave propagation
in the optimized system. The value of the first term in the objective function
corresponding to the response at k = k1 is 0.0343, and that of the second
term corresponding to the response at k = k2 is 0.0258. Fig. 14 shows
the homogenized coefficients in the optimal configuration. a

(i)
11 and a

(i)
22 are

in the range 4.76 ≤ a
(i)
11 ≤ 8.27, 3.17 ≤ a

(i)
22 ≤ 7.70 a

(i)
12 and a

(i)
21 are in

23



Figure 13: The optimal configrations of unit cells Y (i) obtained in two-frequency opti-

mization.

−0.602 ≤ a
(i)
12 ≤ 1.04, −0.602 ≤ a

(i)
21 ≤ 1.04. At k = k1, Re

[
µ(i)
]
is negative

in Ω(1), Ω(3), Ω(8), Ω(11), and Ω(13). At k = k2, µ has a positive real part for
all Ω(i).

Compared with single-frequency optimization, each term of the objective
function is larger because the two terms of the objective function are defined
at two different frequencies. Fig. 15 shows the frequency response of the
terms of the object functions Jk1 and Jk2. They have a peak at k = 28, 38,
respectively. The wave propagation behavior at k = k1 is similar to that
shown in Fig. 9(a) at the point where the bandgap regions with negative
permeability contribute to decreasing the objective function. Conversely,
there is no bandgap, and the wave propagation behavior is guided only by
the distribution of µ at k = k2. The most significant factor is the contrast
between µ(5) and µ(9), which makes the incident wave travel in the direction
of Γ1 according to the distribution of impedance. The contrast between µ(4)

and µ(8) behaves similarly. It is interesting to control the waves without using
a bandgap caused by the negative real part of µ(i).
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Figure 14: Distribution of the homogenized coefficients. (a): a
(i)
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(i)
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a
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[
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at k = k1; (f): Re

[
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at k = k2.

6. Conclusion

We proposed a multiscale topology optimization method for electromag-
netic metamaterials based on the level set-based topology optimization method
associated with the high-contrast homogenized method. The results obtained
are summarized as follows:

• The high-contrast homogenized method is introduced in the
system of electromagnetic metamaterials based on previous
studies. A multiscale topology optimization problem is for-
mulated where the objective function is defined with the
macroscale wave propagation behavior and the microscale
unit cell configuration as design variables.

• The design sensitivities are calculated based on the concepts
of topological and shape derivatives.

• Using the proposed method, single-frequency and two-frequency
optimization problems were resolved. We obtained the op-
timal configuration of the unit cells, and the incident waves
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Figure 15: Frequency response of the terms of the objective function Jk1 and Jk2.

were guided to the target boundary corresponding to the fre-
quency. The designed metamaterial control wave propaga-
tion behavior using the bandgap caused by the negative real
part of permeability and the distribution of wave impedance.

• The optimization results were verified by the Helmholtz equa-
tion solved on a system with an array of optimal unit cells.

This method allows for optimal configurations that include metamaterials
that operate over a wide frequency band. One of the prospects of this method
is its extension to three-dimensional problems that require the introduction
of high-contrast homogenization methods in the Maxwell equations. Addi-
tionally, the method can be applied to elastic waves and the design of elastic
metamaterials.
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Appendix A. Derivation of shape derivative and topological deriva-
tive

We explain process of derivation topological derivatives and shape deriva-
tives. First we derive shape derivatives. The Lagrangian L is defined based
on Céa’s method [33] as follows:

L(Y (i), Û , V̂ ) = J(u) + 2Re

[
N∑
i=1

∫
Ω(i)

a
(i)
eff∇û · ∇ψ̂ − k2µ

(i)
eff ûψ̂dx−

∫
∂G

gψ̂dΓ

]

+ 2Re

[
N∑
i=1

∑
j,k

λ̂(i)ajk
(a

(i)
jk − â

(i)
jk )

]
+ 2Re

[
N∑
i=1

λ̂(i)µ (µ(i) − µ̂(i))

]

−
N∑
i=1

∫
Y ∗(i)

ε−1
e (ej +∇yŵ

(i)
j ) · ∇yψ̂

(i)
1 dy

− 2Re

[
N∑
i=1

∫
D(i)

ε−1
i ∇yŵ

(i) · ∇yψ̂
(i)
2 − k2ŵψ̂

(i)
2 − ψ̂

(i)
2

]
.

