
Does the performance of a flood early1

warning system affect casualties and2

economic losses? Empirical analysis using3

open data from the 2018 Japan Floods4

Hitomu KOTANI5

Department of Civil and Environmental Engineering, School6

of Environment and Society, Tokyo Institute of Technology,7

Tokyo, Japan8

Wataru OGAWA9

Department of Urban Management, Graduate School of10

Engineering, Kyoto University, Kyoto, Japan11

and12

Kakuya MATSUSHIMA13

Disaster Prevention Research Institute, Kyoto University,14

Kyoto, Japan15

September 30, 202416

Corresponding author: Hitomu Kotani, Department of Civil and Environmental



Abstract17

Flood early warning systems are crucial for mitigating flood damage; how-18

ever, limitations in forecasting technology lead to false alarms and missed19

events in warnings. Repeated occurrences of these issues may cause people20

to hesitate to take appropriate action during subsequent warnings, poten-21

tially exacerbating flood damage. However, the effects of warning perfor-22

mance on flood damage in Japan have not been analyzed for actual flood23

events. This study empirically examined these effects by applying Bayesian24

regression analyses to open data on the 2018 Japan Floods in 127 munici-25

palities in four prefectures (i.e., Okayama, Hiroshima, Ehime, and Fukuoka)26

for which data were available on the real-time flood warning map (Kouzui27

Kikikuru in Japanese) during the 2018 Japan Floods, which provides limited28

open data on warning performance. Based on these data, the false alarm29

ratio (FAR) and missed event ratio (MER) for each municipality before the30

2018 Japan Floods were calculated and used as explanatory variables. The31

(1) fatalities, (2) injuries, (3) economic losses to general assets, and (4) eco-32

nomic losses to crops during the 2018 Japan Floods were used as outcome33

variables. Models with and without prefecture-specific effects (prefecture34

dummies) were considered. The results indicate that a higher FAR was35
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associated with an increase in fatalities, injuries, and economic losses to36

general assets in the models without prefecture dummies. However, these37

effects were not clearly observed in models with prefecture dummies, which38

performed better in terms of the information criterion in cases of injuries39

and economic losses to general assets. Therefore, the effects of the FAR40

on outcomes other than fatalities should be interpreted with caution. By41

contrast, no prominent positive effect of MER was found for any outcome42

variable in either model. These results provide valuable insights for improv-43

ing warning systems.44

2



Keywords False alarms; missed events; regression analyses; disaster statis-45

tics; public response46

1. Introduction47

Weather forecasts and warnings offer promising solutions for reducing48

weather-, climate-, and water-related disaster damage (Rogers and Tsirkunov49

2011; Hallegatte 2012). Scientific and technological developments have in-50

creased weather forecast skills over the past 40 years (Bauer, Thorpe &51

Brunet, 2015). Accurate forecasts are expected to save lives, support emer-52

gency management, mitigate impacts, and prevent economic losses due to53

high-impact weather conditions. With human-induced climate change lead-54

ing to more extreme weather conditions, the need for early warning systems55

(EWS) has become increasingly crucial (World Meteorological Organiza-56

tion, 2022).57

However, owing to the limitations of scientific knowledge, observation58

technology, and models, forecasts and warnings are not always accurate59

(Trainor et al. 2015), which can lead to public complacency and under-60

mine the effectiveness of an EWS. The performance of these systems is61

often measured using the false alarm ratio (FAR) and the missed event ra-62

tio (MER). False alarms refer to events that were forecasted to occur but63

did not (Table 1), and FAR is calculated as the number of false alarms64
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divided by the total number of events forecasted (Trainor et al. 2015; Lim65

et al. 2019). Similarly, missed events and MER were calculated based on66

events that were not forecasted but did occur. A well-known consequence67

of poor warning performance is the “cry wolf effect” or “false alarm ef-68

fect” (Roulston and Smith 2004; Simmons and Sutter 2009; Trainor et al.69

2015; Lim et al. 2019; LeClerc and Joslyn 2015; Sawada et al. 2022). In this70

phenomenon, people distrust subsequent warnings and hesitate to respond71

because of their prior experience with false alarms. Improving forecasting72

and warning performance is expected to reduce the abovementioned com-73

placency of the public, encourage protective actions, and mitigate human74

and property losses.75 Table 1

In Japan, the performance of forecasts and warnings has been improv-76

ing. For example, in July 2017, the Japan Meteorological Agency (JMA)77

introduced a surface rainfall index and a refined basin rainfall index into78

criteria for issuing flood warnings (Ota 2019). Through these efforts, the79

percent correct (PC)1 and probability of detection (POD)2 of flood warn-80

ings improved from 17% and 80%, respectively, in 2012 to 41% and 95%,81

respectively, in 2017. Such improvements are expected to increase the trust82

1PC is calculated as the number of hits divided by the total number of events fore-

casted.
2POD is calculated as the number of hits divided by the total number of events that

occurred.
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of local governments and residents in warnings, leading to a more accurate83

issuance of evacuation information by local governments and the promotion84

of proactive evacuation by residents (Ota 2019).85

Does flood early warning system (FEWS) performance affect flood dam-86

age in Japan? We aimed to answer this question; however, this is challeng-87

ing because there are almost no open data on the history of warning hits88

or misses in Japan, which makes it difficult to calculate FAR and MER.89

However, exceptionally, data on the PC and POD of the “real-time flood90

warning map” (Kouzui Keihou no Kikendo Bunpu or Kouzui Kikikuru in91

Japanese) during the heavy rainfall in western Japan in 2018—the 201892

Japan Floods3—are presented in a technical document by the JMA (Ota93

2019). The real-time flood warning map highlights the escalating risk of94

flood disasters in small- and medium-sized rivers owing to heavy rainfall,95

color-coded at five levels (Japan Meteorological Agency a). Based on these96

PC and POD data, we made certain assumptions and calculated the FAR97

and MER of flood warnings prior to the 2018 Japan Floods. We then focused98

on the consequences of people’s failure to take protective actions—human99

losses (i.e., the number of fatalities and injuries) and property losses (i.e.,100

the number of economic losses)—during the 2018 Japan Floods in munic-101

3It is identified by the Global IDEntifier (GLIDE) number FL-2018-000082-JPN, avail-

able at https://glidenumber.net/glide/public/search/search.jsp.
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ipalities where flood warnings were issued. Using disaster statistical data102

