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TAKASHI NAKAMURA

Abstract. In the present paper, we construct theta functions with two parameters
a, b ∈ R which satisfy Jacobi’s modular relation. Moreover, we give zeta functions
with two parameters a, b ∈ R which satisfy Riemann’s functional equation by the theta
functions with two parameters.

1. Introduction

1.1. Theta functions. We review some of the standard facts on theta and related func-
tions. Define the theta function by

θ(v) :=
∞∑

n=−∞

exp
(
−πvn2

)
, v > 0

(e.g., [5, (2.4.9)]). It is widely-known that θ(v) satisfies Jacobi’s modular relation

θ(v) = v−1/2θ(v−1) (1.1)

(e.g., [5, (2.4.10)]). In [5, Problems in Chapter 2.4], the functions

θ1(a, v) :=
∞∑

n=−∞

exp
(
−πv(n+ a)2

)
, θ2(a, v) :=

∞∑
n=−∞

exp
(
−πvn2 + 2πina

)
,

θ3(a, v) :=
∞∑

n=−∞

(n+ a) exp
(
−πv(n+ a)2

)
, θ4(a, v) :=

∞∑
n=−∞

n exp
(
−πvn2 + 2πina

)
,

are defined as generalizations of θ(v). These functions satisfy

θ1(v, a) = v−1/2θ2(v
−1, a), θ3(v, a) = v−3/2θ4(v

−1, a)

(see [5, Problems 2.4.3 and 2.4.5]). Furthermore, when a, b, v > 0, one has (see [1, (2.1)])

√
v

∞∑
n=−∞

exp
(
−π(n+ a)2v + 2πi(n+ a)b

)
=

∞∑
n=−∞

exp
(
−v−1π(n+ b)2 − 2πina

)
. (1.2)

It is well-known that, roughly speaking, the Riemann zeta function ζ(s) is the Mellin
transform of the theta function θ(v). More precisely, we have

π−s/2Γ
(s
2

)
ζ(s) =

1

s(s− 1)
+

∫ ∞

1

(
us + u1−s

)(
θ(u2)− 1

)du
2u

(1.3)

(see [4, (1.3.5)] or [11, Chapter 2.6]).
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1.2. Zeta functions. In this subsection, we discuss zeta functions and their functional
equations. As a generalization of ζ(s), define the Lerch zeta function L(s, a, b) by

L(s, a, b) :=
∞∑
n=0

e2πinb

(n+ a)s
, σ > 1, 0 < a, b ≤ 1.

The Hurwitz zeta function ζ(s, a) and the periodic zeta function F (s, a) are defined as

ζ(s, a) := L(s, a, 1), F (s, a) := e−2πiaL(s, 1, a),

respectively. The Dirichlet series of L(s, a, b) converges absolutely in the half-plane σ > 1
and uniformly in each compact subset of this half-plane. Moreover, L(s, a, 1) has analytic
continuation to C except s = 1, where there is a simple pole with residue 1 (e.g., [2,
Chapter 12]). On the other hand, the Dirichlet series of the function L(s, a, b) with 0 <
b < 1 converges uniformly in each compact subset of the half-plane σ > 0 (e.g., [6, p. 20]).
Furthermore, the function L(s, a, b) with 0 < b < 1 is analytically continuable to the
whole complex plane (e.g., [6, Chapter 2.2]). Note that one has ζ(s, 1) = F (s, 1) = ζ(s).

For simplicity, we put

Γπ(s) :=
Γ(s)

(2π)s
, Γcos(s) := 2Γπ(s) cos

(πs
2

)
, Γsin(s) := 2Γπ(s) sin

(πs
2

)
.

Then, the Riemann zeta function ζ(s) satisfies Riemann’s functional equation

ζ(1− s) = Γcos(s)ζ(s). (1.4)

The functional equation for ζ(s, a) and F (s, a) are expressed as

F (1− s, a) = Γπ(s)
(
eπis/2ζ(s, a) + e−πis/2ζ(s, 1− a)

)
, 0 < a < 1, (1.5)

(e.g., [2, Exercises 12.2]). Moreover, the functional equation for L(s, a, b) are given by

L(1− s, a, b) = Γπ(s)
(
eπis/2−2πiabL(s, b,−a) + e−πis/2+2πia(1−b)L(s, 1− b, a)

)
(1.6)

when 0 < b < 1 (e.g., [6, Theorem 2.3.2]). It should be noted that the gamma factors of
the functional equations in (1.4) and (1.5) do not depend on 0 < a < 1 but the gamma
factor of the functional equation (1.6) contains e−2πiab and e2πia(1−b).
We can see that the functional equation (1.4) is much simpler than (1.5) and (1.6).

In order to construct a zeta function satisfying Riemann’s functional equation (1.4), for
0 < a ≤ 1/2, we define the quadrilateral zeta function Q(s, a) as

2Q(s, a) := ζ(s, a) + ζ(s, 1− a) + F (s, a) + F (s, 1− a). (1.7)

Based on the facts mentioned above, the function Q(s, a) can be continued analytically
to the whole complex plane except s = 1. In [8, Theorem 1.1], it is shown that

Q(1− s, a) = Γcos(s)Q(s, a), 0 < a ≤ 1/2. (1.8)

It should be noted that (1.8) does not contradict to Hamburger’s theorem [3, Staz 1]
(see also [8, Section 1.3]). Moreover, this function has the following properties (see [8,
Theorem 1.2] and [9, Theorem 1.1]).

• For any 0 < a ≤ 1/2, there exist positive constants A(a) and T0(a) such that the
number of zeros of Q(s, a) on the line segment from 1/2 to 1/2 + iT is greater than
A(a)T whenever T ≥ T0(a).