(A.1)

The variables Û = (û, â
(i)
jk , µ̂

(i), ŵ
(i)
j , ŵ

(i)) correspond to state variables, and

Lagrange multipliers V̂ = (ψ̂, λ̂
(i)
ajk , λ̂

(i)
µ , ψ̂

(i)
1 , ψ̂

(i)
2 ) correspond to adjoint vari-

ables. At the stationary point of L, the optimality conditions are given as
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follows: 〈
∂L

∂û
, δû

〉∣∣∣∣
opt

= 0, (A.2)〈
∂L

∂â
(i)
jk

, δâ
(i)
jk

〉∣∣∣∣∣
opt

= 0, (A.3)〈
∂L

∂µ̂(i)
, δµ̂(i)

〉∣∣∣∣
opt

= 0, (A.4)〈
∂L

∂ŵ
(i)
j

, δŵ
(i)
j

〉∣∣∣∣∣
opt

= 0, (A.5)〈
∂L

∂ŵ(i)
, δŵ(i)

〉∣∣∣∣
opt

= 0, (A.6)〈
∂L

∂ψ̂
, δψ̂

〉∣∣∣∣
opt

= 0, (A.7)〈
∂L

∂λ̂
(i)
ajk

, δλ̂(i)ajk

〉∣∣∣∣∣
opt

= 0, (A.8)〈
∂L

∂λ̂
(i)
µ

, δλ̂(i)µ

〉∣∣∣∣∣
opt

= 0, (A.9)〈
∂L

∂ψ̂
(i)
1

, δψ̂
(i)
1

〉∣∣∣∣∣
opt

= 0, (A.10)〈
∂L

∂ψ̂
(i)
2

, δψ̂
(i)
2

〉∣∣∣∣∣
opt

= 0. (A.11)

The expression in brackets is the directional derivative of the function, and
opt represents the stationary point. If the conditions (A.7)–(A.11) are met,

û = u, â
(i)
jk = a

(i)
jk =, µ̂(i) = µ(i), ŵ

(i)
j = w

(i)
j and ŵ(i) = w(i) hold at the

stationary point.
To satisfy the optimal condition (A.2), an adjoint equation is given as
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follows:

N∑
i=1

[∫
Ω(i)

a
(i)
eff∇v1 · ∇ψ − k2µ

(i)
effv1ψdy

]
− ik

∫
Γin,Γ1,Γ2

v1ψdΓ

+
1

W2

∫
Γ1

u∗ψdΓ− W1

W 2
2

∫
Γ2

u∗ψdΓ = 0, (A.12)

N∑
i=1

[∫
Ω(i)

a
(i)
eff∇v2 · ∇ψ − k2µ

(i)
effv2ψdy

]
− ik

∫
Γin,Γ1,Γ2

v2ψdΓ

− W2

W 2
1

∫
Γ1

u∗ψdΓ +
1

W1

∫
Γ2

u∗ψdΓ = 0. (A.13)

Here, W1 =
∫
Γ1
|u|2dΓ,W2 =

∫
Γ2
|u|2dΓ, and u∗ is complex conjugate of u. v1

and v2 are adjoint variables corresponding to objective functions Jk1 and Jk2,
and ψ is a test function. The optimal conditions (A.3), (A.4) are expressed
as follows:〈

∂L

∂â
(i)
jk

, δâ
(i)
jk

〉
= 2Re

[∫
Ω(i)

δâ
(i)
jk∇u · ∇ψdx

]
− 2Re

[∑
j,k

λ(i)ajk
δâ

(i)
jk

]
(A.14)

= 0, (A.15)〈
∂L

∂µ̂(i)
, δµ̂(i)

〉
= −2Re

[∫
Ω(i)

k2δµ̂(i)uψdx

]
− 2Re

[
λ(i)µ δµ̂

(i)
]

(A.16)

= 0. (A.17)

Hence, the optimal Lagrange multipliers λ
(i)
ajk and λ

(i)
µ are given as follows:

λ(i)ajk
=

∫
Ω(i)

∂u

∂xk

∂ψ

∂xj
dx, (A.18)

λ(i)µ = −
∫
Ω(i)

k2uψdx. (A.19)
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Similarly, the optimal conditions (A.5) and (A.6) are expressed as follows:〈
∂L

∂ŵ
(i)
j

, δŵ
(i)
j

〉
=2Re

[
λ(i)ajk

]{∫
∂Y ∗(i)

n · (ε−1
e ek)δŵ

(i)
j dΓ−

∫
Y ∗(i)

∇y · (ε−1
e ek)δŵ

(i)
j dΓ

}
−
∫
∂Y ∗(i)

n · (ε−1
e ∇yδŵ

(i)
j )(ψ

(i)
1 + µ)dΓ−

∫
Y ∗(i)

∇y · (ε−1
e ∇yψ

(i)
1 )δw

(i)
j dy

+

∫
∂Y ∗(i)

n · (ε−1
e ∇yψ

(i)
1 )δŵ

(i)
j dΓ

=0, (A.20)〈
∂L

∂ŵ(i)
, δŵ(i)

〉
=2Re

[
λ(i)µ

∫
D(i)

k2δŵ(i)dΓ

]
−2Re

[∫
∂Y ∗(i)

n · (ε−1
i ∇yδŵ

(i))pdΓ

]
−2Re

[∫
D(i)

