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Abstract— Dual quaternions have been proposed as an al-
ternative to homogeneous transformation matrices in robotic
kinematics. To perform inverse kinematics calculations using
quaternions, logarithmic mapping of quaternions is required,
however two challenges remain. In states with large errors,
the analytical gradient becomes significantly large and stable
convergence cannot be obtained. Additionally, there is a ten-
dency to fall into local solutions during the convergence pro-
cess. Furthermore, efficient modeling methods for parallel-link
mechanisms have not yet been discussed. This study proposes
a new method for stably obtaining the analytical gradient of
quaternions. The proposed method was applied to a robot
arm that combined serial and antiparallel link mechanisms,
and a new kinematics modeling method for the antiparallel
link mechanisms was proposed. The proposed method provides
a more stable solution than conventional methods, and an
improvement of approximately 10% in solution accuracy was
confirmed.

Index Terms— Kinematics, parallel link.

I. INTRODUCTION

Quaternions [1], which express physical phenomena with
four elements, do not have the singular configurations of
Euler-angle representation. Moreover, the representation of
rigid-body transformations using dual quaternions, which
involve two quaternions, allows for higher computational
efficiency compared to representations such as homogeneous
transformation matrices [2], [3], [4]. Their application range
is wide, starting with the application to the kinematics of
link mechanisms [5] in the old days, and in the field of
robotics alone, it spans a wide range of areas such as position
feedback control [6], admittance control [7], [8], efficient
trajectory generation [9], robust control [10], cooperative
control of dual-arm manipulation [11], mobile manipulators
[12], SLAM [13], position and attitude control of multi-agent
systems [14], cooperative manipulation of multiple robots
[15], and cooperative work between humans and robots [16].

This study focuses on kinematics using quaternions, which
form the foundation of these fields. Research on kinematics
using quaternions has mainly been conducted for serial
links, and few studies have been applied to parallel link
mechanisms [17], [18]. Even in these studies, the same
method as serial link mechanisms was adopted to model
each link of the parallel link mechanism, leaving room for
the consideration of quaternion representations suitable for
parallel link mechanisms.

1K. Nishii, A. Hatano and Y. Okumatsu are with the Frontier Research
Center, Toyota Motor Corporation, 543 Kirigahora, Nishihirose-cho, Aichi,
Japan, e-mail: {kazutoshi_nishii, akira_hatano_aa,
yoshihiro_okumatsu}@mail.toyota.co.jp

*Corresponding author

Moreover, kinematics are represented by dual quaternions
[19] for rigid-body coordinates, and recent studies have
been based on this theory [20], [21], [22]. Ozgur et al.[23]
propose a compact representation of dual quaternions using
the product of exponentials formula from screw theory. Han
et al. [21] demonstrated Lyapunov stability for logarithmic
feedback in kinematics using dual quaternions. Although
these methods using screw theory and logarithmic mapping
are efficient, there remain redundant parts in calculations
involving dual number. It is suggested that using two quater-
nions as a pair of a conventional quaternion and a translation
vector can improve computational efficiency [24]. However,
these studies warrant additional scrutiny concerning issues
associated with the convergence of analytical gradients in
inverse kinematics. During the convergence of quaternion
errors, the gradient may become zero despite the presence of
residual errors, which may result in settling at local optima.

The main contributions of this study are the proposal
of an efficient quaternion representation for anti-parallel
link mechanisms, which is a type of parallel link mech-
anism, and an improved method for calculating the ana-
lytical gradient in inverse kinematics. Section II discusses
the coordinate-transformation representation of the robot
link mechanism using a quaternion. We present an effi-
cient model-construction method that focuses on the driving
method of a parallel-link mechanism, which is the first of
such contribution. In Section III, we outline the kinematics
calculation method, identify the analytical gradient issues
in the inverse kinematics calculation, and elaborate on the
second contribution. In Section IV, we apply the proposed
method to an arm that combines serial and parallel-link
mechanisms and confirm the effectiveness of our approach.

II. ROBOT ARM MODELING

A. Quaternion representation for rigid transformation

The formulation of rigid transformation used in kinematics
is represented as a pair of a unit quaternion qr ∈ H, which
represents posture, and a pure imaginary quaternion qt ∈
H (a quaternion with a zero scalar part), which represents
position.