• There exists a0 = 0.1183751396... such that
(1) Q(σ, a0) has a unique double real zero at σ = 1/2 when σ ∈ (0, 1),
(2) for any a ∈ (a0, 1/2], the function Q(σ, a) has no real zero in σ ∈ (0, 1),
(3) for any a ∈ (0, a0), Q(σ, a) has at least two real zeros in σ ∈ (0, 1).
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2. Main results

This paper has the following two aims.

• We construct theta functions with two parameters a, b ∈ R which satisfy Jacobi’s mod-
ular relation (1.1) in Theorem 2.3.

• We construct zeta functions with two parameters a, b ∈ R which satisfy Riemann’s
functional equation (1.4) in Theorem 2.4.

Moreover, we discuss quasi-commutativity of these parametrise a, b ∈ R, Fourier expan-
sions and relations between these theta and zeta function via integral representations.
Note that theta functions with one parameter 0 < a < 1/2 satisfying Jacobi’s modular
relation (1.1) and zeta functions with one parameter 0 < a < 1/2 satisfying Riemann’s
functional equation (1.1) have been already given in [8, (2.1)] and [8, (1.2)], respectively.

The contents of the paper are as follows. In Section 2.1, we recall the modular relation
and give new results of the theta function G(u, a) and the zeta function Q(s, a) introduced
in [8, Sections 2.1 and 1.1]. In Section 2.2, we give theta functions GQ(u, a, b) which
satisfy Jacobi’s modular relation (1.1) and show that GQ(u, a, b) have periodicities, quasi-
periodicities, symmetry or skew-symmetry and so on (see Theorem 2.3). Furthermore,
we construct zeta functions Q(s, a, b) which satisfy Riemann’s functional equation (1.4)
and other properties mentioned above by using GQ(u, a, b) (see Theorem 2.4). Moreover,
we prove that functions GX(u, a, b) and X(s, a, b) defined in Section 2.2 have similar
properties. In Section 3, we prove Proposition 2.1 and Theorem 2.3. Section 4 is devoted
to the proof of Proposition 2.2. In Section 5, we show Theorem 2.4.

2.1. Theta and zeta functions with one parameter. We first recall the modular
relation and give new results on the theta function G(u, a). For u > 0 and a ∈ R, define
the functions

GQ(u, a) := GZ(u, a) +GP (u, a), GX(u, a) := GY (u, a) +GO(u, a),

where GZ(u, a) GP (u, a), GY (u, a) and GO(u, a) are given as

GZ(u, a) :=
∑
n∈Z

exp
(
−πu2(n+ a)2

)
, GP (u, a) :=

∑
n∈Z

exp
(
−πu2n2 − 2πina

)
.

GY (u, a) :=
∑
n∈Z

(n+a) exp
(
−πu2(n+a)2

)
, GO(u, a) := i

∑
n∈Z

n exp
(
−πu2n2 − 2πina

)
,

respectively. Note that the first equality in (2.4) has already shown in [8, (2.1)] when
0 < a < 1/2.

Proposition 2.1. We have the five statements below;
(1) Special cases. When a ∈ Z.

GQ(u, a) = 2θ(u2), GX(u, a) = 0. (2.1)

(2) Periodicity. For a ∈ R,

GQ(u, a) = GQ(u, a+ 1), GX(u, a) = GX(u, a+ 1). (2.2)

(3) Symmetry or skew-symmetry.

GQ(u, a) = GQ(u,−a), GX(u, a) = −GX(u,−a). (2.3)

(4) Modular relations.

GQ(u, a) = u−1GQ(u
−1, a), GX(u, a) = u−3GX(u

−1, a). (2.4)
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(5) Fourier expansions. When a ∈ R \ Z,

GQ(u, a) = 1 +
1

u
+

2

u

∞∑
n=1

(
u exp

(
−πu2n2

)
+ exp

(
−πu−2n2

))
cos(2πna),

GX(s, a) = 1 +
1

u3
+

2

u3

∞∑
n=1

n
(
u3 exp

(
−πu2n2

)
+ exp

(
−πu−2n2

))
sin(2πna).

(2.5)

We next recall the functional equation and show some new results on the zeta functions
Q(s, a) and X(s, a). For a ∈ R and ℜ(s) > 1, put

2Q(s, a) := Z(s, a) + P (s, a), 2X(s, a) = Y (s, a) +O(s, a)

where Z(s, a), P (s, a), Y (s, a) and O(s, a) are defined as

Z(s, a) :=
∑

n+a ̸=0

1

|n+ a|s
, P (s, a) :=

∑
0 ̸=n∈Z

e−2πina

|n|s
,

Y (s, a) :=
∑

n+a ̸=0

sgn(n+ a)

|n+ a|s
, O(s, a) := i

∑
0 ̸=n∈Z

sgn(n)e−2πina

|n|s
,

respectively. Note that Z(s, a), P (s, a), Y (s, a), O(s, a) Q(s, a) and X(s, a) with 0 <
a < 1/2 have already given in ([8, Section 1.1] and [10, Section 1.2]). Moreover, both
functional equations in (2.10) have already given in ([8, (1.2)] and [10, (3.15)]) when
0 < a < 1/2 (see Section 1.2). Thus, in this paper, we show the functional equations and
other properties of Q(s, a) and X(s, a) for not only 0 < a < 1/2 but also a ∈ R.

