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Inspired by the way that digital artists zoom out of the canvas to assess the clarity of their works, we introduce a con-
ceptually simple yet effective metric for quantifying the visual clarity of digital images. This metric contrasts original
images with progressively “melted” counterparts, produced by randomly flipping adjacent pixel pairs. It measures the
presence of stable structures, assigning the value zero to completely uniform or random images and finite values for
those with discernible patterns. This metric respects the color diversity of the original image and withstands image
compression and color quantization. Its suitability for diverse image analysis problems is demonstrated through its
effective evaluation of visual textures, the identification of structural transitions in physical systems like the Potts and
XY models, and its consistency with color theory in digital arts. This allows us to demonstrate that colors in visual
art function as a state variable, akin to the spin configuration in magnets, driving artistic designs to transition between
states having distinct visual stability. When combined with the Shannon entropy, which quantifies color diversity, the
structural stability metric can serve as a navigation tool for artists to explore pathways on the complex structural infor-
mation landscape toward the completion of their artwork. As a practical demonstration, we apply our metric to refine
and optimize an emote design for a video game. The structural stability metric emerges as a versatile tool for extracting
nuanced structural information from digital images, enhancing decision-making and data analysis across scientific and
creative domains.
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I. INTRODUCTION

Artists illustrate by gradually applying brushstrokes to plain
canvases. However, placing too many structures, like lines and
colors, onto a canvas would eventually result in a grayish-to-
black appearance, resembling yet another plain canvas. It is
the harmony and contrast between the different structures that
make a painting visually informative to its viewer. Hence,
the concept of structural information of an image is cyclic1:
If the amount of structure is to be quantified using a metric,
the metric must return the same value for the two extremes of
complete order and disorder.

In the quest to quantify the structural information of digital
images, multiple approaches have been proposed. Image com-
pression techniques2–4 evaluate how much an image can be
compressed without structural degradation—the more struc-
tures an image contains, the less the image can be compressed.
Approaches employing second-order information measures,
such as delentropy5,6 and permutation entropy7–9, analyze the
distribution of local pixel intensity arrangements, or ordinal
patterns, across an image; a wider variety of these patterns
leads to larger values of the entropy. Such metrics are often
paired with statistical complexity, which assesses the similar-
ity of the distribution of the observed ordinal patterns to an
idealized uniform distribution, where all patterns are equally
likely. Statistical complexity vanishes at the extremes of com-
plete order and disorder. Renormalization-based methods10,11

compare the original image with its coarse-grained versions
generated through multi-step spatial averaging; images main-
taining consistent structural details across scales show greater
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overlap between the original and simplified versions.
The methods mentioned above are supported by credible

theoretical foundations such as statistical physics and infor-
mation theory. Whether they are suitable for analyzing paint-
ings is, however, another matter. For instance, metrics based
on image compression largely depend on the image resolu-
tion, which is not a property of the structures contained in a
painting. Delentropy and permutation entropy consider only
the intensity of the pixel but not its color, even though col-
ors are central to most artworks. Also, the number of pixels
used to define an ordinal pattern is somewhat arbitrary. Met-
rics based on renormalization require averaging of adjacent
pixel values. For styles such as pixel art, which heavily re-
lies on patterns such as lines and dithering, this would destroy
most structural information in one single step, giving a very
low overlap between the original image and its coarse-grained
counterpart. These observations underscore a significant gap
in current methodologies when applied to the structural analy-
sis of art. There is a compelling need for a new metric that not
only encompasses the broad spectra of shape and color used
in art but also respects the integrity of various artistic styles.