on human and property damage, we empirically analyzed the relationship103

between pre-disaster warning performance and flood damage.104

The present study’s findings underscore the social value of FEWS and105

provide insights for designing a more effective FEWS. Revealing the effects106

of the performance of FEWS—FAR and MER—on flood damage could help107

demonstrate the social significance of improving warning performance. Ad-108

ditionally, identifying the performance indicators that can be improved to109

reduce particular types of damage can guide the development of more so-110

cially beneficial technologies and systems.111

2. Literature Review112

2.1 The effect of performance of EWS in the United States113

Past research has empirically studied the relationship between warning114

performance, people’s protective actions, and the resulting disaster damage,115

especially in the context of tornado warnings in the United States (U.S.).116

For example, Simmons and Sutter (2009) conducted a statistical analysis of117

the relationship between the FAR in tornado warnings and human casualties118

caused by tornadoes (Simmons and Sutter 2009). Regression analyses were119

conducted on over 20,000 tornadoes that occurred in the continental U.S.120
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between 1986 and 2004, using the tornado warning FAR as the explanatory121

variable and the number of tornado fatalities and injuries as the outcome122

variables. The results showed that the number of fatalities and injuries from123

tornadoes was significantly higher in areas with a higher FAR.124

The process by which warning performance influences protective actions,125

which may result in tornado damage, has also been explored. Ripberger et126

al. (2015) focused not only on FAR but also on MER, and examined their127

effects on people’s perceptions of tornado warnings and trust in the agency128

responsible for issuing tornado warnings by conducting an online survey of129

residents in tornado-prone areas in the U.S. (Ripberger et al. 2015). The130

results indicate that residents in areas with higher actual FAR and MER131

perceived higher FAR and MER, respectively. The results also indicated132

that residents with higher perceived FAR and MER had less trust in the133

National Weather Service (NWS), the agency responsible for issuing tornado134

warnings, and respondents with less trust in the NWS were less willing to135

take action in response to future warnings. This suggests that residents in136

areas with higher actual FAR and MER may be less likely to take protective137

action in response to future warnings.138

Trainor et al. (2015) analyzed the relationship between actual and per-139

ceived FAR and their effects on actual protective actions during tornado140

warnings (Trainor et al. 2015). The results of the analysis of data collected141
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through telephone interviews with residents indicated that actual FAR had142

no significant effect on residents’ perceived FAR, whereas actual FAR had a143

significant negative effect on taking protective actions (e.g., evacuation, in-144

formation gathering, and property protection). This suggests that residents145

in areas with high actual FAR may be less likely to take protective action146

in response to warnings, even though they are not aware of the actual FAR.147

In contrast, Lim et al. (2019) reported different findings (Lim et al.148

2019). Their analysis of survey data from residents in the southeastern U.S.,149

where most tornado fatalities occur in the country, found no significant150

correlation between actual and perceived FAR, and actual FAR did not151

significantly affect protective actions. However, residents with a higher152

perceived FAR were more likely to take actions such as taking shelter when153

a warning was issued.154

Overall, while previous studies reported mixed results, they consistently155

analyzed how the performance of warnings—actual FAR and MER—affects156

protective actions and the resulting damage, considering factors such as157

public perception of and trust in warnings. However, these findings for158

tornadoes in the U.S. may not necessarily apply to floods in Japan given159

the differences in disaster characteristics and false alarm frequencies. For160

example, the FAR for tornado warnings in the U.S. was approximately161

75% (Simmons and Sutter 2009), whereas the FAR for flood warnings in162
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Japan was 59% in 2018 (Ota 2019). The effects of warning performance163

on protective actions may vary depending on the frequency of false alarms,164

hazard types, and disaster impacts.165

2.2 The effect of performance of EWS in Japan166

Studies of the effects of warnings and evacuation advisory performance167

on protective actions and disaster damage in Japan are limited. For ex-168

ample, Yoshii et al. (2008) and Kaziya et al. (2018) conducted question-169

naire surveys and interviews with residents for whom tsunami warnings170

and evacuation advisories/instructions for landslides had been issued mul-171

tiple times over a certain period (Yoshii et al. 2008; Kaziya et al. 2018).172

These studies qualitatively pointed out that one reason why residents did173

not evacuate when a relevant warning or evacuation advisory/instruction174

was subsequently issued was the perception of previous warnings or advi-175

sories/instructions as false alarms.176

However, few statistical studies have been conducted. Okumura et al.177

(2001) defined the subjective reliance on evacuation warnings as the proba-178

bility that residents will suffer damage after receiving an evacuation advisory179

(Okumura et al. 2001). A questionnaire survey was conducted on the level180

of willingness to take evacuation action (evacuating immediately, preparing181

for evacuation, staying at home, etc.) of residents affected by the landslide182
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disaster of the 1999 Hiroshima torrential rainfall under hypothetical disaster183

information provision. The results showed that the subjective probability184

significantly decreased when the evacuation advisory was a false alarm but185

increased when the advisory was a hit or missed event. Furthermore, it was186

shown that residents with higher subjective probability were more willing187

to evacuate. Therefore, it was suggested that false alarms reduce the sub-188

jective probability and, consequently, make residents less likely to evacuate.189

Oikawa and Katada (2016) conducted experiments on warning strategies190

and people’s protective actions (Oikawa and Katada 2016). Based on the191

basic policy of “issuing evacuation advisories as early as possible without192

considering false alarms” (the guidelines for evacuation advisories issued by193

the Cabinet Office in 2014), they conducted an experiment to test the ef-194

fects of two types of warning strategies on the decision to evacuate: (1) a195

low-frequency strategy prioritizing the avoidance of false alarms, and (2) a196

high-frequency strategy prioritizing the avoidance of missed events. The re-197

sults showed that, in the short term, the high-frequency strategy increased198

evacuation rates, whereas the low-frequency strategy decreased them. How-199

ever, in the long term, the effectiveness of both strategies was diminished,200

and the absence of an evacuation advisory in the high-frequency strategy201

significantly influenced the decision to not evacuate. The authors concluded202

that while high-frequency strategies might be effective in the short term,203
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their long-term significance is limited.204