σ̂ = ⟨qr, qt⟩ .

While there is a method to derive these quaternions in
the same manner as the DH parameters [20], this study
adopts a method to directly derive quaternions from the
structural characteristics of the robot [23]. The individual
quaternions obtained are expressed as follows, based on a



Σ1

Σ2

θ1

L1
റ𝑙 = 𝒊

𝑑 = 0

റ𝑝 = 𝐿1𝒌

𝒒𝒓 = cos 𝜃12 + sin 𝜃1
2 𝒊

𝒒𝒕 = −𝐿1 sin 𝜃1 𝒋 + 𝐿1 cos 𝜃1 𝒌

Z : k

Y : j
⊗ X : i

Σ0

Σ1

θ0

Lz

Ly

റ𝑙 = 𝒌

𝑑 = 𝐿𝑧

റ𝑝 = 𝐿𝑦𝒋

Z : k

Y : j
⊗ X : i

𝒒𝒓 = cos 𝜃0
2
+ sin 𝜃0

2
𝒌

𝒒𝒕 = −𝐿𝑦 sin 𝜃0 𝒊 + 𝐿𝑦 cos 𝜃0 𝒋 + 𝐿𝑧𝒌

Σ0

Σ1

𝒒𝒓 = 1

Lz

Ly

റ𝑙 = 𝒌

𝑑 = 𝐿𝑧

റ𝑝 = 𝐿𝑦𝒋

𝒒𝒕 = 𝐿𝑦𝒋 + 𝐿𝑧𝒌

Z : k

Y : j
⊗ X : i

Fig. 1: Example of expressing the coordinate transformation between robot joints using dual quaternions. The correspondence between
the local coordinate system (XYZ) and i, j,k is performed based on the reference posture when the joint angle θ is set to zero.

the joint operation angle of θ:

qr = cos
θ

2
+ l⃗ sin

θ

2

qt = d⃗l + p⃗ cos θ + l⃗ × p⃗ sin θ.
(1)

Here,
• l⃗ represents the direction of the rotational axis, which

is a complex unit vector.
• d is the distance between coordinates along l⃗
• p⃗ represents the shortest three-dimensional complex

distance vector from the rotation axis represented by
l⃗ to the coordinates after transformation.

A complex unit vector is defined as the unit vector of a
local coordinate system with imaginary units i, j,k. They
have the following properties as imaginary unit vectors of
quaternions.

ii = jj = kk = ijk = −1.

From the above properties, the multiplication of different
unit complex vectors follows the following relationship:

ij = k, jk = i,ki = j, ji = −k, ik = −j,kj = −i.

This multiplication of different complex unit vectors is
the same as the cross-product of vectors when i, j, and k are
defined as the following three-dimensional unit vectors:

i =

1
0
0

 , j =

0
1
0

 ,k =

0
0
1

 .

When considering each parameter in the actual link struc-
ture, it is easier to understand it as a three-dimensional vector.
Fig.1 shows the link structure specifically related to qr, qt,
and l⃗, d, p⃗.

B. Serial link modeling

In this section, we describe the modeling of a real robot
using dual quaternions. The target robot was a 6-degree-of-
freedom arm with a parallel link mechanism and a wrist with
two degrees of freedom, as shown in Fig.2 [25].

Table I shows the coordinate transformations of the serial
link mechanism from the base link of the wrist joint in
the base coordinate system Σ0 to Σ4. Additionally, the
coordinate transformation of the fixed joint from the output
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Fig. 2: 6DOF robot arm model

link of the wrist joint to the end effector from Σ5 to Σ6 is
also given in the same table.