Proposition 2.2. We have the six statements below;
(0) Integral representations. For s ∈ C and a ∈ R \ Z,

π−s/2Γ
(s
2

)
Q(s, a) =

1

s(s− 1)
+

∫ ∞

1

(
us + u1−s

)(
GQ(u, a)− 1

)du
u
,

π−(s+1)/2Γ
(s+ 1

2

)
X(s, a) =

∫ ∞

1

(
us + u1−s

)
GX(u, a)du.

(2.6)

Note that the case a ∈ Z is given in (1.3).
(1) Special cases. For a ∈ Z,

Q(s, a) = 2ζ(s), X(s, a) = 0. (2.7)

(2) Periodicity. For a ∈ R \ Z,

Q(s, a) = Q(s, a+ 1), X(s, a) = X(s, a+ 1). (2.8)

(3) Symmetry or skew-symmetry.

Q(s, a) = Q(s,−a), X(s, a) = −X(s,−a). (2.9)

(4) Functional equations. For s ∈ C,

Q(1− s, a) = Γcos(s)Q(s, a), X(1− s, a) = Γsin(s)X(s, a). (2.10)

(5) Fourier expansions. When a ∈ R \ Z and 0 < ℜ(s) < 1,

Q(s, a) =
∞∑
n=1

(
1

ns
+

Γcos(1− s)

n1−s

)
cos(2πna),

X(s, a) =
∞∑
n=1

(
1

ns
+

Γsin(1− s)

n1−s

)
sin(2πna).

(2.11)
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Remark. When ℜ(s) > 1 is fixed, one has
∫ 1

0
a−sda,

∫ 1

0
(1− a)−s ̸∈ L1[0, 1] and∫ 1

0

(
2Q(s, a)− a−s − (1− a)−s

)
da ∈ L1[0, 1].

Hence, the Fourier coefficient∫ 1

0

Q(s, a)e−2πinada, n ∈ Z

does not converge for ℜ(s) > 1. By the functional equation (2.10), the Fourier coefficient
above does not converge for ℜ(s) < 0. Similarly, the Fourier coefficient∫ 1

0

X(s, a)e−2πinada, n ∈ Z

does not converge for ℜ(s) > 1 or ℜ(s) < 0. Thus, we have Fourier expansions of Q(s, a)
and X(s, a) for only 0 < ℜ(s) < 1.

2.2. Theta and zeta functions with two parameters. In this subsection, we state the
two main results in the present paper. First, we give theta functions with two parameters
a, b ∈ R which satisfy Jacobi’s modular relation (1.1). For a, b ∈ R, put

GQ(u, a, b) := GZ(u, a, b) +GP (u, a, b), GX(u, a, b) := GY (u, a, b) +GO(u, a, b),

where GZ(u, a, b) GP (u, a, b), GY (u, a, b) and GO(u, a, b) are defined as

GZ(u, a, b) :=
∑
n∈Z

exp
(
−πu2(n+ a)2 + 2πi(n+ a)b

)
,

GP (u, a, b) :=
∑
n∈Z

exp
(
−πu2(n+ b)2 − 2πina

)
,

GY (u, a, b) :=
∑
n∈Z

(n+ a) exp
(
−πu2(n+ a)2 + 2πi(n+ a)b

)
,

GO(u, a, b) := i
∑
n∈Z

(n+ b) exp
(
−πu2(n+ b)2 − 2πina

)
.

We name GQ(u, a, b) and GX(u, a, b) bilateral Lerch theta function and bilateral Lerch
theta star function, respectively. As a generalization of Proposition 2.1, we have the
following.

Theorem 2.3. We have the six statements below;
(1) Special cases.

GQ(u, a, 0) = GQ(u, a), GX(u, a, 0) = GX(u, a),

GQ(u, 0, b) = GQ(u, b), GX(u, 0, b) = iGX(u, b).
(2.12)

(2) Periodicity and quasi-periodicity.

GQ(u, a, b) = GQ(u, a+ 1, b), GX(u, a, b) = GX(u, a+ 1, b),

GQ(u, a, b+ 1) = e2πiaGQ(u, a, b), GX(u, a, b+ 1) = e2πiaGX(u, a, b).
(2.13)

(3) Symmetry or skew-symmetry.

GQ(u, a,−b) = GQ(u,−a, b), GX(s, a,−b) = −GX(s,−a, b). (2.14)

(4) Modular relations.

GQ(u, a, b) = u−1GQ(u
−1, a, b), GX(u, a, b) = u−3GX(u

−1, a, b). (2.15)
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(5) Fourier expansions. When a ∈ R \ Z,

GQ(u, a, b) =
1

u

∑
n∈Z

(
u exp

(
−πu2(n− b)2

)
+ exp

(
−πu−2(n− b)2

))
e2πina,

GY (u, a, b) =
−i

u3

∑
n∈Z

(n−b)
(
u3 exp

(
−πu2(n−b)2

)
+ exp

(
−πu−2(n−b)2

))
e2πina.

(2.16)

(6) Quasi-commutativity of the second and third variables.

