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Abstract
In recent years, outdoor robotics applications have
trended towards the ”cloud robotics” approach, which
involves offloading processing to other computation-rich
locations via communication with the cloud, due to the
increasing complexity of the tasks the robots are re-
quired to perform. However, network conditions in out-
door environments are often volatile, leading to signif-
icant performance degradation or unstable behavior in
robots due to poor communication with the cloud. To
address this issue, we propose a method that combines
minimal self-localization capabilities on the robot side
with advanced self-localization processing on the cloud
side, integrating and interpolating the two. This pa-
per discusses implementing 2D self-localization on the
robot and 3D self-localization on the cloud, clarifies the
characteristics of each and proposes a fusion method
that leverages the features of both self-localization tech-
niques for high accuracy and robustness against com-
munication failures. Adaptive Monte Carlo localiza-
tion (AMCL), which is a common algorithm for two-
dimensional self-localization, was used on the robot
side. We implemented two fusion methods: a time-
varying weighted average (TVWA) and an unscented
Kalman filter (UKF), and showed that these methods
can reduce the maximum error compared to using the
AMCL alone by approximately 0.11 m with the TVWA
and by approximately 0.15 m with the UKF.
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1 Introduction
In the development of autonomous mobile robots, accu-
rately determining the robot’s self-position is especially
important [1–3]. Currently, autonomous mobile robots
that move on the ground mainly use 2D light detec-
tion and ranging (LiDAR) for planar scan matching,
as noted in [4–8]. However, detecting objects higher or
lower than the plane where the 2D-LiDAR is mounted

is difficult, leading to blind spots. This is particularly
problematic in outdoor or indoor environments with few
distinct features, where self-localization results can sig-
nificantly diverge from the actual position.

Cost reduction of 3D-LiDAR and acceleration of
personal computers (PCs), along with progress in
open-source resources related to three-dimensional self-
localization, are bringing 3D simultaneous localization
and mapping (SLAM) closer to being a practical alter-
native. However, a challenge remains: the computa-
tional cost for three-dimensional self-localization is still
significantly higher than that for two-dimensional self-
localization.

To address this issue, efforts are being made to en-
hance processing capabilities by equipping robots with
high-performance PCs. However, when a large num-
ber of robots is required, such as for agricultural tasks
or delivery tasks, this approach can be cost-prohibitive
[9]. Consequently, the concept of ”cloud robotics” has
emerged as an approach to perform three-dimensional
self-localization processing while limiting the perfor-
mance of the PCs mounted on the robots [10]. This
approach aims to improve processing capabilities by
performing three-dimensional self-localization process-
ing in computation-rich locations and receiving the re-
sults via communication networks, offering a promising
method for efficiently operating numerous robots.

However, cloud robotics faces several challenges.
First, because it relies on data transmission over net-
works, network latency can become a significant issue
for robots [11]. Second, processing in the cloud requires
transmitting information externally, increasing the risk
of data leakage and security breaches. Third, complete
reliance on the cloud can lead to communication break-
downs in poor network conditions, potentially immobi-
lizing the robots.

Our previous research, based on Annex A of ISO
13482, examined 85 risk factors associated with au-
tonomous mobile robots, revealing that several high-
risk factors (risk scores above 18) could result from loss
of self-localization. We validated the validity of this
risk assessment with actual robot tests, confirming that
loss of self-localization leads to unstable robot behavior,
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posing dangers to users and workers.
Related studies have explored self-localization meth-

ods that make use of multiple sensors, such as the
combination of a real-time kinematic global navigation
satellite system (RTK-GNSS) and LiDAR. Zhang et
al. combined 3D-SLAM and RTK-GNSS, and Niu et
al. combined Visual-SLAM and RTK-GNSS. However,
RTK-GNSS faces issues in that it can misinterpret the
location due to signal reflection off buildings or per-
form poorly in areas with bad radio conditions, like
forests, especially when the distance to the base sta-
tion is far [15].

In this study, we propose and evaluate a new ap-
proach to enhance the accuracy of self-localization in
autonomous mobile robots. This approach involves per-
forming low-cost two-dimensional self-localization using
2D-LiDAR on the robot side, and high-accuracy, high-
reliability three-dimensional self-localization using 3D-
LiDAR on the cloud side. By combining the results
of these two self-localization methods, with the two-
dimensional results on the robot side as the primary
data and integrating the cloud side results through net-
work communication, we aim to create a system that
maintains self-localization accuracy while allowing the
robot to continue self-localization even if communica-
tion is interrupted. This approach mitigates the im-
pact of communication delays and disconnections due
to poor network environments.

The implementation of autonomous control is beyond
the scope of this study. Instead, we focus on evaluat-
ing the combined self-localization methods using man-
ual control. This enables a detailed evaluation of self-
localization accuracy and discussions on the integra-
tion of different self-localization methods. In future re-
search, we plan to implement autonomous control using
the self-localization results obtained from the proposed
method and to evaluate control algorithms that utilize
self-localization signals.