STRUCTURAL INFORMATION OF DIGITAL IMAGES

To ensure their depicted subject remains recognizable
across different viewing scales, such as on a smartphone
screen, digital artists frequently zoom out from their canvas
and inspect their drawings. This practice effectively simu-
lates a blurring of details, hinting at a way to quantify the
amount of visually stable structures within digital images. As
an illustrative example, Fig. 1A shows a pixel art image of
width Lx = 555 and height Ly = 290 featuring Hololive Pro-
duction talent Himemori Luna and her knight mascots on a
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FIG. 1. Structural stability analysis of digital images. (A) The original pixel art of width Lx = 555 and height Ly = 290 depicting Hololive
Production talent Himemori Luna and her knight mascots on a raft. (B) The “melted” version of the artwork after 650,000 iterations of
random adjacent pixel pair flipping, demonstrating the degradation of structures with the subjects obscured, leaving the shape of the raft
visually recognizable. (C) A grayscale image, referred to as the color distance map, representing structural stability. Black regions are robust
against structural change due to pixel-flipping, while white regions are susceptible. (D) The calculated structural degradation score S (filled
symbols) of the original artwork as a function of the number of flipped pixel pairs N, normalized by the image size LxLy, plotted with the score
S∗ (empty symbols) of a completely shuffled version of the original artwork (inset image). The filled symbol labeled C corresponds to the
structural degradation score of the grayscale image in C. The difference ∆S = S∗−S quantifies the amount of stable structures in the original
artwork relative to that in the shuffled version. The inset three-dimensional scatter plot shows the distribution of the fifty most frequent colors
within the RGB space for the artwork. The axis labels R, G, and B represent the color intensity in the red, green, and blue channels, respectively.
Each data point represents a unique color. The diameter of each data point is proportional to the probability of that particular color within
the artwork. The mean distance between all pairs of data points, scaled by their sizes, is the mean color distance ⟨dc⟩. (E) The differences
∆S of two visually distinct images as functions of N/LxLy, which are maximized consistently for N/LxLy ∼ 1, leading to our definition of the
structural stability metric ∆SM = max(∆S), which is independent of N. Circles represent the artwork depicted in A, and triangles represent the
artwork in the inset. Artworks by Ronin (X/Twitter ID: @zeth total). Used with permission.

raft. By flipping a random pair of adjacent pixels per iter-
ation, we progressively degrade the structures in the image.
After 650,000 iterations, the resultant “melted” version of the
painting, shown in Fig. 1B, primarily obscures the subjects,
leaving the overall shape of the raft still visually recognizable.

The structural degradation is quantified by calculating the
normalized Euclidean color distance di j between each pixel at
horizontal positions i = 1,2, ...,Lx and vertical positions j =
1,2, ...,Ly in the original image and its melted version within
the RGB (red-green-blue) space:

di j =
1√
3

√
(∆Ri j)2 +(∆Gi j)2 +(∆Bi j)2. (1)

Here, ∆Ri j, ∆Gi j, and ∆Bi j are the intensity differences at po-
sition (i, j) between the two images in the red, green, and blue
channels, respectively. This computation yields a grayscale
image, referred to as the color distance map, for each iteration
of pixel-flipping, as illustrated in Fig. 1C. In the color dis-
tance map, black areas (di j = 0) correspond to regions highly

resistant to pixel-flipping, indicating visually stable structures
such as the predominantly uniform background color. In con-
trast, white areas (di j = 1) highlight regions that are particu-
larly susceptible to pixel-flipping, such as the subjects.

The structural degradation score S is obtained by summing
the non-zero pixel values in the color distance map and nor-
malizing by the image size LxLy:

S =
1

LxLy
∑
i, j

di j. (2)

This score logarithmically increases with the number of
flipped pixel pairs N, as shown in Fig. 1D (filled sym-
bols). For a completely shuffled version of the original image
(Fig. 1D, inset image), all large-scale structures exhibit dete-
rioration. As each small-scale structure is equally prone to
pixel-flipping, the score S∗ rises more rapidly than S, reaching
a plateau for N/LxLy ∼ 1 (Fig. 1D, empty symbols), where
on average all pixels are flipped once, essentially generat-
ing another shuffled image. Granted that shuffling disrupts
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FIG. 2. The structural stability metric ∆SM for different upper and
lowercase English letters. The font used is Cambria Math.

all spatial color relationships, the average of d∗
i j, namely S∗,

with sufficient pixel pairs between the two shuffled images
converges statistically to the mean color distance ⟨dc⟩ found
when considering all possible color combinations in the color
histogram of the original image (Fig. 1D, inset plot), scaled
by their frequencies. This allows us to derive an expression
relating the plateau value of S∗ to ⟨dc⟩. Given K distinct val-
ues dk of color distance obtainable from the color histogram,
with corresponding probability pk, the plateau value of S∗ is
determined by

S∗ =
1

LxLy
∑
i, j

d∗
i j = ∑

k

nk

LxLy
dk = ∑

k
pkdk = ⟨dc⟩, (3)

where nk is the number of pixels with value dk in the color
distance map.