GQ(u,−b, a) = e−2πiabGQ(u, a, b), GX(u,−b, a) = ie−2πiabGX(u, a, b). (2.17)

Our next goal is to construct zeta functions with two parameters a, b ∈ R which satisfy
Riemann’s functional equation (1.4). For a, b ∈ R and ℜ(s) > 1, put

Q(s, a, b) = Z(s, a, b) + P (s, a, b), X(s, a, b) = Y (s, a, b) +O(s, a, b),

where Z(s, a, b), P (s, a, b), Y (s, a, b) and O(s, a, b) are defined as

Z(s, a, b) :=
∑

n+a ̸=0

e2πi(n+a)b

|n+ a|s
, P (s, a, b) :=

∑
n+b ̸=0

e−2πina

|n+ b|s
,

Y (s, a, b) :=
∑

n+a ̸=0

sgn(n+ a)e2πi(n+a)b

|n+ a|s
, O(s, a, b) := i

∑
n+b ̸=0

sgn(n+ b)e−2πina

|n+ b|s
,

respectively. We call Q(u, a, b) andX(u, a, b) quadrilateral Lerch zeta function and quadri-
lateral Lerch zeta star function, respectively (see (5.3), (5.4), (5.7) and (5.8)). Note that
some functions related to L(s, a, b) are define in [7, (2.2) and (2.3)] and their functional
equations, whose Gamma factors depend on the parameters a, b ∈ (0, 1), are proved in [7,
Theorem 2.1]. The next theorem is a generalization of Proposition 2.2.

Theorem 2.4. We have the following seven statements;
(0) Integral representations. For s ∈ C, a, b ∈ R \ Z,

π−s/2Γ
(s
2

)
Q(s, a, b) =

∫ ∞

1

(
us + u1−s

)
GQ(u, a, b)

du

u
,

π−(s+1)/2Γ
(s+ 1

2

)
X(s, a, b) =

∫ ∞

1

(
us + u1−s

)
GX(u, a, b)du.

(2.18)

Note that the case a ∈ Z or b ∈ Z is given in (2.6).
(1) Special cases.

Q(s, a, 0) = Q(s, a), X(s, a, 0) = X(s, a),

Q(s, 0, b) = Q(s, b), X(s, 0, b) = iX(s, b).
(2.19)

(2) Periodicity and quasi-periodicity.

Q(s, a, b) = Q(s, a+ 1, b), X(s, a, b) = X(s, a+ 1, b),

Q(s, a, b+ 1) = e2πiaQ(s, a, b), X(s, a, b+ 1) = e2πiaX(s, a, b).
(2.20)

(3) Symmetry or skew-symmetry.

Q(s, a,−b) = Q(s,−a, b), X(s, a,−b) = −X(s,−a, b). (2.21)

(4) Functional equations.

Q(1− s, a, b) = Γcos(s)Q(s, a, b), X(1− s, a, b) = Γsin(s)X(s, a, b). (2.22)
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(5) Fourier expansions. When a, b ∈ R \ Z and 0 < ℜ(s) < 1,

Q(s, a, b) =
1

2

∑
n−b ̸=0

(
1

|n− b|s
+

Γcos(1− s)

|n− b|1−s

)
e2πina,

X(s, a, b) =
1

2i

∑
n−b ̸=0

(
sgn(n− b)

|n− b|s
+

Γsin(1− s)sgn(n− b)

|n− b|1−s

)
e2πina.

(2.23)

(6) Quasi-commutativity of the second and third variables.

Q(s,−b, a) = e−2πiabQ(s, a, b), X(s, b,−a) = ie−2πiabX(s, a, b). (2.24)

3. Proofs of Proposition 2.1 and Theorem 2.3

Proof of Proposition 2.1. We have the first equation in (2.1) by GZ(u, a) = GP (u, a) =
θ(u2) when a ∈ Z. The second equation in (2.1) is shown by GY (u, a) = GO(u, a) =
0 if a ∈ Z. The definitions of GQ(u, a) and GX(u, a) imply the second statement of
Proposition 2.1. We can easily show the third statement from GZ(u, a) = GZ(u,−a),
GP (u, a) = GP (u,−a), GY (u, a) = −GY (u,−a) and GO(u, a) = −GO(u,−a).

For a, u > 0, it is widely known that (see [4, p. 13, (6)])

GZ(u, a) = u−1GP (u
−1, a), GP (u, a) = u−1GZ(u

−1, a). (3.1)

Hence, we have the first equation in (2.4). From the definitions, one has

∂

∂a
GZ(u, a) = −2πu2GY (u, a),

∂

∂a
GP (u, a) = −2πGO(u, a). (3.2)

Thus, by using (3.1), we have

−2πu2GY (u, a) =
∂

∂a
GZ(u, a) =

∂

∂a
u−1GP (u

−1, a) = −2πu−1GO(u
−1, a),

−2πGO(u, a) =
∂

∂a
GP (u, a) =

∂

∂a
u−1GZ(u

−1, a) = −2πu−3GY (u
−1, a).

Therefore, we obtain

GY (u, a) = u−3GO(u
−1, a), GO(u, a) = u−3GY (u

−1, a). (3.3)

The equations above imply the second equation in (2.4).
From the definition of GZ(u, a), we can easily see that

GP (u, a) =
∑
n∈Z

exp
(
−πu2n2 − i2πna

)
= 1 + 2

∞∑
n=1

exp
(
−πu2n2

)
cos(2πna).

Moreover, by the first equation of (3.1), we have

GZ(u, a) = u−1GP (u
−1, a) =

1

u
+

2

u

∞∑
n=1

exp
(
−πu−2n2

)
cos(2πna).

Hence we obtain the first equation of (2.5). Similarly, we have

GO(u, a) = i
∑
n∈Z

n exp
(
−πu2n2 − i2πna

)
= 1 + 2

∞∑
n=1

n exp
(
−πu2n2

)
sin(2πna),

GY (u, a) = u−3GO(u
−1, a) =

1

u3
+

2

u3

∞∑
n=1

n exp
(
−πu−2n2

)
sin(2πna)

which implies the second equation of (2.5). □
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Proof of Theorem 2.3. We can easily show the first, second and third equations in (2.12).
The fourth equation is proved by

GY (u, 0, b) = −iGO(u,−b) = iGO(u, b) and GO(u, 0, b) = iGY (u, b).