This paper first describes the overall system config-
uration used in this study. Then, it evaluates the ac-
curacy of two-dimensional and three-dimensional self-
localization using optical motion capture technology.
The accuracy is discussed, and a fusion algorithm
for combining the two-dimensional and delayed three-
dimensional self-localization results is proposed. Fi-
nally, the evaluation results are discussed.

2 System Configuration

2.1 System Overview
This section describes the overall system architecture
used in the present study. A diagram of the system’s
configuration is shown in Fig. 1. The system is built
around the middleware known as the Robot Operat-
ing System (ROS), with the ROS distribution being
noetic and the corresponding Ubuntu OS version be-
ing 20.04. Using the ROS, the robot is equipped with
2D-LiDAR, 3D-LiDAR, and an inertial measurement
unit (IMU), enabling autonomous navigation. Addi-

tionally, the computationally intensive task of three-
dimensional self-localization is offloaded to another
computer via wired communication. Although ”cloud”
typically refers to a service that provides computing
resources such as servers, storage, databases, network-
ing, and software over the internet, in this context, this
other computer is referred to as a virtual cloud.
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Figure 1: System configuration of Agrino.

2.2 Hardware
In this study, various sensors are mounted on a radio-
controlled agricultural work cart, Mobile Mover, to
robotize it and enable autonomous mobility. The robot
is named Agrino. Fig. 2 shows Agrino with the sensors
attached. The specifications of Agrino are presented
in Table 1. Agrino is equipped with 2D-LiDAR, 3D-
LiDAR, an IMU, and odometry sensors, from which
information is gathered.

3D LiDAR

2D LiDAR

Steering

wheel

Driving

wheel

IMU

Figure 2: Schematic of Agrino.

2.3 Details of the Sensors
The main specifications of the 2D-LiDAR, 3D-LiDAR,
and IMU used in this study are summarized in Table 2.

2.3.1 2D-LiDAR: Hokuyo UST-10LX

In this study, a Hokuyo UST-10LX is utilized as the
2D-LiDAR sensor. This sensor scans the environment
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Table 1: Agrino specifications and dimensions

Item Specification
Size (mm) 905(L) × 600(W) ×

500(H)
Vehicle Weight (including
battery) (kg)

92

Maximum Load Capacity
(kg)

100

Top Speed (km/h) 6
Minimum Turning Radius
(m)

6

Maximum Operating An-
gle (deg)

8

Continuous Running Dis-
tance (km)

39

Electric Motor DC24V 210W×2 (30%
rated output)

Battery (5-hour rate) SC38-12 (12V35Ah)×2
Tire Size 2.50-4 (Front), 2.50-10

(Rear)
Drive System Rear Wheel Two-Wheel

Drive
Braking System Electromagnetic Reel

Type, Mechanical Ground
Braking

within a 270-degree field of view and measures the dis-
tance to objects. It operates by measuring the time it
takes for a laser beam emitted from the sensor to re-
flect off an object, and calculates the distance based on
this time. This sensor is used for two-dimensional self-
localization and obstacle detection of the robot, with a
maximum measurement distance of 10 m.

2.3.2 3D-LiDAR: Velodyne Ultra Puck

For 3D-LiDAR, a Velodyne Ultra Puck is employed.
This sensor uses 32 laser beams to scan a wide area
in three dimensions. It operates on a similar principle
to the 2D-LiDAR, measuring the time it takes for each
laser beam to hit an object and reflect back to calcu-
late the distance. In this study, this sensor is utilized
for 3D SLAM, enabling advanced self-localization and
environmental recognition.

2.3.3 IMU:RT-USB-9axisIMU2

An RT-USB-9axisIMU2 is used as the IMU. This in-
corporates a 9-axis sensor (3-axis accelerometer, 3-axis
gyroscope, 3-axis compass) and measures the robot’s
movement (acceleration, rotation, direction) with high
precision. The data from this sensor are combined with
the 3D-LiDAR data for use in 3D SLAM.

2.3.4 Sensor coordination

This study leverages the synergy of these sensors by
utilizing them together. Specifically, the 2D-LiDAR is
used for basic self-localization and obstacle detection,
the 3D-LiDAR for advanced environmental recognition

Table 2: Specifications of sensors

Sensor Type Specifications
2D-LiDAR Hokuyo UST-10LX Field of View: 270

deg,
Max Distance: 10
m
Accuracy: ±40
mm

3D-LiDAR Velodyne Ultra Puck Laser Beams: 32
Max Distance: 200
m
Accuracy: ±30
mm

IMU RT-USB-9axisIMU2 Axes: 9 (3 Accel-
eration, 3 Gyro, 3
Compass),

and self-localization, and the IMU to complement the
movement data of the robot. This approach is expected
to be able to take advantage of the strengths of each sen-
sor while compensating for their weaknesses, resulting
in a synergistic effect.

2.4 Software and Self-Localization Al-
gorithms

In this study, two separate algorithms are utilized for
the robot’s self-localization. The software configuration
is illustrated in Fig. 3.