The fully melted, shuffled version of the original image rep-
resents a benchmark of complete disorder, allowing us to tally
the number of stable structures, that is, the degree of structural
stability in the original image, relative to this disorder state,
quantified by ∆S = S∗−S. For sufficiently large N/LxLy > 1,
∆S can be expressed as

∆S = ∑
i, j

∆Si j =
1

LxLy
∑
i, j
⟨dc⟩−di j, (4)

which represents the deviation of the local color distance di j
at pixel position (i, j) from the mean color distance ⟨dc⟩. Re-
gions having similar colors in the original image have small
values of di j, leading to a higher value of local structural sta-
bility ∆Si j and hence contribute more to the global structural
stability ∆S of the image. Therefore, large values of ∆S in-
dicate that many regions have color distances lower than the
expected average in the state of complete disorder, highlight-
ing the presence of order, or stable structures, in the image.

As illustrated in Fig. 1E, ∆S is consistently maximized for
N/LxLy ∼ 1, even for visually distinct images. This leads us to
define a structural stability metric ∆SM = max(∆S), which is
independent of N. Notably, ∆SM is zero for both a plain color
image, where ⟨dc⟩= di j = 0, and a completely shuffled image,
where S∗ = S, and thus properly incorporates the cyclic nature
of structural information. Given a set of images sharing the
same color histogram, the maximum possible value of ∆SM
for those images would be ⟨dc⟩ according to [4]. The upper

FIG. 3. The structural stability metric ∆SM as a function of the num-
ber of strokes for different Chinese characters (circles) and Japanese
hiragana (triangles). The font used is MingLiU.

bound of ∆SM can be obtained by considering an image filled
with colors of equal proportions located at the eight vertices in
the RGB cube (cf. Fig. 1D, inset plot), yielding ⟨dc⟩= (

√
3+√

6+ 1)/8 ≈ 0.648. For an image filled with colors of equal
proportions located at only two of the non-adjacent vertices in
the RGB cube, for instance, black and white, ⟨dc⟩= 0.5

Our formulation of ∆SM is directly tied to the color his-
togram of the original image, whose randomness is quantified
by the Shannon entropy H = −∑c pc log2 pc, where pc is the
probability that a pixel exhibits a color vector c in the RGB
space12. Let cα and cβ denote two color vectors in the color
histogram, with respective color probabilities pα and pβ . The
mean distance of all colors in the color histogram can then be
expressed as

⟨dc⟩= ∑
α,β

pα pβ |cα − cβ |. (5)

To fairly compare the structural information of two images, it
is therefore necessary to consider both ∆SM and H. In essence,
this mirrors the approach of quantifying structural information
via permutation entropy and statistical complexity7–9, except
that our method focuses on how colors, instead of ordinal pat-
terns, are distributed in an image. As an important side note,
to measure H, the color space must first be discretized to allow
for the construction of a color histogram. Hence, all images
used in the current study are pre-processed using minimum
variance color quantization13, limiting the number of colors
to 216 and, thus, the maximum possible value of H to 16.

VALIDATION OF THE STRUCTURAL STABILITY
METRIC

To empirically test the reliability of the structural stability
metric ∆SM , we now examine a variety of test cases chosen to
assess whether the metric corresponds with our innate percep-
tions regarding structural information.