The first and second equations in (2.13) are trivial. The third formula is shown by

GZ(u, a, b+ 1) =
∑
n∈Z

exp
(
−πu2(n+ a)2 + 2πi(n+ a)(b+ 1)

)
= e2πiaGZ(u, a, b),

GP (u, a, b+ 1) =
∑
n∈Z

exp
(
−πu2(n+ b+ 1)2 − 2πina

)
=

∑
m∈Z

exp
(
−πu2(m+ b)2 − 2πi(m− 1)a

)
= e2πiaGP (u, a, b).

Similarly, we can prove formulas GY (u, a, b + 1) = e2πiaGY (u, a, b) and GO(u, a, b + 1) =
e2πiaGO(u, a, b) which imply the fourth equation in (2.13).

The first formula in (2.14) is shown by

GZ(u, a,−b) =
∑
n∈Z

exp
(
−πu2(n+ a)2 − 2πi(n+ a)b

)
=

∑
m∈Z

exp
(
−πu2(m− a)2 + 2πi(m− a)b

)
= GZ(u,−a, b)

and GP (u, a,−b) = GP (u,−a, b), which is proved similarly. Moreover, we have

GY (u, a,−b) =
∑
n∈Z

(n+ a) exp
(
−πu2(n+ a)2 − 2πi(n+ a)b

)
= −

∑
m∈Z

(m− a) exp
(
−πu2(m− a)2 + 2πi(m− a)b

)
= −GY (u,−a, b)

and GO(u, a,−b) = −GO(u,−a, b) which imply the second equation in (2.14).
The equality (1.2) implies

GZ(u, a, b) = u−1GP (u
−1, a, b), GP (u, a, b) = u−1GZ(u

−1, a, b). (3.4)

Thus, we immediately obtain the first equation in (2.15). Furthermore, one has

∂

∂b
GZ(u, a, b) = 2πiGY (u, a, b),

∂

∂b
GP (u, a, b) = 2πiu2GO(u, a, b). (3.5)

By (3.4) and (3.5), we have

2πiGY (u, a, b) =
∂

∂b
GZ(u, a, b) =

∂

∂b
u−1GP (u

−1, a, b) = 2πiu−3GO(u
−1, a, b),

2πiu2GO(u, a, b) =
∂

∂a
GP (u, a, b) =

∂

∂a
u−1GZ(u

−1, a, b) = 2πiu−1GY (u
−1, a, b),

which imply

GY (u, a, b) = u−3GO(u
−3, a, b), GO(u, a, b) = u−3GY (u

−1, a, b). (3.6)

Therefore, we have the second equation in (2.15).
From (3.4), it holds that

GZ(u, a, b) = u−1
∑
n∈Z

exp
(
−πu−2(n+ b)2 − 2πina

)
= u−1

∑
m∈Z

exp
(
−πu−2(m− b)2

)
e2πima.

Hence we have the first Fourier expansion of (2.16). By (3.6), we have

GY (u, a, b) = −iu−3
∑
n∈Z

(n− b) exp
(
−πu−2(n− b)2 + 2πina

)
.

Therefore, we obtain the second equation in (2.16).
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By the definitions of GZ(u, a, b) and GP (u, a, b), it holds that

GZ(u,−b, a) = e−2πiabGP (u, a, b) (3.7)

since one has

GZ(u,−b, a) =
∑
n∈Z

exp
(
−πu2(n− b)2 + 2πi(n− b)a

)
=

∑
m∈Z

exp
(
−πu2(m+ b)2 − 2πi(m+ b)a

)
= e−2πiabGP (u, a, b).

Changing variables −b → a and a → b in (3.7), we have GP (u, b,−a) = e−2πiabGZ(u, a, b).
Applying the first equation of (2.14) to this formula, we obtain

GP (u,−b, a) = e−2πiabGZ(u, a, b). (3.8)

The relations (3.7) and (3.8) imply the first formula in (2.17). Moreover, one has

GY (u,−b, a) = ie−2πiabGO(u, a, b) (3.9)

because we have

GY (u,−b, a) =
∑
n∈Z

(n− b) exp
(
−πu2(n− b)2 + 2πi(n− b)a

)
= −

∑
m∈Z

(m+ b) exp
(
−πu2(m+ b)2 − 2πi(m+ b)a

)
= ie−2πiabGO(u, a, b).

Replacing variables −b → a and a → b in the equation (3.9), we obtain GO(u, b,−a) =
−ie−2πiabGY (u, a, b). Hence we have

GO(u,−b, a) = ie−2πiabGY (u, a, b) (3.10)

from the relation GO(u,−b, a) = −GO(u, b,−a). Clearly, the equations (3.9) and (3.10)
imply the second formula in (2.17). □

4. Proof of Proposition 2.2

We can easily show (1), (2) and (3) of Proposition 2.2 by the definitions of Q(s, a) and
X(s, a). Moreover, we have

P (s, a) = 2
∞∑
n=1

cos 2πna

ns
, O(s, a) = 2

∞∑
n=1

sin 2πna

ns

when a ∈ R \ Z and 0 < ℜ(s) < 1. The functional equation (1.5) implies

Z(1− s) = Γcos(s)P (s, a), Y (1− s) = Γsin(s)O(s, a)

(see also [10, (4.9) and (3.9)]). Hence, we have the Fourier expansions in (2.11) by the
functional equations above, namely,

Z(s) = Γcos(1− s)P (1− s, a) and Y (s) = Γsin(1− s)O(1− s, a).