However, these studies were conducted under hypothetical or experi-205

mental conditions, and their findings have not been empirically validated206

in actual disaster scenarios. To the best of our knowledge, no empirical207

analyses have explored the relationship between warning performance and208

actual protective actions or the resulting damage in Japan.209

This study contributes to the literature by focusing on flood warnings in210

Japan and statistically analyzing how their performance affects actual flood211

damage. Building on Simmons and Sutter (2009), we performed regression212

analyses using warning performance as the explanatory variable and flood213

damage as the outcome variable. For the flood warning performance and214

flood damage data, we utilized the open data described in Section 3. Unlike215

Simmons and Sutter (2009), who considered only FAR, we included MER,216

drawing on the approaches of Ripberger et al. (2015) and Okumura et al.217

(2001). Additionally, whereas Simmons and Suter (2009) primarily focused218

on human casualties, we considered a broader range of protective actions4219

and examine the resulting economic losses to general assets and crops.220

4Representative measures include using sandbags and waterproof boards to protect

houses from flooding as well as moving assets (e.g., vehicles) to higher ground before

flooding occurs.
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3. Data221

3.1 Target flood and municipalities222

This study focuses on the damage caused by the 2018 Japan Floods, for223

which the PC and POD of a real-time flood warning map were published by224

Ota (2019). During the 2018 Japan Floods, river overflows and mudslides225

occurred simultaneously in a wide area centered in western Japan from June226

28 to July 8, 2018, owing to heavy rains caused by Typhoon Prapiroon and a227

rainy season front (Ministry of Land, Infrastructure, Transport and Tourism228

2019). This caused more than 700 casualties (Fire and Disaster Manage-229

ment Agency 2019) and economic losses of approximately 1.2154 trillion yen230

(Ministry of Land, Infrastructure, Transport and Tourism 2018a), making231

it the “worst flood disaster of the Heisei Era” (The Nikkei 2018).232

The unit of analysis in this study is the municipalities within the four233

prefectures with a large number of damaged rivers during the 2018 Japan234

Floods: (1) Okayama, (2) Hiroshima, (3) Ehime, and (4) Fukuoka Prefec-235

tures. The focus on these prefectures is due to the availability of PC and236

POD data from Ota (2019). All municipalities within these four prefectures237

received flood warnings during the heavy rainfall in the 2018 Japan Floods238

(from June 28 to July 8, 2018) (Japan Meteorological Agency e). This al-239

lows for an analysis of how people responded to the flood warnings and the240
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extent of the resulting damage. The final sample for analysis included 127241

municipalities (n = 127), after excluding three municipalities from the 130242

municipalities in the prefectures for the reasons discussed in Section 3.3b.243

3.2 Outcome variables244

As the outcome variables for the regression analyses, this study focused245

on four types of flood damage in each municipality that could be obtained246

from official statistics: the numbers of (1) fatalities [persons], (2) injuries247

[persons], (3) economic losses to general assets5 (general assets and business248

interruption losses) (hereafter, simply “economic losses (general assets)”)249

[thousands of yen], and (4) economic losses to general assets (crops) (here-250

after, “economic losses (crops)”) [thousands of yen]. By analyzing these four251

outcome variables, the study could determine which types of damage were252

affected by the performance of flood warnings. Data on the numbers of (1)253

fatalities and (2) injuries in each municipality were derived from technical254

disaster damage reports compiled by the prefectures (Hiroshima Prefecture255

2018; Fukuoka Prefecture 2019; Okayama Prefecture 2020; Ehime Prefec-256

5“Economic losses to general assets” include physical damage to buildings, household

goods, business assets, and crops, as well as losses due to business interruptions (Ministry

of Land, Infrastructure, Transport and Tourism 2018b).
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ture 2023) and the Cabinet Office (Cabinet Office 2019)6. The data for the257

(3) economic losses (general assets) and (4) economic losses (crops) for each258

municipality were based on a statistical survey of flood damage related to259

the 2018 Japan Floods (Ministry of Land, Infrastructure, Transport and260

Tourism 2018b). The distributions of each outcome variable are shown in261

Fig. 1, and the descriptive statistics are presented in Appendix A. As can262

be seen from the figure, each variable is mostly concentrated at zero, the263

distribution of which is left-skewed; that is, most municipalities experienced264

no damage, but others experienced much greater damage.265 Fig. 1

6These reports compiled by the prefectures show the numbers of deaths and injuries

due to direct disaster damage at the municipal level, but do not distinguish between

those caused by river overflows and those caused by landslides. On the other hand, the

data from the Cabinet Office disclose the number of deaths and injuries due to landslide

disasters at the municipal level. In this study, the number of deaths and injuries due to

landslides at the municipal level based on the Cabinet Office data was subtracted from

the number of deaths and injuries due to direct disaster-related deaths at the municipal

level based on the data from each prefecture, and these resulting figures were considered

as the number of (1) deaths and (2) injuries due to floods in each municipality.
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3.3 Explanatory variables266

a. FAR and MER267

The FAR [%] and MER [%] of flood warnings before the 2018 Japan268

Floods for each municipality were based on Ota (2019), where the PC [%]269

and POD [%] of the real-time flood warning map during the 2018 Japan270

Floods were published. Ota (2019) compiled the damage occurrence and271

level of flood warnings for each river during the 2018 Japan Floods and272

calculated the PC and POD for each prefecture. For example, as illustrated273

in Table 2, the PC and POD for each prefecture were obtained for the level274

of “Warning (Red)” (Level 3), which requires evacuation preparations and275

the prompt commencement of evacuation for the elderly. From these PC276

and POD figures, the FAR and MER for each prefecture can be calculated277

using Eqs. (1) and (2), respectively.278 Table 2

FAR = 100− PC (1)

MER = 100− POD (2)

In this study, we made the following three major assumptions to derive279

the FAR and MER of flood warnings for each municipality before the 2018280

Japan Floods from the PC and POD of each prefecture during the 2018281

Japan Floods published by Ota (2019).282
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• Assumption 1: The performance of flood warnings for each mu-283

nicipality is consistent with the performance of the warnings corre-284

sponding to the “Warning (Red)” level in the real-time flood warning285

map7.286

• Assumption 2: The performance of warnings corresponding “Warn-287

ing (Red)” level of real-time flood warning map at the time of the288

2018 Japan Floods is representative of warning performance before289

the floods8.290

7In Japan, five levels have been set to provide an intuitive understanding of the

level of a disaster and the actions to be taken. At Alert Level 3, people are expected

to check hazard maps, prepare for evacuation, and in some cases voluntarily evacuate