For ∆SM to be a valid structural measure, it must assign
similar values to visually similar symbols. Fig. 2 shows the



4

FIG. 4. Sensitivity to image compression and color quantization.
(A) Square illustrations of different sizes L, depicting Hololive Pro-
duction talent Gawr Gura. The image with L = 1500 is the original
artwork; images with smaller L are obtained by compressing the orig-
inal one using bicubic interpolation. The plots below show the cor-
responding Shannon entropy H and structural stability metric ∆SM
plotted as functions of L. (B) The same depictions of Gawr Gura
with different numbers of colors nc obtained by processing the orig-
inal artwork using minimum variance color quantization. The plots
below show H and ∆SM as functions of nc. Artwork by Advarcher
(X/Twitter ID: @Anonamos 701). Used with permission.

values of ∆SM for different upper and lowercase English let-
ters. We observe that ∆SM attains similar values for visually
similar letters such as “b”, “d”, “h”, “p”, and “q”, “l” and
“I”, as well as “M” and “W”. Conversely, ∆SM distinctly dif-
ferentiates between letters with more pronounced structural
differences, such as “l”, “m”, and “n”. Fig. 3 shows ∆SM for
different Chinese characters (circles) and Japanese hiragana
(triangles), with numbers of strokes ns. As ns increases, the
structural features of the symbols increase, leading to larger
values of ∆SM . Japanese hiragana generally has smaller values
of ∆SM in comparison to Chinese characters with large values
of ns. This agrees with the historical understanding that the
designs of hiragana were simplified from Man’yōgana, Chi-
nese characters that were used to transcribe Japanese phono-

graphically14,15. It is worth noting that ∆SM of the characters
appears to be a monotonically increasing function of ns, in-
dicating that the design of fonts might be optimized for their
legibility. Also, the nominally logarithmic increase of ∆SM
in response to an increasing ns resonates with Fechner’s law
in experimental psychology, which postulates that the rela-
tionship between stimulus and perception is logarithmic16,17.
These observations highlight the sensitivity of the structural
stability metric ∆SM to the visual similarity within a set of
symbols, effectively mapping our perception of structural in-
formation onto a quantifiable scale.

As a second requirement, ∆SM must be insensitive to op-
erations such as image compression and color quantization,
granted that the dominant structures depicted in the image are
visually preserved. Fig. 4A shows several square painterly il-
lustrations of different sizes L. The Shannon entropy H and
the structural stability metric ∆SM as functions of L are also
shown. The illustration with L = 1500 is the original artwork;
the compressed versions with smaller values of L are obtained
from the original one by bicubic interpolation18. The Shan-
non entropy and the structural stability metric are both highly
robust against image compression, with H and ∆SM showing
roughly the same values even though the original artwork is
reduced more than ten times in size. Fig. 4B shows the same
artwork but with the number of colors nc reduced by mini-
mum variance color quantization13. The value of H decreases
as nc is reduced to 210, approaching a value smaller than 1
as nc is further reduced to 2. On the other hand, ∆SM retains
its value down to nc = 22, demonstrating a robust resistance
against color quantization. Of course, the above observations
cannot apply to images like pixel art. Nonetheless, they under-
score the applicability of ∆SM across a wide variety of digital
images, particularly those where color gradations are essential
to conveying the structures depicted in an image.

STRUCTURAL ANALYSIS OF DIGITAL IMAGES

The Shannon entropy H and structural stability metric ∆SM
together quantify the amount of structural information that is
contained in a digital image. In what follows, we showcase
how the two metrics can be applied together in a number of
settings.

Kylberg–Sintorn rotation dataset

Given that H and ∆SM can quantify the diversity of colors
and their spatial distribution in a digital image, we expect that
these metrics might effectively differentiate between the tex-
tures in the Kylberg–Sintorn rotation dataset, which includes
one-hundred 122×122 images for each of its diverse texture
classes19. Fig. 5A displays examples, arranged top to bottom,
left to right: cane sugar, canvas, couscous, fabric1, fabric2,
fabric3, flaxseed, knitwear, lentils, oatmeal, pearl sugar, rice,
rug, rye flakes, seeds, sprinkles, tile, towel, wheat, and wool.
Some of the images, such as fabric1 and towel, which share a
fibrous texture, and lentils and oatmeal, which share a speck-