0qr1 = cos
θ0
2

+ sin
θ0
2
k

0qt1 = L0k
(2)

TABLE I: Serial link coordinate transformations

Coordinate Quarternions Link parameters
transformation

0σ̂1
0qr1 = cos θ0

2
+ sin θ0

2
k l⃗1 = k

0qt1 = L0k d1 = L0

p⃗1 = 0
1σ̂2

1qr2 = cos θ1
2

+ sin θ1
2
j l⃗2 = j

1qt2 = −L1Z sin θ1i+ L1Y j d2 = L1Y

−L1Z cos θ1k p⃗2 = −L1Zk
2σ̂3

2qr3 = cos θ2
2

+ sin θ2
2
j l⃗2 = j

2qt3 = 0 d2 = 0
p⃗2 = 0

3σ̂4
3qr4 = cos θ3

2
+ sin θ3

2
k l⃗2 = k

3qt4 = −L3k d2 = −L3

p⃗3 = 0
5σ̂E

5qrE = 1 l⃗5 = k
5qtE = −LEk d5 = −LE

p⃗5 = 0



C. Antiparallel link modeling

Next, we model the parallel-link mechanism of the wrist.
Various types of parallel-link mechanisms exist, and kine-
matics are considered for each mechanism [26]. Generally,
the base and output links are connected by multiple links, and
the position and orientation of the output link are controlled
by the length of the connecting links using either a rotational
or translational mechanism.

The antiparallel mechanism of the target link is shown in
Fig.3. A translational mechanism that changes the length of
two pairs of wires was used to provide the output link with
two degrees of freedom for tilting.

pitch control wires roll control wires

Fig. 3: Wrist CAD model

The three central antiparallel link mechanisms act as
follower joints and are two-degree-of-freedom mechanisms
that maintain a constant distance between the base and
output links. In previous studies [17], [18], the parallel link
mechanism was directly replaced using dual quaternions.
However, in this study, we simplify the coordinate trans-
formation representation by replacing it with a serial link
mechanism with equivalent degrees of freedom. Fig. 4 shows
the equivalent model of the parallel-link mechanism targeted
in this study, which was replaced by a serial-link mechanism
with the same degrees of freedom.
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Fig. 4: Wrist link model

The equivalent model has two rotational degrees of free-
dom around the Z- and X-axes; however, it is constrained by
an antiparallel link mechanism. Therefore, if the rotational
angles of the two degrees of freedom of the base link are
determined, the two degrees of freedom of the motion angles
of the output link are uniquely determined. Applying a

coordinate transformation using a 4-degree-of-freedom dual
quaternion to this equivalent serial link mechanism yields the
following results:

4qr5 =cos
ψ

2
+ cosϕ sin

ψ

2
i+ sinϕ sin

ψ

2
j

4qt5 =− L4

(
sinϕ sin

ψ

2
i− cosϕ sin

ψ

2
j + cos

ψ

2
k
)
.

(3)
We consider the attributes of a wire mechanism that

functions as a linear actuator. When the output link deviates
from the neutral position by an angle of ψ in the roll
direction, the wire length alters by Lr = 2Rw sin ψ

2 (Fig.
5a), given that Rw is the radius at which the wire is attached.
Subsequently, let us contemplate a scenario where the output
link rotates further by an angle of ϕ (Fig. 5b). In this case,
the attachment radius of the wire on the roll side becomes
Rw cosϕ, the length of the wire on the roll side changes by
Lr = 2Rw cosϕ sin ψ

2 . Similarly, it can be postulated that
the change in length of the wire on the pitch side amounts
to Lp = 2Rw sinϕ sin ψ

2 .
We considered changes in the length of the roll and pitch

wires divided by the diameter at which the wires were
attached.

qwx =
Lr
2Rw

= cosϕ sin
ψ

2

qwy =
Lp
2Rw

= sinϕ sin
ψ

2

Introducing the value of qwz = cos ψ2 , (3) can be expressed
as

4qr5 = qwz + qwxi+ qwyj
4qt5 = −L4 (qwyi− qwxj + qwzk) .

Because qwx, qwy can be calculated from the wire length,
trigonometric operations such as those in Equation (3) are
unnecessary. In addition, it is possible to derive qwz without
using trigonometric functions, as shown in the following
relationship:

q2wx + q2wy + q2wz = 1.

By leveraging this characteristic, the representation
through the equivalent model can realize more computation-
ally efficient kinematics compared to the direct replacement
of the parallel link mechanism that necessitates trigonometric
operations.