Virtual Cloud

Fast-lio (3D)

map_node2DLidar_node odom_node

AMCL (2D)

imu_node3DLidar_node

/point_cloud

/imu

/odom

/map

/scan

Figure 3: Software configuration.

2.4.1 AMCL (Adaptive Monte Carlo Localiza-
tion)

AMCL (Adaptive Monte Carlo Localization) [16] is a
probabilistic self-localization algorithm widely used in
2D environments. It performs self-localization based
on information from 2D-LiDAR and odometry, as well
as a pre-prepared environmental map. AMCL is ca-
pable of real-time position estimation and operates at
a low computational cost, making it suitable for ba-
sic self-localization in 2D environments. Henceforth,
AMCL will be referred to as the two-dimensional self-
localization algorithm. The principles of AMCL are
outlined below.

• Initialization:

X0 = {xm
0 |m = 1, ...,M}
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Here, X0 is the initial particle set, xm
0 is the ini-

tial state of the m-th particle, and M is the total
number of particles.

• Motion Model:

xm
t = motion_model(xm

t−1, ut)

At each time t, the state of each particle xm
t is

updated based on the previous state xm
t−1 and the

control input ut.

• Measurement Model:

wm
t = measurement_model(xm

t , zt)

The weight wm
t of each particle is calculated based

on the state of the particle xm
t and the observation

data zt.

• Resampling:

Xt = resample(Xt−1,Wt)

The new particle set Xt is resampled based on the
previous set Xt−1 and the set of weights of all par-
ticles Wt.

2.4.2 Fast-lio (Fast LiDAR-inertial Odometry)

Fast-lio [17] is an algorithm that integrates data from
3D-LiDAR and an IMU (Inertial Measurement Unit)
to perform high-accuracy self-localization and 3D map-
ping. It is particularly suited for fast-paced and dy-
namic environments, capable of real-time processing.
In this study, Fast-lio is employed for advanced self-
localization and environmental mapping in 3D environ-
ments. Henceforth, Fast-lio will be referred to as the
three-dimensional self-localization algorithm. The prin-
ciples of Fast-lio are outlined below.

• IMU Pre-integration: IMU pre-integration is
formulated as follows:

∆pij =

∫ tj

ti

∫ t

ti

Rti(ωt − bω) dt
′ dt

Here, ∆pij represents the change in position, Rti

is the rotation matrix at time ti, ωt is the angular
velocity, and bω is the bias.

• Alignment of LiDAR Point Clouds and
Maps: The formula for aligning LiDAR point
clouds to a map is as follows:

minimize
∑
k

‖pk − T LiDARp
map
k ‖2

Where pk are points from a new scan, T LiDAR is
the transformation matrix of the LiDAR sensor,
and pmap

k are the corresponding points on the map.

• Optimization of State Estimation: Optimiza-
tion of state estimation is expressed as:

minimize
∑

all measurements

‖r(x)‖2

Here, r(x) represents the residuals between the
measurements and the predictions, and x is the
state vector.

2.5 Programs and Computing Re-
sources

The program executed on the computer mounted
on Agrino includes AMCL for two-dimensional self-
localization, a move base for route planning, various
sensor programs, and programs for processing the es-
timated robot posture. In the virtual cloud, compu-
tations for three-dimensional self-localization and the
creation of 3D maps are performed using 3D SLAM
and Fast-lio. The computer used as the virtual cloud
is an ASUS ROG Strix SCAR 17 G733ZX (G733ZX-
I9R3080T), and the computer mounted on Agrino is a
One-netbook One MixA1. The specifications of these
two computers are summarized in Table 3. It is evident
that the ROG Strix SCAR 17 G733ZX offers higher per-
formance than the One-netbook, but when comparing
costs, the ROG Strix SCAR 17 G733ZX is significantly
more expensive than the One-netbook’s MixA1. When
attempting to minimize the cost per robot, the One-
netbook’s MixA1 proves to be more cost-effective when
mounted on a robot.

As a preliminary experiment, we measured the CPU
utilization and power consumption of each PC running
Fast-lio using the Linux top command, and the results
are shown in the Fig. 4. The One-netbook A1 has the
lowest CPU utilization and power consumption. The
On One-netbook A1, the Fast-lio program failed at the
24th step after about 10 minutes had elapsed. The
graph shows only one example of the results, but it was
confirmed that the program terminated after about 10
minutes in each of the five trials. From these results, we
can conclude that the One-netbook A1 with low power
consumption is suitable for minimal self-location esti-
mation on the edge side, and the ROG with high CPU
resources is suitable for 3D self-location estimation on
the cloud side in the experiments described in this pa-
per.