(Japan Meteorological Agency, d). Warnings associated with Level 3 are aimed to be

issued several hours before the expected event (Japan Meteorological Agency, d). Flood

warnings issued for each municipality and the warnings corresponding to the “Warning

(Red)” level in the real-time flood warning map fall under the same Level 3. Therefore,

we assumed that they had similar performance.
8Many factors that affect the performance of flood forecasting are river-specific. For

example, river-specific infrastructure and conditions (e.g., “dams,” “weirs,” “diversion

and spillways,” “environmental changes due to renovation,” “backwaters,” and “ex-

tremely small watersheds”) account for a large proportion of the factors that are assumed

to contribute to the reduced performance of forecasts (according to the presentation “Cur-

rent Status and Issues of Hazard Distribution (Kikikuru) from the Viewpoint of IBF [IBF

no Kanten de Miru Kikendo Bunpu (Kikikuru) no Genjo to Kadai]” by Takuma Ota of

the Meteorological Research Institute, JMA, at the 2023 Spring Conference of the Mete-
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• Assumption 3: The performance of flood warnings issued for each291

municipality does not differ significantly within the same prefecture.292

Based on these assumptions, the FAR and MER of flood warnings issued293

in each municipality before the 2018 Japan Floods are assumed to be the294

same as those corresponding to the “Warning (Red)” level for each prefec-295

ture in the real-time flood warning map, as reported in Ota (2019). Thus,296

the FAR and MER values for each prefecture in Table 2 were used in the297

analysis as the FAR and MER for the municipalities within each prefecture.298

b. Basin rainfall index criterion299

Selecting appropriate confounding variables for which to control is cru-300

cial for reliable causal inference. Variables that influence both the cause301

and outcome should be included as explanatory variables in the model to302

minimize omitted variable bias (VanderWeele 2019). As the primary objec-303

tive of the regression analysis in this study was to estimate the effects of304

the FAR and MER of flood warnings on the damage (outcome variables), it305

was important to control for confounding factors that influence both warn-306

ing performance and flood damage.307

orological Society of Japan). Since these factors do not change significantly in the short

term, we assumed the performance of warnings at the time of the 2018 Japan Floods to

be strongly correlated with that before the floods.
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This study took the basin rainfall index criterion (Ryuiki Uryō Shisū308

Kijun in Japanese) [.] as a primary confounding factor. The basin rainfall309

index criterion or the combination of the surface rainfall index and basin310

rainfall index has been established for each municipality as the issuance cri-311

terion for flood warnings (Japan Meteorological Agency b). Lower criteria312

may result in more frequent warnings, potentially increasing the number of313

false alarms. Therefore, the basin rainfall index criterion was considered to314

be correlated with the warning performance (FAR and MER). In addition,315

the basin rainfall index criterion reflects, to some extent, the conditions of316

levees and other infrastructure (Japan Meteorological Agency c). For exam-317

ple, areas with advanced infrastructure tend to have a higher basin rainfall318

index criterion. Flooding is less likely to occur in these areas, resulting in319

reduced flood damage. In other words, the basin rainfall index criterion is320

also considered to be correlated with flood damage. Thus, the basin rainfall321

index criterion can influence both the performance of flood warnings (FAR322

and MER) and the extent of flood damage (outcome variables).323

The basin rainfall index criteria for all the municipalities used in this324

analysis were obtained from the JMA’s list of criteria for issuing warnings325

(Japan Meteorological Agency b). When a municipality had multiple basins326

and more than one criterion, the median value of the criteria was used.327

Due to the absence of basin rainfall index criteria, three municipalities—(1)328
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Kamijima-cho, Ehime Prefecture; (2) Ikata-cho, Ehime Prefecture; and (3)329

Oto-machi, Fukuoka Prefecture—were excluded from the analysis. Descrip-330

tive statistics for the basin rainfall index criteria are provided in Appendix331

A.332

c. Other variables333

In addition to the basin rainfall index criteria, the following five vari-334

ables were included as explanatory variables: (1) flooded area (residential335

land and others) [m2], (2) flooded area (farmland) [m2], (3) population [per-336

sons], (4) percentage of population over 65 years old [%], (5) sex ratio9 [.]337

for each municipality. Covariate control recommends that variables that338

influence the cause (i.e., FAR and MER) or outcome (i.e., flood damage)339

should also be included as explanatory variables in the regression analy-340

ses (VanderWeele 2019). Previous studies have indicated that the scale of341

hazards and local population density have significant positive effects on the342

number of fatalities and injuries (Simmons and Sutter 2009). Additionally,343

age and gender have been found to significantly influence the protective ac-344

tions taken when a warning is issued (Trainor et al. 2015; Lim et al. 2019).345

Based on these findings, the aforementioned five variables were selected.346

Data for these variables were sourced from public records. Specifically,347

9The sex ratio is the number of males per 100 females.
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(1) flooded area (residential land and others) [m2] and (2) flooded area348

(farmland) [m2] in each municipality were obtained from the disaster statis-349

tics (i.e., Flood Damage Statistics Survey in 2018) (Ministry of Land, In-350

frastructure, Transport and Tourism 2018b); (3) population [persons], (4)351

percentage of population over 65 years old [%], and (5) sex ratio [.] in352

each municipality were taken from the 2015 Census (Ministry of Internal353

Affairs and Communications 2017). Descriptive statistics for these vari-354

ables are provided in Appendix A. The maximum correlation between the355

explanatory variables was approximately 0.45 in absolute value, which is356

well below the 0.80–0.95 threshold typically associated with multicollinear-357

ity (Matsuura 2022), suggesting that multicollinearity is not a concern in358

this analysis.359

4. Regression Models360

This study employed two types of regression models tailored to the na-361

ture of the outcome variables, which were either discrete or continuous data362

with non-negative values: For the discrete variable—(1) fatalities and (2)363

injuries—we used zero-inflated negative binomial (ZINB) models as de-364

scribed in Section 4.1; for the continuous variables—(3) economic losses365

(general assets) and (4) economic losses (crops)—we used the hurdle logn-366

normal (HL) model as detailed in Section 4.2.367
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The dataset in this study is nested, with each municipality (the unit of368

analysis) belonging to a specific prefecture. This nested structure may intro-369

duce group differences due to prefecture-level factors that are not captured370

by the municipal-level explanatory variables alone (Snijders and Bosker371

2011; Matsuura 2022). For instance, variations in disaster management sys-372

tems across prefectures can lead to such differences. To account for these373

potential group differences, we employed two versions of each model: (1)374

without and (2) with prefecture dummy variables (referred to as “Model 1”375

and “Model 2,” respectively)10. The use of multiple models enabled us to376

verify the robustness of the results and make comparisons.377

4.1 Zero-inflated negative binomial models378

The variables representing fatalities and injuries contain many zeros and379

exhibit overdispersion, as described in Section 3.2, thus making the ZINB380

model appropriate. The ZINB model assumes a two-step data generation381

process. In the first process, a sample has a probability 1 − q of being 0382

(y = 0), and in the second process, a sample has a probability q of following383

10Although a random intercept model could also be used to account for group differ-

ences as random effects, the dummy variable approach is recommended when the number

of groups (N < 10) is small (Snijders and Bosker 2011). In fact, random intercept models

were estimated, but the parameter estimates related to the random effects were unstable.