III. QUATERNION KINEMATICS

A. Forward kinematics

Let us now consider the transformation from coordinate
system Σ0 to Σ1 as 0σ̂1 =

⟨
0qr1,

0 qt1
⟩
, and the trans-

formation from coordinate system Σ1 to Σ2 as 1σ̂2 =⟨
1qr2,

1 qt2
⟩
. At this point, the transformation from coor-

dinate system Σ0 to Σ2, denoted as 0σ̂2 =
⟨
0qr2,

0 qt2
⟩
,

can be represented as follows.
0qr2 = 0qr1

1qr2
0qt2 = 0qr1

1qt2
0qr

∗
1 +

0qt1.
(4)

where, 0qr
∗
1 is the complex conjugate of 0qr1, which is

obtained by inverting the sign of the imaginary part of 0qr1.
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Fig. 5: Wrist wire model

Subsequently, by sequentially performing this operation up
to the end-effector coordinate system, the position and ori-
entation of the end effector can be determined.

B. Inverse kinematics

In inverse kinematics, a method is applied that uses the
fundamental Jacobian matrix, which represents the relation-
ship between the angles of each joint and the posture and
position of the end-effector. Using this method, the update
amount of each joint angle is calculated from the posture
and position errors of the end-effector and the fundamental
Jacobian matrix.

The update amount of the angle δθr based on the quater-
nion of the orientation error is determined by the dot product

of the fundamental Jacobian matrix Jr , which represents the
relationship between the orientation and each joint angle, and
the analytical gradient δθ.

δθr = Jr · δθ.

Jr is defined as a N×3 matrix for an arm with N degrees
of rotational freedom as follows:

Jr =
[
r⃗0 r⃗1 . . . r⃗N−1

]T
r⃗n = 0qrn l⃗n

0qrn
∗
,

where, l⃗n represents the direction of the rotation axis in
the nth coordinate system and is a unit complex vector.
Additionally, when n = 0, because 0qr0 does not provide
a coordinated rotation operation, r⃗0 = l⃗0. If the structure
includes a prismatic joint, the corresponding component of
Jr becomes zero because there is no effect on the orientation.

The analytical gradient δθ provides a gradient near the
error quaternion between the current and the target values.
In the case of quaternion orientation, assuming that the target
orientation quaternion is qrref and the current orientation is
qract , the error quaternion qrerr is given as follows:

qrerr = qrrefqract

∗. (5)

The imaginary part of this quarternion error approaches
zero as the orientation error decreases. The analytical gra-
dient was calculated by differentiating the position and
orientation with respect to each joint angle. However, in
the case of unit quaternions, the four elements are linearly
dependent; therefore it is impossible to calculate the partial
derivative. Therefore, we consider replacing the quaternion
with three independent dimensional elements.

Because the error quaternion is a unit quaternion, it can
be expressed as

qrerr = cosϕ+ u⃗ sinϕ, (6)

where u⃗ represents the direction of the rotation axis
towards the target orientation from the perspective of the
world coordinate system, which is a complex unit vector. ϕ
represents the rotation angle around u⃗. If the real part of
qrerr is defined as qw and the imaginary part as q⃗v , they are
defined as follows:

u⃗ =
q⃗v

||q⃗v||
ϕ = arctan(||q⃗v||, qw),

(7)

The right side of equation (6) can be expressed as follows
using exponential notation [22]:

cosϕ+ u⃗ sinϕ = eu⃗ϕ.

From this, it can be inferred that taking the logarithm of
qrerr results in

log(qrerr ) = log(eu⃗ϕ) = u⃗ϕ. (8)

Given that the dimension of u⃗ is three, it can be inferred
that by taking the logarithm of qrerr , we can obtain a
set of three linearly independent equations. The analytical



gradient can be obtained by calculating it in this logarithmic
quaternion space and then returning to it the quaternion space
by taking its exponent. The mapping from logarithmic to
exponential space was obtained using the following formula
[27]:

∂δθ

∂δϕ
≃I + 1

2
[u⃗ϕ]×

+

(
1

||ϕ||2
− 1 + cos ||ϕ||

2||ϕ|| sin ||ϕ||

)
[u⃗ϕ]2×,

(9)

where, δθ represents the analytical gradient in the quater-
nion space, and []× denotes the skew-symmetric matrix.