Table 3: Comparison of computer specifications

Item Details
PC Name ROG Strix SCAR 17

G733ZX
Processor (CPU) Intel Core i9-12900H

Processor
Memory (RAM) 32GB DDR5 4800MHz
Graphics Card (GPU) NVIDIA GeForce

RTX3080 Ti Laptop
GPU

Price $2867
PC Name One Netbook A1
Processor (CPU) Intel Core m3-8100y
Memory (RAM) 8GB
Graphics Card (GPU) None
Price $589
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Figure 4: CPU usage and power consumption for both
PCs when Fast-lio was processed.

2.6 Communication Methods and Data
Exchange

Ideally, high-speed and high-capacity communication
methods like 5G would be preferable for interactions be-
tween the robot and the cloud. However, achieving the
nominal value of 1 ms latency with 5G communication
is challenging. In addition, we do not want to be af-
fected by unintentional wireless communication failures
because we want to evaluate the system in the absence
of uncontrolled delays in order to examine the effect of
intentionally created delays or data loss. Therefore, this
paper adopts wired Ethernet for data exchange.

3 Outdoor Self-Localization
Evaluation Experiment

3.1 Objective of the experiment
In this experiment, the position of the robot was mea-
sured externally using motion capture, and this mea-
surement was taken as the true value. By compar-
ing these measurements with the self-localization re-
sults obtained from the sensors, we verified the self-
localization accuracy of both Fast-lio and AMCL. This
verification method is based on the study by Z. Niu et
al. [14], where the accuracy of self-localization is de-
termined by the error between the externally measured
true value and the estimated position of the robot. Ad-
ditionally, we investigated the conditions under which
self-localization is likely to become inaccurate.

3.2 Experimental method
Using Agrino, self-localization is performed with 2D
AMCL on a mini-computer, while 3D self-localization
with Fast-lio is conducted outdoors using a virtual
cloud. Markers are installed on Agrino as shown in
Fig. 5. These markers are to allow the motion capture
system, OptiTrack, to record Agrino’s movements. The
experimental setup is shown in Fig. 6.

Figure 5: Agrino with attached markers.

Figure 6: Scene during outdoor experiments.

Table 4 presents the specifications of the optical mo-
tion capture system, OptiTrack. It is capable of accu-
rately measuring the movement of objects with 6 de-
grees of freedom, with tracking possible at a maximum
rate of 1,000Hz. In this experiment, we utilized this
motion capture system to measure the movements of
Agrino.

The experimental procedure is as follows:

• Set the initial position of Agrino and operate it
manually to create a 2D environment map using
SLAM gmapping.

• Start AMCL on the robot-side computer and Fast-
lio on the virtual cloud-side computer.

• Place the robot at the initial position. Also, start
the program to record the bag file and the posture
of the robot at this time.

• Operate Agrino with the controller and drive it.

5



Table 4: Motion capture system specifications

Software
Degrees of Freedom 6
Tracking Frequency 20 Hz to 1,000 Hz
Camera Control Bulk control of con-

nected cameras
Accuracy Error of 0.1mm or less
Rigid Body Creation of rigid bodies

possible
Camera

Lens Horizontal Field of View:
56◦
Vertical Field of View:
46◦

Standard Filter 850nm IR Bandpass
700nm Visible Light

LED 10 pieces, 850nm IR ad-
justable brightness
Max. range with reflec-
tive markers: 16 m
Max. range with active
markers: 25 m

Image Sensor Resolution: 1,280 ×
1,024 pixels
Frame Rate: 30-240 fps
(2.X), 20-1,000 fps (3.X)
Shutter Type: Global
Shutter Speed: 0.01 ms
3.9 ms

Data I/O Data: GigE / PoE
(1000BASE-T)
Camera Synchroniza-
tion: Ethernet

• In this experiment, drive the robot to trace a
square approximately 3 m wide and 4 m tall, as
shown in Fig. 7.

3.3 Experimental results and discussion
In Fig. 8, AMCL is represented by red dots, Fast-lio
by blue dots, and motion capture by green dots, indi-
cating their trajectories. The x-axis and y-axis of the
graph represent the displacement in the direction of the
robot’s movement.

From Fig. 8, it can be observed that while Fast-
lio exhibits some deviation from the trajectory of the
motion capture around (-1,4) during turns, the trajec-
tories are very similar, indicating high accuracy in self-
localization. On the other hand, in the case of AMCL,
significant discrepancies, particularly on the left side of
Fig. 8, where the robot tends to overshoot after turn-
ing inward, are evident. Moreover, the deviation on the
outer side in the upper right corner of Fig. 8 suggests
errors between the estimated position and the actual
position of Agrino. Furthermore, focusing on the goal
points, it can be inferred that AMCL exhibits errors
compared to Fast-lio.

3 m

4 m

Figure 7: Outdoor running route.

To provide a clearer understanding of the detailed
movements, the time variation of x and y are illustrated
in Figs. 9 and 10. From around 40 seconds to 50 seconds
in Fig. 9, significant deviations between AMCL and
motion capture can be observed, which are not present
in Fast-lio. Fig. 11 compares the errors for AMCL and
Fast-lio with motion capture values as the reference.
It should be noted that motion capture, AMCL, and
Fast-lio have different timestamps due to the frequency
of data updates and experimental constraints. There-
fore, data resampling and correction were performed to
align the start and end times of measurements. The
errors of AMCL and Fast-lio during this time were ap-
proximately -0.18 m to 0.23 m and -0.13 m to 0.1 m,
respectively.