Therefore, only Model 1 and Model 2 are presented in this paper.
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a negative binomial distribution. This two-step process effectively handles384

data with an excess of zeros. In addition, a negative binomial distribution is385

appropriate for overdispersed count data because it accounts for heterogene-386

ity in the mean parameter of the Poisson distribution (Cameron and Trivedi387

2005; Simmons and Sutter 2009). In this case study, the probability q rep-388

resents whether a flood hazard occurs in a municipality (the first process),389

and next, the likelihood of deaths or injuries is captured (the possibility of390

no deaths or injuries is also considered) when the hazard occurs (the second391

process). The probability mass function for the outcome variable y is as392

follows:393

ZINB(y|q, µ, θ) =


1− q + q · NB(0|µ, θ) if y = 0,

q · NB(y|µ, θ) if y > 1.

(3)

NB(y|µ, θ) is a negative binomial distribution with mean µ and variance

µ + µ2/θ, and θ (> 0) is the dispersion parameter. The negative binomial

probability mass function is given by

NB(y|µ, θ) = Γ(θ + y)

Γ(θ)Γ(y + 1)

(
θ

θ + µ

)θ (
µ

θ + µ

)y

, (4)

where Γ is the gamma function. In this study, the probability q of hazard394

occurrence was simplified to follow a Bernoulli process, while the mean µ395

of NB(y|µ, θ), which is primarily related to the amount of damage, was396

regressed on the explanatory variables.397
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a. Model 1: Without prefecture dummies398

The first model does not consider prefecture-specific effects (i.e., no pre-

fecture dummies), and is formulated as follows:

lnµij = ln xPopulation,ij + β0 + β1xFAR,ij

+ β2xBasinRainfall,ij + β3xFloodedResidential,ij

+ β4xFloodedFarmland,ij + β5xElderly,ij + β6xSex,ij , (5)

where i denotes a municipality in prefecture j; j = 1, 2, 3, 4 denote Okayama,399

Hiroshima, Ehime, and Fukuoka Prefectures, respectively. nj is the num-400

ber of municipalities in Prefecture j, and n =
∑4

j nj. xPopulation,ij is the401

population, xFAR,ij the FAR, xBasinRainfall,ij the basin rainfall index cri-402

terion, xFloodedResidential,ij the flooded area (residential land and others),403

xFloodedFarmland,ij the flooded area (farmland), xElderly,ij the percentage of404

population over 65 years old, and xSex,ij the sex ratio for Municipality i in405

Prefecture j. When examining the effect of the MER, we replace xFAR,ij406

with xMER,ij . The parameters βk (k = 0, . . . , 6) are the intercept and coef-407

ficients of the explanatory variables, respectively. These parameters, along408

with q and θ, are to be estimated. The main focus is on the estimation of409

β1, the coefficient of FAR or MER. A positive β1 indicates that a munici-410

pality with a higher FAR (or MER) has more fatalities or injuries. The first411

term ln xPopulation,ij on the right side of Eq. (5) is an offset term that allows412
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the model to account for the number of fatalities or injuries relative to the413

population of each municipality (Christensen et al. 2010).414

b. Model 2: With prefecture dummies415

The second model includes prefecture-specific effects (i.e., prefecture

dummies) and is formulated as follows:

lnµij = ln xPopulation,ij + β0 + β02xHiroshima + β03xEhime + β04xFukuoka

+ β1xFAR,ij + β2xBasinRainfall,ij + β3xFloodedResidential,ij

+ β4xFloodedFarmland,ij + β5xElderly,ij + β6xSex,ij . (6)

This model includes the additional terms β02xHiroshima, β03xEhime, β04xFukuoka416

in Eq. (5) to account for prefecture-specific effects. The dummy variables417

xHiroshima, xEhime, and xFukuoka take the value 1 if the municipality be-418

longs to Hiroshima, Ehime, or Fukuoka, respectively, and 0 otherwise. The419

parameters β0j (j = 2, 3, 4), along with q and θ, are estimated.420

4.2 Hurdle lognormal model421

The economic losses (general assets) and economic losses (crops) are

non-negative continuous data with many zeros, as shown in Section 3.2;

thus, we used HL models, which are well-suited to these data characteristics

(Cameron and Trivedi 2005; Hamada et al. 2019). The HL models also

assume a two-step data generation process. In the first process, a sample
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has a probability 1−q of being 0 (y = 0), and in the second process, a sample

has a probability of q of following a lognormal distribution. This two-step

process can represent data containing many zeros. In our case study, the

probability of q represents whether a flood hazard occurs in a municipality

(the first process), and the economic losses then always arise (y > 0) when

the hazard occurs (the second process). The probability density function

for the outcome variable y is as follows:

HL(y|q, µ, σ) =


1− q if y = 0,

q · Lognormal(y|µ, σ) if y > 0.

(7)

Lognormal(y|µ, σ) represents the probability density function for the lognor-422

mal distribution, where ln y follows a normal distribution with mean µ and423

standard deviation σ. As in Section 4.1, the mean µ of Lognormal(y|µ, σ)424

was regressed on the explanatory variables using Models 1 and 2.425

a. Model 1: Without prefecture dummies426

The first model, without prefecture dummies, is formulated as follows:

lnµij =β0 + β1xFAR,ij + β2xBasinRainfall,ij + β3xFloodedResidential,ij

+ β4xFloodedFarmland,ij + β5xElderly,ij + β6xSex,ij + β7xPopulation,ij .