The functional equations in Proposition 2.2 are easily proved by the integral representa-
tions in (2.6). Hence, we show Proposition 2.2 (0).

Proof of (2.6) for Q(s, a). Let 0 < a < 1 and ℜ(s) > 1. Then we have

2

∫ ∞

0

us−1GZ(u, a)du = 2
∞∑
n=0

∫ ∞

0

us−1e−πu2(n+a)2du+ 2
∞∑
n=0

∫ ∞

0

us−1e−πu2(n+1−a)2du.

The first infinite series can be rewritten as
∞∑
n=0

∫ ∞

0

e−v

(
v/π

(n+ a)2

)s/2−1
dv/π

(n+ a)2
= π−s/2Γ

(s
2

) ∞∑
n=0

(n+ a)−s.
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Hence, we obtain

2

∫ ∞

0

us−1GZ(u, a)du = π−s/2Γ
(s
2

)
Z(s, a). (4.1)

Similarly, when ℜ(s) > 1, one has

2

∫ ∞

0

us−1
∑

0 ̸=n∈Z

exp
(
−πu2n2 − i2πna

)
du

= 2
∞∑
n=1

∫ ∞

0

us−1e−2πina−πu2n2

du+ 2
∞∑
n=1

∫ ∞

0

us−1e2πina−πu2n2

.

Note that the second infinite series can be expressed as

∞∑
n=1

e2πina
∫ ∞

0

e−v

(
v/π

n2

)s/2−1
dv/π

n2
= π−s/2Γ

(s
2

) ∞∑
n=1

e2πina

ns
.

Thus, it holds that

2

∫ ∞

0

us−1
(
GP (u, a)− 1

)
du = π−s/2Γ

(s
2

)
P (s, a). (4.2)

Therefore, when ℜ(s) > 1, one has

π−s/2Γ
(s
2

)
Q(s, a) =

∫ ∞

0

us−1
(
GQ(u, a)− 1

)
du. (4.3)

Note that (4.3) with 0 < a < 1/2 has already given in the proof of [8, Proposition 2.1].
By using the first equation in (2.4) and changing the variable u → v−1, we obtain∫ 1

0

us−1
(
GQ(u, a)− 1

)
du =

∫ ∞

1

v1−s
(
GQ(v

−1, a)− 1
)dv
v2

=

∫ ∞

1

v1−s
(
GQ(v, a)− v−1

)dv
v

when ℜ(s) > 1. Moreover, we have∫ ∞

1

v1−sdv

v
=

1

s− 1
,

∫ ∞

1

v1−sv−1dv

v
=

1

s

if ℜ(s) > 1. Thus we can easily see that∫ 1

0

us−1
(
GQ(u, a)− 1

)
du =

∫ ∞

1

v1−s
(
GQ(v, a)− 1

)dv
v

+
1

s− 1
− 1

s
.

Therefore, from (4.3) and the equation above, we have

π−s/2Γ
(s
2

)
Q(s, a) =

∫ 1

0

us−1
(
GQ(u, a)− 1

)
du+

∫ ∞

1

us−1
(
GQ(u, a)− 1

)
du

=
1

s(s− 1)
+

∫ ∞

1

us−1
(
GQ(u, a)− 1

)
du+

∫ ∞

1

u−s
(
GQ(u, a)− 1

)
du

for ℜ(s) > 1. The integrals above converge absolutely for all s ∈ C, and so the formula
holds, by analytic continuation, for all s ∈ C. Hence we obtain the first equality in (2.6)
for all 0 < a < 1 and s ∈ C. By the periodicities GQ(u, a) and Q(s, a), the first equation
in (2.6) holds for all a ∈ R \ Z. □

Proof of (2.6) for X(s, a). Suppose a ∈ R \ Z. By (4.1) and (4.2), we have

∂

∂a
π−s/2Γ

(s
2

)
Z(s, a) =

∂

∂a

∫ ∞

0

us−1GZ(u, a)du,

∂

∂a
π−s/2Γ

(s
2

)
P (s, a) =

∂

∂a

∫ ∞

0

us−1
(
GP (u, a)− 1

)
du
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when ℜ(s) > 1. First, we consider the right-hands sides of the equalities above. From
(3.2), we obtain

∂

∂a

∫ ∞

0

us−1GZ(u, a)du = −2π

∫ ∞

0

us+1GY (u, a)du,

∂

∂a

∫ ∞

0

us−1
(
GP (u, a)− 1

)
du = −2π

∫ ∞

0

us−1GO(u, a)du.

On the other hand, we can easily see that

∂

∂a
Z(s, a) =

∑
n+a ̸=0

∂

∂a

1

|n+ a|s
= −s

∑
n+a ̸=0

sgn(n+ a)

|n+ a|s+1
= −sY (s+ 1, a),

∂

∂a
P (s, a) =

∑
0 ̸=n∈Z

∂

∂a

e−2πina

|n|s
= −2πi

∑
0 ̸=n∈Z

sgn(n)e−2πina

|n|s−1
= −2πO(s− 1, a)

if ℜ(s) > 1 is sufficiently large. By these formulas, we have

∂

∂a
Γ
(s
2

)
Z(s, a) = Γ

(s
2

)
(−s)Y (s+ 1, a) = −2Γ

(s+ 2

2

)
Y (s+ 1, a),

∂

∂a
Γ
(s
2

)
P (s, a) = −2πΓ

(s
2

)
O(s− 1, a)

for all s ∈ C. Therefore, when ℜ(s) > 1, we obtain∫ ∞

0

usGY (u, a)du = π−(s+1)/2Γ
(s+ 1

2

)
Y (s, a),∫ ∞

0

usGO(u, a)du = π−(s+1)/2Γ
(s+ 1

2

)
O(s, a).