5

FIG. 5. Structural analysis of the Kylberg–Sintorn rotation dataset. (A) Grayscale images of dimension 122×122 depicting 20 textures from
the dataset. The images are arranged in spatial order (top to bottom, left to right): Cane sugar, canvas, couscous, fabric1, fabric2, fabric3,
flaxseed, knitwear, lentils, oatmeal, pearl sugar, rice, rug, rye flakes, seeds, sprinkles, tile, towel, wheat, and wool. (B) Scatter plot mapping
the 100 sample images for each of the 20 textures on the entropy-stability plane defined by the Shannon entropy H and the structural stability
metric ∆SM . Half-transparent symbols represent raw data. Darker symbols represent the mean values of the raw data.

led appearance, show visual resemblance when viewed from
afar. On the other hand, images such as fabric2 and fabric3,
due to their unique patterns, appear visually distinct from all
other textures, even when viewed from afar.

In Fig. 5B, the scatter plot of H and ∆SM illustrates the
placement of different texture classes on the entropy-stability
plane. Textures like fabric3 (filled rightward triangles), with
its distinctly binary and expansive patterns, are positioned to-
wards the top-left quadrant, indicating lower color diversity
and higher visual stability. Meanwhile, textures like canvas
(filled circles) that consist solely of fine details are positioned
towards the bottom right, suggesting higher color diversity
and lower visual stability. Textures like rug (empty down-
ward triangles), rye flakes (empty leftward triangles), seeds
(empty rightward triangles), sprinkles (empty squares), and
wheat (empty hexagrams), with rather shiny surfaces and pro-
nounced gaps, are situated in the top-right quadrant, reflecting
a higher degree of structural complexity. Notably, the cluster-
ing of ∆SM values around their mean for most texture classes
underscores that the metric is indeed robust in distinguish-
ing visually similar images. Our observations regarding the
Kylberg–Sintorn rotation dataset affirm the effectiveness of H
and ∆SM in capturing the nuanced differences between tex-
tures, confirming their potential for robust textural analysis of
digital images.

Potts model

A natural follow-up question concerns whether H and ∆SM
can be used to identify phase transition in physical systems,
in particular, solely by quantifying the structural information
contained in the images depicting the system configuration

without any a priori knowledge about the system. To an-
swer that, we next consider the four-state Potts model20, also
known as the Ashkin–Teller model21, an extension of the Ising
model22 to four spin states.

Originating in statistical physics, the Potts model allows
each site on a lattice to assume one of four distinct states in-
teracting with its nearby sites. The Hamiltonian of the Potts
model reads

E =−J ∑
⟨i, j⟩

δ (σi,σ j), (6)

which is the energy of a particular spin configuration. The
sum is taken over the adjacent neighbors ⟨i, j⟩ of all sites. The
spin state of site i, σi, can take on a value of either 1,2,3, or
4. The symbol δ (σi,σ j) is the Kronecker delta, which equals
unity if σi = σ j and zero otherwise. The parameter J is the
coupling constant, which determines the strength of the inter-
action between neighboring sites.

When simulating the Potts model, there are two ways to
update the spin states on the lattice. In Glauber dynamics23,
a new state is assigned to a randomly chosen lattice site at
each time step. In Kawasaki dynamics24,25, the states of a
randomly chosen pair of adjacent lattice sites are exchanged
at each time step. Both updating schemes effectively induce
changes ∆E of the Hamiltonian. However, whereas Kawasaki
dynamics preserve the amounts of each spin state, Glauber
dynamics allow those amounts to change. Temperature T is
incorporated into the model via the Metropolis–Hastings algo-
rithm26,27 for accepting a new spin configuration by two crite-
ria: Energetically favorable changes (∆E ≤ 0) are always ac-
cepted. For energetically unfavorable ones (∆E > 0), a proba-
bility p = exp(−∆E/kT ) is calculated and a random number
0 ≤ n ≤ 1 is drawn; if n ≤ p, the new configuration is ac-
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FIG. 6. Structural analysis of the four-state Potts model with J = 1 using the (A) Glauber and (B) Kawasaki dynamics. Top panels display
spin configurations on a square lattice of size L = 100 at various temperatures T . Subsequent panels from top to bottom show the normalized
Hamiltonian E/L2, specific heat C = (1/L2)dE/dT , Shannon entropy H, and structural stability metric ∆SM , all as functions of T . Symbols
represent simulation results. For E/L2, the lines represent the cubic smoothing spline interpolation of the simulation results. For C, the lines
represent the numerical derivative of the interpolation of E/L2 with respect to T . To ensure equilibration, all data are obtained after 108

iterations.

cepted. The conversion factor k is the Boltzmann constant; to
simplify the presentation in the current study, we set k to unity
such that ∆E and T are both dimensionless.