(8)

The parameters βk (k = 0, . . . , 7), q, and σ are estimated.427
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b. Model 2: With prefecture dummies428

The second model, with prefecture dummies, is formulated as follows:

lnµij =β0 + β02xHiroshima + β03xEhime + β04xFukuoka

+ β1xFAR,ij + β2xBasinRainfall,ij + β3xFloodedResidential,ij

+ β4xFloodedFarmland,ij + β5xElderly,ij + β6xSex,ij + β7xPopulation,ij .

(9)

The parameters β0j (j = 2, 3, 4), βk (k = 0, . . . , 7), q, and σ are estimated.429

4.3 Bayesian estimation430

a. Overview of estimation431

We employed a Bayesian approach to estimate the models. This method432

treats parameters as random variables. Drawing on Bayes’ theorem, the433

prior probability distribution of unknown parameters, that is, the prior434

distribution, is updated, given the data obtained, to a posterior distribu-435

tion (Gelman et al. 2013; Lee and Wagenmakers 2013; Levy and Mislevy436

2017; Matsuura 2022). That is, p(η|D) ∝ p(D|η)p(η), where η is an437

unknown parameter vector, D is data, p(η) is a prior distribution of the438

parameters, p(D|η) is a likelihood, and p(η|D) is a posterior distribution.439

In most instances, the posterior distribution, which expresses the uncer-440

tainty of the parameters, is obtained by simulation using so-called Markov441
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chain Monte Carlo (MCMC) methods. Sampling-based Bayesian methods442

depend less on asymptotic theory, and therefore have the potential to pro-443

duce more reliable results, even with small samples, than those obtained444

by the maximum likelihood method (Song and Lee 2012; Van De Schoot445

et al. 2017). Our data are from only four prefectures; thus, the sample446

is not large, which justifies the use of the Bayesian method. Furthermore,447

the Bayesian method is more flexible with complex datasets and model-448

ing (Hamada et al. 2019; Kruschke 2021). As our analysis incorporates449

zero-inflated and hurdle processes (as shown in Sections 4.1 and 4.2), the450

Bayesian approach is considered suitable.451

b. Prior distributions452

In the estimation, we used noninformative and weakly informative priors

as follows:

βk ∼ Normal (0, 10) (10)

β0j ∼ Normal (0, 10) (11)

q ∼ Uniform (0, 1) (12)

θ ∼ Gamma (1, 1) (13)

σ ∼ Normal+(0, 5) (14)

where Uniform (0, 1) is a continuous uniform distribution on the interval453

[0, 1]. Gamma (1, 1) is a gamma distribution whose density function is454
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Gamma (θ|a = 1, b = 1) = baθa−1 exp (−bθ)/Γ(a) with mean a/b and stan-455

dard deviation
√
a/b. Normal+(0, 5) is a normal distribution with a mean456

of 0 and a standard deviation of 5, truncated to positive values. Eq. (11)457

was used only for Model 2; Eq. (13) was only applied to ZINB models, and458

Eq. (14) was applicable only to HL models.459

c. Computations460

We conducted a Bayesian estimation using the Stan program (Carpenter461

et al. 2017) using RStan (Stan Development Team ). We ran the MCMC462

with 16, 000 iterations, following a burn-in of 1000 iterations for each of the463

four chains, and every fifth iteration was saved for each chain. We drew464

12, 000 (= (16, 000− 1000)× 4÷ 5) samples for each parameter.465

Before running the simulation, we transformed the data to ease the con-466

vergence (Matsuura 2022) as follows: the FAR, MER, percentage of popu-467

lation over 65 years, and sex ratio were divided by 100. The flooded area468

(residential land and others), flooded area (farmland), and basin rainfall469

index criteria were standardized. The population was standardized only for470

HL models.471

When estimating the posterior distribution of the parameters of each472

model, the models were evaluated using the WAIC (Watanabe-Akaike in-473

formation criterion or widely applicable information criterion). The WAIC474
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approximates the generalization loss (roughly speaking, the closeness be-475

tween the true distribution of data and the predictive distribution gener-476

ated by the model) (Gelman et al. 2013; Hamada et al. 2019; Matsuura477

2022). The smaller the WAIC, the better the model in terms of a smaller478

generalization loss. To estimate WAIC, we used the loo package (Gabry479

2024).480

The MCMC chains were checked in terms of convergence and resolu-481

tion. Specifically, model convergence was assessed using the Gelman-Rubin482

statistic (Gelman and Rubin 1992). In the following estimation, all param-483

eters reached statistical values lower than the recommended value of 1.1.484

Posterior samples should be less autocorrelated and the effective sample size485

(ESS)11 should be sufficient to obtain stable parameter estimates, particu-486

larly for the stable limits of credible intervals (Kruschke 2014, 2021). The487

ESS of each parameter exceeded the recommended value of 10, 000.488

5. Results489

The estimation results for the posterior distributions of the FAR and490

MER parameters for each outcome variable—the (1) fatalities, (2) injuries,491

(3) economic losses (general assets), and (4) economic losses (crops)—are492

11The ESS is the effective number of steps in the MCMC chain after the clumpiness

of autocorrelation is factored out.
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presented in Sections 5.1 through 5.4, respectively. Detailed results for493

the posterior distributions, including other parameters, are provided in the494

Supplementary Materials.495

5.1 Fatalities496

Figure 2a displays the posterior distribution of the parameter β1 for the497

FAR, along with the WAIC for each model; Fig. 2b shows the same for the498

MER. The vertical axis in each figure represents the model number. Each499

posterior distribution is depicted with the posterior mean in a circle and500

the 90% highest density interval (HDI)12 on a line.501

A positive trend was observed for FAR in Model 1, where the 90% HDI502

did not overlap with 0, and the probability that the parameter was positive503

was extremely high (Pr(β1 > 0) = 0.997). This suggests that municipalities504

with higher FAR experienced more fatalities. However, in Model 2, the 90%505

HDI overlapped with 0, and the distribution was widely spread over both506

positive and negative values. When comparing the WAIC of the models,507

Model 1 had a lower value, indicating that it was more credible from the508

WAIC perspective.509

12The 90% HDI summarizes the distribution by specifying an interval that spans most

of the distribution, say 90%, such that every point inside the interval has a higher cred-

ibility than any point outside it (Kruschke 2014).