Next, to quantitatively analyze the errors, the root
mean square errors (RMSEs) of Fast-lio and AMCL
were measured from Fig. 11. These were 0.1239 m
for AMCL and 0.0693 m for Fast-lio.

AMCL relies on odometry topics and is susceptible to
odometry errors influenced by environmental changes
such as road conditions and steps. Therefore, in envi-
ronments with long-distance self-localization measure-
ments or terrain with slippery surfaces and steps, such
as fields, the errors are expected to be even larger. Par-
ticularly for outdoor robotic applications, these errors
can become significant, and even with particle filter
correction by AMCL, accurately estimating the robot’s
self-position based on the particle distribution over time
becomes challenging.

3.4 Summary of the experiment
Self-localization using Fast-lio demonstrated superior
accuracy compared to AMCL. Ideally, it would be desir-
able to equip the robot with a computer rich in compu-
tational resources to perform advanced self-localization
using Fast-lio. However, considering the realistic sce-
nario of limited computational resources, solely deploy-
ing Fast-lio on the robot platform for control is not
optimal. Therefore, contemplating autonomous navi-
gation using Fast-lio in a computational resource-rich
cloud seems plausible. Nonetheless, relying entirely on
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Figure 9: Comparison of estimated X-axis position over
time.

cloud-based control for the robot poses risks of instabil-
ity due to communication loss, jeopardizing the safety
of both the surroundings and the robot itself. Hence,
it is imperative to integrate both algorithms, equip-
ping the robot platform and the cloud with suitable
algorithms respectively, to create a system that lever-
ages the strengths of both, ensuring high accuracy and
safety.

4 Fusion of Heterogeneous Self-
Localization Algorithms

4.1 Necessity and Approach for Fusion
AMCL, which performs two-dimensional self-
localization, and Fast-lio, which performs three-
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Figure 11: AMCL and Fast-lio X-axis position error
compared to ground truth (Optitrack).

dimensional self-localization, are systems based on
different algorithms, and each possesses distinct char-
acteristics. Both systems use an environmental map
for localization, but AMCL is lighter in processing
compared to Fast-lio. However, since AMCL relies
on scan matching with the environmental map, it is
susceptible to mislocalizations caused by obstacles
not reflected in the map. Additionally, as AMCL is a
two-dimensional localization system, it cannot detect
obstacles that are not at the height of the 2D-LiDAR,
which can be problematic when carrying loads; for
example, a robot transporting a load might choose a
path under a table where the robot itself can pass, but
the load may get caught.

Fast-lio, being a 3D SLAM system, performs self-
localization while simultaneously creating environmen-
tal maps, offering robustness against dynamic environ-
mental changes. It uses 3D-LiDAR, which enables the
detection of objects in three dimensions, a significant
advantage. However, compared to AMCL, Fast-lio re-
quires more processing power, which can be challenging
on low-cost, low-performance computers.
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In this study, two-dimensional self-localization with
AMCL is performed on the onboard computer of
Agrino, while three-dimensional localization with Fast-
lio is handled on a virtual cloud. By fusing these two
systems, improvements in the accuracy and robustness
of self-localization are anticipated. Such an approach
is particularly important in outdoor areas where com-
munication networks are prone to degradation. Specifi-
cally, in cases of deteriorating communication, it is pos-
sible to compensate for continuous self-localization by
degrading the reliability of Fast-lio results or by switch-
ing to wired AMCL results.

First, we tried to detect a quantity corresponding to
the deviation from the ground truth from the compo-
nents of the AMCL covariance matrix, but preliminary
experiments showed that they were not correlated, so
we excluded this method.

Here, two potential approaches are explored: time-
varying weighted average (TVWA) and the unscented
Kalman filter (UKF). The data used for validating the
fusion particularly involve outdoor experimental data,
where significant discrepancies between AMCL, Fast-
lio, and motion capture were observed. Additionally,
the fusion of self-localization using covariance matrices
was also considered, but it did not show significant re-
sults.

4.2 Examination of Self-Localization
Fusion Method Using TVWA

4.2.1 Reason for Choosing TVWA

Even when running AMCL and Fast-lio simultaneously
locally, the update rate of AMCL’s self-localization re-
sults is approximately 800Hz, while that of Fast-lio’s
self-localization is about 10Hz, which is significantly
slower. Network latency can exacerbate this delay fur-
ther. One possible method to handle this issue is to
apply a weighted average for the state transition of
self-localization, where Fast-lio has higher accuracy but
slower updates, and AMCL has lower accuracy but
faster updates. However, instead of simply averaging
the results of AMCL and Fast-lio, the proposed method
proposes introducing a metric that varies over time
called ”reliability,” and computing the weighted average
according to this reliability. We call this fusion method
TVWA. The algorithm formula is presented below. In
this study, the reliability value for AMCL is fixed at
50%, and the reliability (weight) for Fast-lio is set at
100%. With each loop of the program, the reliability
value for Fast-lio is reduced by 10%, and this reliability
is directly used as the weight in the weighted average.
When Fast-lio’s reliability drops below 60%, it is reset
to 100% to reflect the acquisition of new data.