The analytical gradient in the quaternion space can be
obtained by multiplying Equation (8), which represents the
analytical gradient in logarithmic space, by Equation (9).
noting that the cross product of the same vectors becomes
zero, we obtain

δθ =
∂δθ

∂δϕ
log(qrerr )

=u⃗ϕ+
1

2
[u⃗ϕ]×u⃗ϕ

+

(
1

||ϕ||2
− 1 + cos ||ϕ||

2||ϕ|| sin ||ϕ||

)
[u⃗ϕ]2×u⃗ϕ

=u⃗ϕ.

As the orientation error decreases, q⃗v converges to zero,
but u⃗ϕ diverges as q⃗v decreases according to its definition.
Therefore, we use Taylor’s expansion to approximate as
follows:

δθ = u⃗ϕ =
q⃗v

||q⃗v||
arctan(||q⃗v||, qw)

≃ q⃗v
||q⃗v||

(
||q⃗v||
qw

− ||q⃗v||3

3qw3

)
=
q⃗v
qw

(
1− ||q⃗v||2

3qw2

)
= Qw q⃗v.

(10)

Here Qw =
(

1
qw

− 1−qw2

3qw3

)
.

The sensitivity of the value Qw with respect to qw is shown
in Fig. 6:
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Fig. 6: Sensitivity of analytical gradient

From Fig. 6, we can identify two issues related to the
analytical gradient.

• When qw is small (i.e., the orientation error is large),
the analytical gradient tends to diverge toward infinity.

• Because the analytical gradient becomes zero at qw =
0.5, it is prone to getting trapped in a local optimum.

Therefore, in this study, to circumvent these issues, δθ is
approximated as follows.

δθ = αq⃗vsgn(qw). (11)

where

α =


1

β

(
1− 1− β2

3β2

)
: ||qw|| < β

1 : other

.

Within the range where ||qw|| < β , the formula for α
equals the formula for Qw, where qw is replaced by the
threshold β. The value with α respect to qw is shown in Fig.
6 The threshold β should be less than 0.5 to avoid the an
analytical gradient of zero. However, setting an overly low
value for β can result in extermely large analytical gradients
in regions with large initial pose errors. Therefore, β should
not be set to an extremely small value. When sgn(qw) = 0
, δθ becomes zero. This occurs when the target and current
postures are orthogonal. An explicit method for avoiding this
zero point is to set sgn(qw) to 1 when qw = 0.

Next, we consider the quaternion of the position. The
update amount of the angle δθt based on the position error
is the dot product of the fundamental Jacobian matrix Jt,
which represents the relationship between the position and
each joint angle, and the error vector q⃗terr .

δθt = Jt · q⃗terr .

Jt is an N × 3 matrix for an arm with N degrees of
rotational freedom, and is defined as follows:

Jt =
[
t⃗0 × r⃗0 t⃗1 × r⃗1 . . . t⃗N−1 × r⃗N−1

]T
t⃗n = q⃗tref − 0q⃗tn ,

where, 0q⃗tn represents the vector of the imaginary part of
0qtn. In addition, when n = 0 because 0q⃗t0 does not provide
a coordinated translation operation, t⃗0 = q⃗tref holds. For a
prismatic joint, the corresponding component Jt represents
direction r⃗n of the joint.

Note that 0qrn and 0q⃗tn , which are needed to calculate
r⃗n and t⃗n, are determined during the forward kinematics
calculations to determine the current position and orientation;
thus, Jr and Jt can be computed at a low computational cost.

Because the quaternion of the position does not have a
scalar part, we perform the operation as a vector with an
imaginary part. q⃗tref is the imaginary part of the target
position quaternion, q⃗tact

is the imaginary part of the current
position quaternion, and error vector q⃗terr is

q⃗terr = q⃗tact − q⃗tref .

Fig.7 schematically shows the quaternions and vectors
used for the inverse kinematics of the robot joints.

The update amount of each joint angle is the sum of δθr
and δθt, and by using a weighting matrix, it is also possible
to adjust which of the position and orientation to prioritize
for each joint.