The equations above imply

π−(s+1)/2Γ
(s+ 1

2

)
X(s, a) =

∫ ∞

0

usGX(u, a)du.

Applying the second modular relation in (2.4), we obtain

π−(s+1)/2Γ
(s+ 1

2

)
X(s, a) =

∫ 1

0

usGX(u, a)du+

∫ ∞

1

usGX(u, a)du

=

∫ ∞

1

usGX(u, a)du+

∫ ∞

1

v−sGX(v
−1, a)

dv

v2
=

∫ ∞

1

(
us + u1−s

)
GX(u, a)du.

Obviously the last integral converges absolutely for all s ∈ C. Thus formula above holds
for all s ∈ C by analytic continuation. Hence we obtain the second equality in (2.6) for
all a ∈ R \ Z and s ∈ C. □

5. Proof of Theorem 2.4

The functional equations in (2.22) are proved by the integral representations (2.18)
since the right-hand side is unchanged if s is replaced by 1 − s. However, we give proofs
of equations in (2.22) by using the functional equation (1.6) of the Lerch zeta function.

Proof of (2.22). Let us suppose that 0 < a, b < 1. Clearly, the functional equation (1.6)
can be rewritten as

e2πiabL(1− s, a, b) = Γπ(s)
(
eπis/2L(s, b,−a) + e−πis/2e2πiaL(s, 1− b, a)

)
. (5.1)

Changing parameters a → 1− a and b → 1− b in (5.1), we obtain

e2πi(1−a)(1−b)L(1− s, 1− a,−b) = Γπ(s)
(
eπis/2L(s, 1− b, a) + e−πis/2e2πi(1−a)L(s, b,−a)

)
.
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Multiplying the both-sides of the formula above by e−2πi(1−a) = e2πia, we have

e2πi(a−1)bL(1− s, 1− a,−b) = Γπ(s)
(
eπis/2e2πiaL(s, 1− b, a) + e−πis/2L(s, b,−a)

)
. (5.2)

Moreover, we can easily see that

Z(s, a, b) =
∑

n+a ̸=0

e2πi(n+a)b

|n+ a|s
=

∞∑
n=0

e2πi(n+a)b

(n+ a)s
+

∞∑
n=0

e2πi(−n−1+a)b

(n+ 1− a)s

= e2πiabL(s, a, b) + e2πi(a−1)bL(s, 1− a,−b),

(5.3)

P (s, a, b) =
∑

n+b ̸=0

e−2πina

|n+ b|s
=

∞∑
n=0

e−2πina

(n+ b)s
+

∞∑
n=0

e−2πi(−n−1)a

(n+ 1− b)s

= L(s, b,−a) + e2πiaL(s, 1− b, a).

(5.4)

Hence, from (5.1) + (5.2), we obtain

Z(1− s, a, b) = Γcos(s)P (s, a, b). (5.5)

Replacing the variable s → 1− s in the equality above, we obtain Z(s, a, b) = Γcos(1− s)
P (1− s, a, b). Besides one has Γcos(s)Γcos(1− s) = 1 by the definition of Γcos(s) and Euler’s
reflection formula for the Gamma function. Therefore, we obtain

P (1− s, a, b) = Γcos(s)Z(s, a, b). (5.6)

The equations (5.5) and (5.6) imply Riemann’s functional equation of (2.22).
On the other hand, we have

Y (s, a, b) =
∑

n+a ̸=0

sgn(n+ a)e2πi(n+a)b

|n+ a|s
=

∞∑
n=0

e2πi(n+a)b

(n+ a)s
−

∞∑
n=0

e2πi(−n−1+a)b

(n+ 1− a)s

= e2πiabL(s, a, b)− e2πi(a−1)bL(s, 1− a,−b),

(5.7)

O(s, a, b) = i
∑

n+b ̸=0

sgn(n+ b)e−2πina

|n+ b|s
= i

∞∑
n=0

e−2πina

(n+ b)s
− i

∞∑
n=0

e−2πi(−n−1)a

(n+ 1− b)s

= iL(s, b,−a)− ie2πiaL(s, 1− b, a).

(5.8)

Thus, by (5.1) − (5.2), we obtain

Y (1− s, a, b) = Γsin(s)O(s, a, b). (5.9)

Furthermore, we have
O(1− s, a, b) = Γsin(s)Y (s, a, b) (5.10)

from the equations (5.9) and Γsin(s)Γsin(1 − s) = 1 which is proved by Euler’s reflection
formula. The functional equations (5.9) and (5.10) imply the second equation in (2.22).

□
Obviously, we have Theorem 2.4 (1), (2) and (3) by the definitions of Q(s, a, b) and

X(s, a, b). The Fourier expansions in (2.23) are easily proved by the functional equations
(5.5) and (5.9), namely,

Z(s, a, b) = Γcos(1− s)P (1− s, a, b) and Y (s, a, b) = Γsin(1− s)O(1− s, a, b).

The functional equations in Theorem 2.4 are easily shown by the integral representations
in (2.18). Thus, we only have to prove Theorem 2.4 (0).