{
ε−1
i ∇yψ

(i)
2 · ∇yδŵ

(i) − k2ψ
(i)
2 δŵ

(i)
}
dy

]
+2Re

[∫
∂D(i)

δŵ(i)µ̂dΓ

]
=0. (A.21)

Therefore, the optimal Lagrange multipliers ψ
(i)
1 and ψ

(i)
2 are given as follows:

ψ
(i)
1 = 2Re

[
λ(i)ajk

]
w

(i)
k , (A.22)

ψ
(i)
2 = −λ(i)µ k

2w(i). (A.23)

Shape derivative is derived using the following relationship between func-
tional and shape derivative shown by a previous study [39]:

J(Ω) =

∫
Ω

f(y)dΩ → DJ · θ =

∫
∂Ω

θ(y) · n(y)f(y)dΓ, (A.24)

J(Ω) =

∫
∂Ω

f(y)dΓ → DJ · θ =

∫
∂Ω

θ · n(∂f
∂n

+Hf)dΓ. (A.25)

Shape derivative is derived using Eqs. (A.24) and (A.25) corresponding to
each objective function. H is the mean curvature on ∂Ω given as H = divn.
Using this relationship, the shape derivatives of the objective functions in
Eqs. (26) and (27) are derived as in Eqs. (34) and (37), respectively.
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Next, we derive toplogical derivative from shape derivatives. Novotny et
al. [34] and Feijóo et al. [35] showed that topological derivative is given by
the limit value of shape drivatives as follows:

DTJ = lim
ε→0

DJ · θ
V ′(ε)|θn|

. (A.26)

V ′(ε) is derivative of V (ε) for ε. This relationship holds for shape derivatives
assuming shape changes where the circular Region Ωε expands using the
negative constant θn and the outward unit normal vector n in the Region
Ω0. This is expressed as θ = θnn. Since w

(i)
j depends on the radius ε in the

shape change, we denote w
(i)
j as w

(i)ε
j . The shape derivative is rewritten as

follows:

DJ(Y (i)) · θ

=2Re
[
λ(i)ajk

] ∫
∂Y ∗(i)

(θ · n)ε−1
e

(
δjk +

∂w
(i)ε
j

∂yk
+
∂w

(i)ε
k

∂yj
+∇yw

(i)ε
j · ∇yw

(i)ε
k

)
dΓ.

(A.27)

When ε → 0, w
(i)ε
j exhibits the following asymptotic behavior, as shown in

previous study [29].{
w

(i)ε
j → w

(i)0
j (y0),

∇yw
(i)ε
j → ∇yw

(i)0
j |y0 +∇ξH(ξ).

(A.28)

w
(i)0
j denotes w

(i)
j before Ωε is introduced. y0 is the point at the center of Ωε

and ξ = (y−y0)/ε denotes the coordinates of y normalized by the radius ε.
H(ξ) is given as follows in polar coordinate (r, θ) of ξ [29]:

H(r, θ) =
1

r


 ∂w

(i)0
j

∂y1

∣∣∣∣∣
y0

+ δj1

 cosθ +

 ∂w
(i)0
j

∂y2

∣∣∣∣∣
y0

+ δj2

 sinθ

 (A.29)

Using Eq. (A.28), the limit of shape delivative (A.27) to ε → 0 is expressed
as follows:

DJ(Y (i)) · θ

−−→
ε→0

4πεθnRe
[
λ(i)ajk

]
ε−1
e {δjk + ej · ∇yw

0
k|y0 + ek∇yw

0
j |y0

+ 2∇yw
0
j |y0 · ∇yw

0
k|y0δkl

∂w0
j

∂yl
|y0 + δjl

∂w0
k

∂yl
|y0 + δjlδkl}. (A.30)
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Using the above limits and Eq. (A.26), the topological derivative can be
derived as in Eq. (42).

Competing interests

The authors declare no conflicts of interest.

Author contributions statement

The authors confirm contribution to the paper as follows: Naoki Murai: Con-
ceptualization, Methodology, Software, Validation, Formal analysis, Investi-
gation, Data Curation, Writing-Original Draft, Visualization. Yuki Noguchi:
Conceptualization, Methodology, Software, Formal analysis, Data curation,
Writing-Review & Editing, Funding acquisition. Kei Matsushima: Method-
ology, Software, Writing-Review & Editing. Takayuki Yamada: Methodol-
ogy, Software, Resources, Data curation, Writing-Review & Editing, Project
administration, Supervision.

References

[1] J. B. Pendry, A. J. Holden, D. J. Robbins, W. Stewart, Magnetism from
conductors and enhanced nonlinear phenomena, IEEE transactions on
microwave theory and techniques 47 (11) (1999) 2075–2084.

[2] D. R. Smith, W. J. Padilla, D. Vier, S. C. Nemat-Nasser, S. Schultz,
Composite medium with simultaneously negative permeability and per-
mittivity, Physical review letters 84 (18) (2000) 4184.
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