4.2.2 Self-localization Fusion Results

The results of the self-localization fusion using TVWA
are shown in Fig. 12. Orange points show results of
TVWM. The self-localization results obtained through
TVWA appear to be closer to those of the motion cap-

Algorithm 1 TVWA transformation
Require: ROS environment, tf and tf2 libraries
Ensure: Weighted average of transformations
1: W2D = 0.5
2: W3D = 1.0
3: while ROS is running do
4: try
5: Xwa = X2D×W2D+X3D×W3D

W2D+W3D

6: W3D − 0.1
7: if W3D < 0.6 then
8: W3D = 1.0
9: end if
10: end while

ture than the results from AMCL alone. To examine the
results more closely, Figs. 13 and 14 show the tempo-
ral changes along the X and Y axes, respectively. The
RMSE of TVWA was 0.0958 m. The self-localization re-
sults using the TVWA indeed provide better outcomes
than the standard AMCL results (0.1239 m).
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Figure 12: Self-localization results obtained through
TVWA.

4.3 Exploration of Self-localization Fu-
sion Method Using UKF

4.3.1 Reason for Choosing the UKF

As another method for fusing two self-localization re-
sults, we propose the fusion of self-localization results
using the UKF [18]. The UKF is a method for estimat-
ing the state of nonlinear systems. It is frequently used
in robotics and aerospace engineering. A distinctive fea-
ture of the UKF is its use of sigma points, which allows
for a higher accuracy compared to the extended Kalman
filter, another method for estimating states in nonlin-
ear systems. This is because the UKF can approximate
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Figure 13: Self-localization results along X axis ob-
tained through TVWA.
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Figure 14: Self-localization results along Y axis ob-
tained through TVWA.

up to the second-order terms using Taylor expansion,
unlike the extended Kalman filter. Below, we present
the essential components needed for the UKF.

i. State Vector: A collection of variables represent-
ing the state of the system. For a robot, this in-
cludes position (x, y, z) and attitude (roll, pitch,
yaw).

ii. Process Model: A model that represents the time
evolution of the system. It defines the transition
from the previous state to the next state.

iii. Observation Model: A model that represents
the relationship between observations from sensors
and the state vector. It can accommodate nonlin-
ear models.

iv. Noise Covariance: Represents the uncertainty in
the system. The process noise covariance accounts
for the uncertainty in the process model, while the
observation noise covariance represents the uncer-
tainty in sensor measurements.

v. Sigma Points: A unique feature of the UKF that
enables predicting the next state directly from the
nonlinear system with very high accuracy. How-
ever, calculating sigma points requires generating
(2n+1) points for a system of dimension n, which
incurs computational costs.

The basic steps of the UKF are as follows:
Basic Steps:

i. Prediction Step:
Using the previous state and the process model,
compute the estimated value of the next state and
its uncertainty (covariance). At this point, sigma
points are used to predict the next state from the
nonlinear system.

ii. Update Step:
Use new observation data to update the predicted
state and reduce uncertainty.

By repeating these steps, the states of various sys-
tems are estimated.

4.3.2 Role of the UKF

In this section, the components of the UKF are as fol-
lows:

i. State Vector:
A collection of variables representing the state of
the system. In the case of a robot which moves
in plane field, this includes position (x, y) and the
robot’s velocity (ẋ, ẏ). Therefore the state variable
is as below.

X =


x
y
ẋ
ẏ

 (1)

Initial State

X0 =


0
0
0
0

 (2)

The position is directly used as the state vector
from the self-localization results output by AMCL
and Fast-lio. The angular velocity is derived by
dividing the displacement of coordinates from the
most recent data of AMCL and Fast-lio by the time
interval ∆t obtained up to that point.

ii. Process Model:
A model that represents the time evolution of the
system. It defines the transition from the previous
state to the next state. This includes using the ve-
locity at each moment, calculated by dividing the
displacement in coordinates (x, y) obtained from
AMCL and Fast-lio by the difference in time be-
tween readings. The process model for Agrino is
presented below as an equation.
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xt+1 = xt + ẋt∆t (3)
yt+1 = yt + ẏt∆t (4)

At each time t, the state vector xt is updated based
on the current state, velocity, and time interval ∆t.
The state transition matrix F is given below.

F =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1

 (5)

iii. Observation Model:
A model that represents the relationship between
observations from sensors and the state vector. It
can accommodate nonlinear models. Since there
are no sensor inputs available in this instance, the
self-localization results from AMCL and Fast-lio
are used as a virtual observation model. The ob-
servation noise matrix R is given below.