Proof of (2.18) for Q(s, a, b). Assume 0 < a, b < 1 and ℜ(s) > 1. Then we have

2

∫ ∞

0

us−1GZ(u, a, b)du =

2e2πiab
∞∑
n=0

e2πinb
∫ ∞

0

us−1e−πu2(n+a)2du+ 2e2πi(a−1)b

∞∑
n=0

e−2πinb

∫ ∞

0

us−1e−πu2(n+1−a)2du.
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The first infinite series can be expressed as
∞∑
n=0

e2πinb
∫ ∞

0

e−v

(
v/π

(n+ a)2

)s/2−1
dv/π

(n+ a)2
= π−s/2Γ

(s
2

) ∞∑
n=0

e2πinb

(n+ a)s
. (5.11)

Hence, by using (5.3) and (5.11), we obtain

2

∫ ∞

0

us−1GZ(u, a, b)du = π−s/2Γ
(s
2

)
Z(s, a, b). (5.12)

Similarly, when ℜ(s) > 1, one has

2

∫ ∞

0

us−1GP (u, a, b)du =

2
∞∑
n=0

e−2πina

∫ ∞

0

us−1e−πu2(n+b)2du+ 2e2πia
∞∑
n=0

∫ ∞

0

us−1e2πina−πu2(n+1−b)2 .

Thus, from (5.4) and (5.11), we have

2

∫ ∞

0

us−1GP (u, a, b)du = π−s/2Γ
(s
2

)
P (s, a, b). (5.13)

Therefore, when ℜ(s) > 1, it holds that

π−s/2Γ
(s
2

)
Q(s, a, b) =

∫ ∞

0

us−1GQ(s, a, b)du. (5.14)

Hence, from the first modular relation in (2.15), we obtain

π−s/2Γ
(s
2

)
Q(s, a, b) =

∫ ∞

1

us−1GQ(u, a, b)du+

∫ 1

0

us−1GQ(u, a, b)du

=

∫ ∞

1

us−1GQ(u, a, b)du+

∫ ∞

1

v1−sGQ(v
−1, a, b)

dv

v2
=

∫ ∞

1

(
us + u1−s

)
GQ(u, a, b)

du

u
.

The last integral converges absolutely for all s ∈ C, and so the formula holds, by analytic
continuation, for all s ∈ C. Thus we have the first equality in (2.18) for all 0 < a < 1
and s ∈ C. From the periodicities of GQ(u, a, b) and Q(s, a, b), the first equation in (2.18)
holds for all a ∈ R \Z. Moreover, we have the first equation in (2.18) for all b ∈ R \Z by
the quasi-periodicities of GQ(u, a, b) and Q(s, a, b). □
Proof of (2.18) for X(s, a, b). Let us suppose a, b ∈ R \ Z. By (5.12) and (5.13),

2
∂

∂b

∫ ∞

0

us−1GZ(u, a, b)du =
∂

∂b
π−s/2Γ

(s
2

)
Z(s, a, b),

2
∂

∂b

∫ ∞

0

us−1GP (u, a, b)du =
∂

∂b
π−s/2Γ

(s
2

)
P (s, a, b)

when ℜ(s) > 1. From (3.5), one has

∂

∂b

∫ ∞

0

us−1GZ(u, a, b)du = 2πi

∫ ∞

0

us−1GY (u, a.b)du,

∂

∂b

∫ ∞

0

us−1GP (u, a, b)du = 2πi

∫ ∞

0

us+1GO(u, a)du

if ℜ(s) > 1. Clearly, we can see that

∂

∂b
Z(s, a, b) =

∑
n+a ̸=0

∂

∂b

e2πi(n+a)b

|n+ a|s
= 2πi

∑
n+a ̸=0

sgn(n+ a)e2πi(n+a)b

|n+ a|s−1
= 2πiY (s, a, b),

∂

∂b
P (s, a, b) =

∑
n+b ̸=0

∂

∂b

e−2πina

|n+ b|s
= −s

∑
n+b ̸=0

sgn(n+ b)e−2πina

|n+ b|s+1
= −s

i
O(s, a, b)
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when ℜ(s) > 2. By the formulas above, we have

∂

∂b
Γ
(s
2

)
Z(s, a, b) = 2πiΓ

(s
2

)
Y (s− 1, a, b),

∂

∂b
Γ
(s
2

)
P (s, a, b) = isΓ

(s
2

)
O(s+ 1, a, b) = 2iΓ

(s+ 2

2

)
O(s+ 1, a, b)

for all s ∈ C. Therefore, if ℜ(s) > 1, we obtain∫ ∞

0

usGY (u, a, b)du = π−(s+1)/2Γ
(s+ 1

2

)
Y (s, a, b),∫ ∞

0

usGO(u, a, b)du = π−(s+1)/2Γ
(s+ 1

2

)
O(s, a, b).

The equations above imply

π−(s+1)/2Γ
(s+ 1

2

)
X(s, a, b) =

∫ ∞

0

usGX(u, a, b)du.

By applying the second modular relation in (2.15), we have

π−(s+1)/2Γ
(s+ 1

2

)
X(s, a, b) =

∫ ∞

1

usGX(u, a, b)du+

∫ 1

0

usGX(u, a, b)du

=

∫ ∞

1

usGX(u, a, b)du+

∫ ∞

1

v−sGX(v
−1, a, b)

dv

v2
=

∫ ∞

1

(
us + u1−s

)
GX(u, a, b)du.

Obviously, the last integral converges absolutely for all s ∈ C. Thus formula above holds
for all s ∈ C by analytic continuation. Hence we obtain the second equality in (2.18) for
all a, b ∈ R \ Z and s ∈ C. □
Acknowledgments. The author was partially supported by JSPS, grant no. 22K03276.

References

[1] T. M. Apostol, On the Lerch zeta-function, Pacific J. Math. 1, (1951), 161–167.
[2] T. M. Apostol, Introduction to Analytic Number Theory. Undergraduate Texts in Mathematics,

Springer, New York, 1976.
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