Figure 6A shows the simulation results of the four-state
Potts model via Glauber dynamics, a square lattice of size
L = 100 with periodic boundary conditions and J = 1. To
simulate the gradual degradation of structures, an initial con-
dition of uniform spin states is assumed. At low temperatures
such as T = 0.1, the probability of accepting an energetically
unfavorable update is extremely low (p ≈ 0), causing the spin
configuration to remain in its initial uniform state. As T in-
creases, new spin states, visualized as distinct colors in the
image, gradually appear. At high temperatures such as T = 4,
p ≈ 1, most updates are accepted, leading to a noise-like ap-
pearance of the spin configuration. The normalized Hamilto-
nian E/L2 increases as T increases. Notably, it shows a transi-
tion at T = 0.92, corresponding to a sharp peak of the specific
heat C = (1/L2)dE/dT at the same T , in agreement with the
seminal work by Binder28. As a side note, the slight oscilla-
tion in the specific heat curve for 1 < T < 2 is due to our use
of cubic smoothing splines29 when fitting the data for E/L2

and subsequent numerical differentiation needed to calculate
C, prioritizing computational efficiency over precision.

The Shannon entropy H follows a trend similar to E/L2;
however, the transition appears more abrupt at T = 0.92. The
value of H approaches 2, the maximum value for a four-state
system, indicating that the four spin states become equally

probable. Notably, the structural stability metric ∆SM exhibits
a sharp peak at T = 0.92, akin to C, indicating the emer-
gence of stable structures in the system. This finding is sig-
nificant. Traditional methods often employ C as an indicator
of a phase transition. This quantity can be obtained by com-
puting the numerical derivative of E with respect to T or by
employing the fluctuation-dissipation theorem, which respec-
tively entails curve fitting29 or sampling large numbers of spin
configurations30 to average out thermal fluctuations. In sharp
contrast, ∆SM can identify the critical point of phase transition
simply by analyzing single screenshots of the spin configura-
tions captured at different T , complementing the traditional
approaches.

Fig. 6B shows the simulation results for the same four-state
Potts model but with Kawasaki dynamics. An initial condition
with the four spin states occupying each quadrant of the lattice
is used. As T is increased, structures on the lattice degrade;
eventually, the spin configuration becomes noise-like as T be-
comes sufficiently high. The transition of E/L2 and the peak
of C appear less sharp compared to those depicted in Fig. 6A.
This contrast is attributed to a unique property of Kawasaki
dynamics. As any exchange of spins influences six adjacent
lattice sites, ∆E is, on average, higher than that determined
by Glauber dynamics, in which only four neighboring sites
are affected. Due to the larger value of ∆E, the temperature
T has a less pronounced effect on the acceptance probability.
This hinders the system from exploring alternative configura-
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tions, limiting energy fluctuations near the critical point and
leading to a relatively blunt peak of the specific heat. Since
spin states are conserved, the Shannon entropy H assumes a
constant value of 2 for all T . However, the structural stability
metric ∆SM still exhibits a transition reflecting the phase tran-
sition, showcasing its capacity to identify structural changes
in the system. Nonetheless, its trend now mirrors that of E/L2

instead of C, indicating that the ability of ∆SM to identify
phase transition is context-dependent, which is common for
order parameters31.