R =

(
1.0 0
0 0.5

)
(6)

iv. Noise Covariance:
Represents the system’s uncertainty. Process noise
covariance accounts for the uncertainty in the pro-
cess model, while observation noise covariance rep-
resents the uncertainty in sensor measurements. In
this study, since Fast-lio provides more accurate
self-localization results than AMCL, a fixed value
is used for the noise covariance.
The initial error covariance matrix P is given be-
low.

P =


0.1 0 0 0
0 0.1 0 0
0 0 0.01 0
0 0 0 0.01

 (7)

The process noise matrix Q is given below.

Q =


0.05 0 0 0
0 0.05 0 0
0 0 0.01 0
0 0 0 0.01

 (8)

4.3.3 Fusion Results with the UKF

The fusion results obtained using the UKF are shown
in Fig. 15. Orange points show the results with UKF.
The graph shows that the results fused with the UKF
closely resemble those from the motion capture, more
so than those output by AMCL.

For a more detailed review of the results, the tempo-
ral changes along the X and Y axes are shown in Figs.
16 and 17, respectively. The RMSE of UKF was 0.0944
m. The self-localization results using the TVWA indeed
provide better outcomes than the standard AMCL re-
sults (0.1239 m) and TVWM result (0.0958 m). Table

5 summarizes the RMS Error of each method. This im-
provement in accuracy is likely because the errors from
AMCL were smaller where Fast-lio’s errors were largest,
thus enhancing precision through fusion. Fig. 18 shows
this, with the largest errors for Fast-lio occurring at
around 57 to 60 seconds.
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Figure 15: Data fusion results with UKF.
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Figure 16: Fusion results of UKF along X axis.

Additionally, in this instance, the robot was treated
as a single mass point for the application of the UKF,
meaning that only linear system information was input
into a filter designed for estimating nonlinear systems.
Hence, the full potential of the filter has not been re-
alized. In future work, by treating the robot not just
as a point but as a nonlinear system with a yaw angle
inclination, the UKF can be better utilized and is ex-
pected to produce more accurate results. The system
model equation expected at that time would look some-
thing like the equation below, where θ(t) represents the
robot’s yaw angle component inclination, which can be
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Figure 17: Fusion results of UKF along Y axis.

Table 5: Comparison of RMS error for each method

Method RMSE (m)
AMCL 0.1239
Fast-lio 0.0693
TVWA 0.0958
UKF 0.0944

utilized in estimating nonlinear systems with the UKF.

• Process Model Equation Considering Yaw
Angle:

xt+1 = xt + vt cos θt∆t (9)
yt+1 = yt + vt sin θt∆t (10)
θt+1 = θt + ωt∆t (11)

At each time t, the state vector xt is updated based
on the current state x, y, θ and velocities vt, ωt, and
the time interval ∆t. The yaw angle inclination of
the robot at this time can be represented as θt.

4.4 Summary
In this section, we examined methods for fusing self-
localization results estimated by different algorithms
using several techniques. It was determined that the
method of switching data based on the covariance ma-
trix, which was used to judge the uncertainty of AMCL,
is difficult to implement because there was little cor-
relation found between the covariance matrix and the
errors. Furthermore, the fusion using time-varying
weighted averages, which adjusts the reliability over
time to blend the two datasets, was found to produce
results superior to those of the original AMCL. This fu-
sion method can be implemented more simply and with
less information than the UKF, and by adjusting the
reliability parameters or the timing parameters for re-
liability updates, it is conceivable that even more accu-
rate fusions of self-localization could be achieved in the
future. Fusion using the UKF can achieve very high
precision, but compared to fusion using time-varying
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Figure 18: Detailed results for each self-localization al-
gorithm along X axis.

weighted averages, it requires separate calculations for
velocity and time intervals, and also the computational
cost of generating sigma points must be considered,
as it is higher than for other Kalman Filters. There-
fore, the choice of algorithm can vary depending on
the performance of the computer onboard the robot.
For very low-performance computers or when high real-
time performance is required, fusion using time-varying
weighted averages should be employed, while for com-
puters with slightly higher performance, fusion using
the UKF is more appropriate.

5 Fusion of Self-localization Con-
sidering Communication Inter-
ruptions

5.1 Deterioration of Network Condi-
tions

Up to this point, we have proposed fusion methods for
cases without communication delays. However, network
conditions can vary, with both good and bad situations
due to changes in the network environment. Partic-
ularly, poor network conditions can negatively impact
autonomous mobile robots. In this experiment, Agrino
and the virtual cloud are connected via a wired con-
nection, so significant data loss is unlikely. To evaluate
the impact of poor network conditions, we intention-
ally caused data loss to simulate conditions similar to
deteriorating wireless communication.

5.1.1 Communication Delays

The term ”communication delay” refers to the time lag
that occurs when data travels from the sender to the
receiver. In internet and network environments, it can
take time for data packets to reach their destination,
and these communication delays can be caused by var-
ious factors. For example, data congestion, network
congestion, processing times at routers or switches, and

11



even physical media or weather conditions can impact
this.