30



In contrast, the posterior distribution for MER was centered around 0510

in both models, implying that there is no strong evidence to suggest that511

MER has a substantial effect on the number of fatalities.512 Fig. 2

5.2 Injuries513

A positive trend in FAR was also observed in Model 1 for injuries514

(Fig. 3a). The 90% HDI for Model 1 did not overlap with 0, and the515

probability that the parameter was positive was extremely high (Pr(β1 >516

0) = 0.999). This suggests that municipalities with higher FAR experienced517

more injuries. However, in Model 2, the 90% HDI overlapped with 0, and518

the distribution was widely spread over positive and negative values. More-519

over, the WAIC for Model 2 was smaller, indicating that the results from520

Model 1 may be less reliable when considering WAIC. Therefore, the effect521

of FAR on the number of injuries should be interpreted with caution.522

For the MER parameter, a negative trend was observed in Model 1523

(Fig. 3b), suggesting that a higher MER may be associated with fewer524

injuries. However, Model 2, which had a posterior distribution centered525

around 0 and a smaller WAIC, indicated that this negative association526

should be interpreted cautiously.527 Fig. 3
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5.3 Economic losses (general assets)528

For economic losses (general assets), a positive trend was observed for529

the FAR parameter in both models (Fig. 4a). In Model 1, the 90% HDI530

did not overlap with 0, and the probability that the parameter was positive531

was extremely high (Pr(β1 > 0) = 1.000). Although Model 2 showed a 90%532

HDI overlap with 0, the probability that the parameter was positive was still533

high (Pr(β1 > 0) = 0.788). A positive parameter means that municipalities534

with higher FAR suffered greater economic losses (general assets). However,535

Model 2 had a lower WAIC, suggesting that the results of Model 1 should536

be considered with caution.537

For the MER parameter, the posterior distribution in Model 1 showed538

a negative trend, but Model 2 had a widely spread distribution centered539

around 0 with a smaller WAIC (Fig. 4b). These results suggest that there540

is no strong evidence for a positive effect of MER on economic losses (general541

assets).542 Fig. 4

5.4 Economic losses (crops)543

Although positive trends were observed for both FAR and MER parame-544

ters regarding economic losses (crops), these effects were not as pronounced545

as those observed for the other outcome variables (Fig. 5). The 90% HDIs546

for both models overlapped with 0, and the posterior means were close to547
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0, indicating that neither FAR nor MER had a strong or clear effect on548

economic losses (crops). Of the variables examined, the effect of FAR on549

general losses (crops) appeared to be the weakest.550 Fig. 5

6. Discussion and Conclusions551

Frequent false alarms or missed events may erode public trust in warn-552

ings and their issuers, potentially leading to a decreased likelihood of pro-553

tective action in response to future warnings, thereby increasing disaster554

damage. In this study, we used limited open data on FAR and MER in555

Japan to analyze their effects on human and property damage at the mu-556

nicipal level during the 2018 Japan Floods, employing Bayesian statistical557

models. We discuss which types of damage are associated with FAR and558

MER (Section 6.1) and suggest measures for improving the effectiveness of559

FEWS (Section 6.2).560

6.1 Effect of FAR and MER561

The results in Section 5 suggest that we cannot deny the possibility that562

higher FAR increases several types of flood damage. Specifically, Model 1563

in Figs. 2a, 3a, and 4a suggests that FAR may be associated with higher (1)564

fatalities, (2) injuries, and (3) economic losses (general assets), as indicated565

by the 90% HDI of the posterior distribution, which does not overlap with566
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0. However, in Model 2, which included prefecture-specific effects, such as567

disaster management systems, the influence of FAR was less pronounced.568

The posterior distribution of the FAR parameter in Model 2 is positively569

skewed for (3) economic losses (general assets) (Fig. 4a), but none of the570

posterior distributions show a strong positive trend, in that their 90% HDIs571

do not overlap with 0 (Figs. 2a and 3a). Additionally, Model 2 showed a572

lower WAIC than Model 1 for both injuries and economic losses (general573

assets), suggesting that the effects of FAR on these two outcomes should be574

interpreted with caution.575

The finding that FAR is associated with the number of fatalities aligns576

with that of Simmon and Sutter (2009), who studied tornado warnings577

in the U.S. It is also consistent with previous studies (Ripberger et al.578

2015; Trainor et al. 2015) that found that a higher FAR hampers protec-579

tive actions in the future and during actual tornado warnings in the U.S.580

This suggests that among the measures of performance of flood warnings,581

the FAR is particularly strongly associated with life-saving behavior (e.g.,582

evacuation).583

Several reasons could explain why the FAR did not have as strong an584

effect on the other variables. One possible reason is the “risk perception585

paradox,” where higher risk perception does not necessarily lead to disas-586

ter preparedness actions (Wachinger et al. 2013). Wachinger et al. (2013)587
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attributed this paradox to confusion or ignorance about the appropriate588

actions to take and a lack of capacity and resources to help oneself. While589

some of these factors were accounted for in this study (e.g., population over590

65 years of age and sex ratio), there may be unmeasured effects that influ-591

ence the outcomes. During the 2018 Japan Floods, even if people trusted592

the warnings, they might not have had the ability or knowledge to act.593

Other possible reasons could be the characteristics of flood warnings.594

Flood warnings are issued when serious flooding is expected to occur, but595

they do not explicitly instruct people on the actions they should take, unlike596

evacuation orders (Yamori, 2016). Consequently, flood warnings might not597

have been strongly associated with intentions related to protective actions598

and might not have had significant effects on flood damage.599

Conversely, MER did not show a positive association with the casualties600

or economic losses (Figs. 2b–5b). A possible reason is the influence of past601

disaster experiences in addition to the reasons mentioned above. Wachinger602

et al. (2013) cite past disaster experience, in addition to trust in warnings,603

as one factor that influences heightened risk perception. Municipalities with604

more missed events may have suffered significant damage in the past, and605

as a result, it can be inferred that residents had a higher risk perception,606

and some residents took action when a warning was issued. Okumura et al.607

(2001) also showed that when a missed event occurred, unlike in the case608
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of a false alarm, people increased their subjective reliance on evacuation609

warnings and were more willing to take evacuation actions. The fact that610

the posterior distribution of the MER parameter showed a negative trend611

for some outcome variables (Model 1 for Figs. 3b and 4b) is consistent with612

their findings. Therefore, we conclude that we obtained the result that613

higher MER does not necessarily increase flood damage.614

6.2 Implication for effective FEWS615

Our findings suggest that issuing frequent warnings, which may result in616

a large number of false alarms, can have negative consequences, as concluded617

by Oikawa and Katada (2016) based on their experiments. One possible618

mechanism is that frequent false alarms decrease people’s trust in warnings,619

resulting in their reluctance to take protective action (e.g., evacuation) in620

response to subsequent warnings. Therefore, a strategy issuing frequent621

warnings must consider the adverse effects of false alarms on protection622

actions and reduce such adverse effects. For example, LeClerc and Joslyn623

(2015) suggested that providing information on probabilistic forecasts, in624

addition to information on deterministic forecasts, may increase trust in and625

responsiveness to weather information. In the context of floods in Japan,626

offering probabilistic data may encourage residents to take protective action.627