𝑞𝑟𝑒𝑟𝑟

Ԧ𝑟𝑛target posture

current posture

𝑞𝑟𝑎𝑐𝑡

𝑞𝑟𝑟𝑒𝑓

𝛿𝜃

(a) Relationship with posture

Ԧ𝑞𝑡𝑒𝑟𝑟 Ԧ𝑟𝑛

0 Ԧ𝑞𝑡𝑛

Ԧ𝑡𝑛
target position

current position

Ԧ𝑡𝑛 × Ԧ𝑟𝑛

(b) Positional relationship

Fig. 7: Relationship between error from the target and quaternions
and vectors. The larger the dot product of qrerr , which
represents the error in orientation, and the rotation axis
r⃗n, the higher the contribution of the joint to the target
orientation, and the greater the update amount of the angle.
Moreover, the larger the dot product of the position error
q⃗terr and t⃗n × r⃗n, the higher the contribution of the joint
to the target position, and the greater the update amount
of the angle. Since quaternion is a four-dimensional vector,
the relationship of orientation is an image.

IV. RESULT AND DISCUSSION

To confirm the effectiveness of the proposed method, we
measured the calculation time for the inverse kinematics of
the robot arm model created in the previous section. In the
evaluation, we compared Equation (10) to verify the effect
of simplification using Equation (11).

First, we analyze the sensitivity of β in Equation (11) and
determine the value of β that yields a highly efficient solu-
tion. Next, using the β determined, we conduct a comparative
study pertaining to the effects of simplification.

An Intel ®Core i7 2.6GHz was used for the evaluation.
The measurements were conducted by generating random
target postures within the range of motion of each joint and
performing 50,000 calculations.

The sensitivity of β was assessed for values from 0.2 to
0.6 in 0.1 increments. Fig. 8 depicts the solution rate vs. the
computation time. At β > 0.5, the solution rate plateaued at
a low value because the original analytical gradient and sign
reversal prevented full convergence for qw < 0.5. Although
the solution rate increased slightly at β = 0.5, a longer
convergence time was required owing to the necessity for
repetitive restarts until ||qw|| > 0.5 is reached, which is
attributable to the analytical gradient being zero at α = 0
within qw < 0.5. When β is overly small, a longer time is
required to reach the solution, which is attributable to the

large analytical gradient requiring a restart when the initial
posture error is large, thus resulting in solution divergence.
β = 0.4 was shown to yielded the best result.
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Next, we compare the conventional method using Equation
(10) and the proposed method using Equation (11) based on
β = 0.4.

The distribution of the inverse kinematics calculation
speeds of the proposed and conventional methods is shown
in Fig.9, and the calculation time per loop is listed in Table
II. The average number of restarts required in the case of di-
vergence or falling into a local solution was 5.7 times for the
proposed method and 7.2 times for the conventional method,
which is a 20% reduction compared with the conventional
rate.
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Fig. 9: Calculation time for inverse kinematics

As shown in Fig. 9, the proposed method increases the
probability of finding a solution simultaneously. According
to Table II, there is little difference in the computational
speed per loop, suggesting that the improvement in the
solution speed is due to the rate of numerical convergence. In



TABLE II: Calculation time of inverse kinematics in one loop

Approach Mean time Standard deviation
[µsec] [µsec]

Proposal : equation (11) 0.180 0.037
Conventional : equation (10) 0.185 0.036

addition, whereas the conventional method tends to saturate
at a solution rate of approximately 90%, the proposed method
achieves a solution rate of over 99%, confirming its high
robustness.

V. CONCLUSION

In this study, we propose a method for modeling the co-
ordinate transformation representation using the dual quater-
nion of a robot by replacing the parallel-link mechanism with
an equivalent serial link mechanism. The proposed method
was applied to a parallel link mechanism with two degrees of
freedom in rotation to achieve a highly efficient coordinate
transformation without the use of trigonometric functions.
Furthermore, by applying the improved analytical gradient to
the inverse kinematics calculation for a composite arm with
serial and parallel link mechanisms, we demonstrated that
more stable solutions can be obtained than with conventional
methods.

Many types of parallel link mechanisms exist, and the
generalization of the modeling method proposed in this study
is a subject for future research. In addition, because we used
finite differences for the inverse kinematic calculation, it
was necessary to repeatedly perform the forward kinematic
calculations of the robot. We believe that optimization ap-
proaches [28] and [29] for obtaining the analytic gradient
of the objective function, which can avoid such repeated
forward kinematic calculations, would be effective for fur-
ther improving the computational efficiency of the proposed
method.
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