5.1.2 Communication Interruptions

Unlike communication delays, communication interrup-
tions refer to a complete loss of network connectivity.
This means that the data does not reach the intended
receiver at all, causing a disruption in communication.
Interruptions can be caused by hardware failures, soft-
ware issues, natural disasters, or radio signal conditions.
These interruptions can lead to serious accidents in au-
tonomous mobile robots.

5.2 Fusion of Self-Localization Consid-
ering Temporary Communication
Interruptions

The fusion of self-localization conducted outdoors was
based on the assumption that communication between
Agrino and the virtual cloud was optimal. However,
in actual usage environments, it is necessary to con-
sider risks such as communication delays and interrup-
tions. For this scenario of communication interruptions,
we created data with simulated communication delays
and evaluated the results using two implemented fusion
methods for self-localization.

5.3 Creation of Simulated Data During
Communication Interruptions

It is challenging to intentionally obtain data with com-
munication delays from experiments. Therefore, for this
study, we modified the data obtained from experiments
using a Python program to intentionally create sim-
ulated data with communication delays and interrup-
tions. The data being processed are the self-localization
results output by Fast-lio from an outdoor experiment.
Figure 19 shows the processed data. Figure 19 depicts
the data randomly removed by the Python program at
intervals from 0.1 seconds to 2.0 seconds, at 0.1-second
intervals. The data with these missing points are then
used in the fusion methods. In this Figure 19, gaps
in the robot’s position are shown. The larger these
gaps are, the longer the robot loses track of its posi-
tion, which can negatively impact the robot’s opera-
tion. Therefore, we aim to verify that the fusion of
self-localization reduces these gaps.

Figures 20 and 21 show the fusion results using
TVWA and the UKF, respectively, along with the ac-
tual positions of the robot measured by motion cap-
ture. In the fusion using TVWA, the trust value changes
sharply from 60% to 100%, resulting in more instances
where the data is not continuous compared to the fusion
using the UKF.

Additionally, Figures 22 and 23 show the coordi-
nate differences before and after time steps with miss-
ing data in the x and y directions, respectively, with
both TVWA and UKF. The orange line shows the re-
sults with TVWA, and the purple line shows those with
UKF. Both these figures show that the difference of our

2 1 0 1 2
X-direction (m)

0

1

2

3

4

5

Y-
di

re
ct

io
n 

(m
)

Modified Fast-lio data

Figure 19: Processed results for 3D self-localization.
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Figure 20: Fusion results for data using TVWA and
actual position of robot observed by motion capture.

fusion methods are smaller than the missing data. Ad-
ditionally, since the fusion using the UKF combines two
observation datasets, the graph is smoother compared
to the TVWA.

5.4 Summary

It was observed that in both methods, there are places
where the self-localization changes abruptly. Partic-
ularly with the TVWA, these abrupt changes were
more frequent compared to the UKF. It is necessary
to further investigate how these sudden changes in self-
localization affect programs related to autonomous nav-
igation.
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Figure 21: Fusion results for data using UKF and actual
position of robot observed by motion capture.

6 Conclusion
In cloud robotics, aiming to achieve high-precision and
safe self-localization methods, we designed a system
where computationally intensive 3D self-localization is
processed by a remote computer (virtual cloud), while
more cost-effective 2D self-localization is performed by
the local computer. We evaluated the results of each
localization method and examined their fusion tech-
niques, leading to the following conclusions.

• When evaluating the difference between the self-
localization results and the reference data obtained
through motion capture, the accuracy of the 3D
self-localization by Fast-lio was found to be about
0.1 m closer to the reference data compared to the
2D self-localization accuracy by AMCL.

• As methods for fusing 3D and 2D self-localization
results, two techniques, the TVWA and the UKF,
were proposed and compared. It was demonstrated
that fusion using UKF offers higher accuracy. How-
ever, UKF requires preprocessing, so depending
on the performance of the computer onboard the
robot, the TVWA could also be a viable option.

• In scenarios with intermittent communication fail-
ures or complete disconnections, using partially
missing self-localization data showed that UKF re-
sulted in less abrupt changes in self-localization
compared to the TVWA, demonstrating higher ro-
bustness against communication interruptions.

Future efforts will include the following

• In the fusion method using UKF, only the coordi-
nates of the robot were considered as a linear sys-
tem. Moving forward, the fusion will be performed
using a nonlinear system model that also includes
the robot’s orientation angles.
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Figure 22: X-direction coordinate differences before and
after time steps with missing data.
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Figure 23: Y-direction coordinate differences before and
after time steps with missing data.

• Instead of relying solely on Fast-lio’s SLAM, by
implementing self-localization according to a pre-
created 3D map, actual operation in real environ-
ments will be carried out.

• Since actual operations are expected to involve
multiple robots, the system will be updated and
ported from ROS 1 to ROS 2.
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