These findings also suggest that the development of technologies and628
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systems that contribute to reducing the FAR may be particularly effective629

in reducing flood damage. Tanaka et al. (2008) and Ota (2019) discussed630

the changes in the numbers of false alarms and missed events following the631

introduction of new flood warning criteria in May 2008 and July 2017, re-632

spectively (Tanaka et al. 2008; Ota 2019). Both studies demonstrated that633

the new criteria based on the basin rainfall index and surface rainfall index634

significantly reduced the number of false alarms, while largely maintain-635

ing the number of missed events. In other words, the FAR reduction was636

achieved without increasing the MER. Such improvements in warning cri-637

teria are considered effective in reducing flood damage, especially fatalities,638

and similar improvements in technologies and systems will be required in639

the future.640

6.3 Limitations and future directions641

This study has several limitations. The first and most significant lim-642

itation is the reliance on three major assumptions in calculating the FAR643

and MER for each municipality, as discussed in Section 3.3a. These assump-644

tions were made because of the limited availability of open data on FAR645

and MER in Japan. Future work would benefit from more granular and646

widely available data on false alarms and missed events at the municipal647

and monthly levels, eliminating the need for such assumptions. Once more648
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detailed data become available, panel data analysis and other methods can649

provide deeper insights into the effects of warning performance.650

The second limitation is the study’s focus on the direct relationship651

between warning performance (FAR and MER) and flood damage without652

explicitly analyzing the intervening processes. As discussed in Section 2, the653

effects of FAR or MER on damage are likely to involve public perceptions of654

and trust in warnings and issuers. Another possibility that has not been dis-655

cussed extensively is the intervening influence of other stakeholders, such656

as local governments. For example, municipalities experiencing frequent657

false alarms (high FAR) might anticipate public reluctance to act and in-658

crease efforts to encourage evacuation (e.g., call for evacuation), potentially659

increasing individuals’ protective actions and mitigating damage despite a660

higher FAR. Future studies should explore these processes in greater detail.661

The third limitation is the exclusive focus on flood warnings, as they662

were issued for all municipalities during the 2018 Japan Floods. Analyzing663

higher-level weather warnings (e.g., emergency warnings (Tokubetsu Keihou664

in Japanese)) and directives for action (e.g., evacuation orders) could help665

clarify which types of information are most effective in mitigating damage666

and should be prioritized for improvement.667

Despite these limitations, this study is the first to empirically examine668

the effects of FAR and MER on flood damage in Japan, where open data669
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on flood warning performance are scarce. These findings provide useful in-670

formation for warning providers and developers of weather forecasting and671

warning systems, highlighting the potential disaster mitigation effects of672

warning performance and the future direction of effective warning strate-673

gies and system development. The study also underscores the importance674

of making weather forecasting and warning data more openly available in675

Japan, which could stimulate further research into weather forecasting and676

warnings.677

Supplement The supplementary material includes the estimation re-678

sults (i.e., the summary of the posterior distributions of all the parameters679

for each model).680
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A. Sample characteristics691

The descriptive statistics for the outcome variables are presented in Ta-692

ble 3, while the statistics of the data for the explanatory variables (excluding693

FAR and MER) are shown in Table 4.694 Table 3

Table 4
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Fig. 1. Histograms of (a) fatalities, (b) injuries, (c) economic losses (general
assets), and (d) economic losses (crops).
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Fig. 2. Estimation results for fatalities: (a) Posterior distribution (mean
and 90% HDI) of FAR parameter and WAIC, and (b) that of MER
and WAIC for each model. 52



Fig. 3. Estimation results for injuries: (a) Posterior distribution (mean and
90% HDI) of FAR parameter and WAIC, and (b) that of MER and
WAIC for each model.

53



Fig. 4. Estimation results for economic losses (general assets): (a) Posterior
distribution (mean and 90% HDI) of FAR parameter and WAIC, and
(b) that of MER and WAIC for each model.
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Fig. 5. Estimation results for economic losses (crops): (a) Posterior distri-
bution (mean and 90% HDI) of FAR parameter and WAIC, and (b)
that of MER and WAIC for each model.
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Table 1. Warning performance typology

Hazard forecasted

Yes No

Hazard observed
Yes Hit Missed events

No False alarms All clear
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Table 2. PC and POD according to Ota (2019); FAR and MER used for
this study

Okayama Hiroshima Ehime Fukuoka

Ota (2019)
PC [%] 23 21 13 40

POD [%] 74 93 78 87

This study
FAR [%] 77 79 87 60

MER [%] 26 7 22 13
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Table 3. Descriptive statistics of outcome variables

Mean Variance Minimum Maximum

Fatalities [persons] 0.72 21.76 0 52

Injuries [persons] 2.70 140.35 0 120

Economic losses (general assets)
[thousand yen]

5.91 × 106 5.74 × 1014 0 239737892

Economic losses (crops) [thousand yen] 3.06 × 104 2.17 × 1010 0 1288800
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Table 4. Descriptive statistics of explanatory variables

Mean Variance Minimum Maximum

Basin rainfall index criterion [.] 1.28 × 10 5.10 × 10 3.7 49.1

Flooded area (residential land and others) [m2] 5.04 × 105 4.42 × 1012 0 21084039

Flooded area (farmland) [m2] 4.95 × 105 5.58 × 1012 0 22850940

Population [persons] 8.84 × 104 4.29 × 1010 866 1538681

Percentage of population over 65 years old [%] 3.22 × 10 4.08 × 10 16 49

Sex ratio [.] 9.05 × 10 1.45 × 10 82 106
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