Structural stability as energy difference

For the Potts model, when the Shannon entropy H is not
conserved, the structural stability metric ∆SM peaks at the crit-
ical temperature akin to the specific heat C (Fig. 6A). How-
ever, when H is conserved, ∆SM mirrors the trend of the
Hamiltonian E/L2 (Fig. 6B). These observations can be ex-
plained if we consider the similarity between the structural
degradation score S (cf. [2]) and the Hamiltonian, or energy, E
(cf. [6]). Both expressions involve a quantitative comparison
between the states of two entities and the summation of those
quantities over all entities in the system. In [2], a compari-
son is made between the color vectors c of two pixels in the
original image and its melted counterpart. Similarly, in [6], a
comparison is made between the states σ of an adjacent pair
of spins. This similarity suggests that S can be interpreted as
a form of “structural energy” in the context of digital images.
The normalized number of flipped pixel pairs, N/LxLy, can be
viewed as a parameter functionally analogous to temperature
T , controlling the extent of perturbation applied to the image.
The score S∗ = ⟨dc⟩ (cf. [3]) for the completely shuffled ver-
sion of the original image corresponds to the structural energy
for N/LxLy ≫ 1, where all structures are effectively melted.
The expression [4], central to defining the structural stability
metric ∆SM , can be interpreted as the structural energy differ-
ence between the slightly perturbed (N/LxLy ∼ 1) and com-
pletely randomized (N/LxLy ≫ 1) states of an image. Hence,
the similarity between the trends of ∆SM (maximal structural
energy difference), E (energy difference from a state of zero
energy), and C (energy difference per unit temperature dif-
ference) in the Potts model is not a mere coincidence but is
rooted in the similar formulations of the three quantities.

Classical XY model

Having established an energetic interpretation of ∆SM , here,
we consider the classical XY model32–34, in which the spins
can freely rotate in two dimensions, leading to continuous spin
orientations. We encode the spin states using hues instead
of intensities. This encoding strategy deliberately introduces
a challenge that existing methods based on permutation en-
tropy7–9 cannot adequately address due to their reliance on
ordinal relationships among pixel values. These modifications
together offer a more demanding test for ∆SM , requiring that
it discerns the subtle structural changes in the system. The

FIG. 7. Structural analysis of the classical XY model. The top two
rows display spin configurations on a square lattice of size L = 300
at various temperatures T , assuming a plain (top) and a random (bot-
tom) initial condition (IC). Subsequent panels from top to bottom
show the normalized Hamiltonian E/L2, specific heat C, Shannon
entropy H, and structural stability metric ∆SM as functions of T . For
E/L2, the lines represent the cubic smoothing spline interpolation
of the simulation results. For C, the lines represent the numerical
derivative of the interpolation of E/L2 with respect to T . To ensure
equilibration, all data are obtained after 108 iterations.

Hamiltonian of the XY model is

E =−J ∑
⟨i, j⟩

cos(θi −θ j), (7)

where θi ∈ [0,2π) is the spin orientation at site i. Notably, the
XY model is known to undergo the Berezinskii–Kosterlitz–
Thouless transition32–34 marked by the unbinding of topolog-
ical defects like vortex and antivortex pairs, as the tempera-
ture is raised above T ≈ 0.8935–41. The interactions between
vortices suppress energy fluctuations, shifting the peak of the
specific heat to a higher temperature of T ≈ 1.02–1.0435–39.

Fig. 7 shows our simulation results of the XY model with
J = 1 using a square lattice of size L = 300 with periodic
boundary conditions. The spin configuration is updated by
assigning a small change of angle ∆θ ∈ [−π/2,π/2] to θi per
iteration. Notably, for T < 1.1, the system distinctly depends
on the initial spin configuration: A uniform initial state tends
to retain its structural coherence; in contrast, a random ini-
tial state exhibits emergent clusters of varying hues, represent-
ing different spin orientations. For T ≥ 1.1, these differences
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FIG. 8. Evolution of structural information during a digital paint-
ing of Hololive Production talent Takanashi Kiara. Top: Screen-
shots of a timelapse video illustrating the creative stages: (i) drafting,
(ii) base coloring, (iii) background base coloring, (iv) detailing, (v)
background enhancement, and (vi) final touches. Bottom: Plots of
the Shannon entropy H and structural stability metric ∆SM as func-
tions of normalized number t of drawing steps. Artwork by Fadingz
(X/Twitter ID: @FadingzZ). Used with permission.

diminish. This indicates that thermal agitation has become
strong enough to overcome the interactions between vortices
and antivortices.

Despite the structural differences at lower temperatures, the
Hamiltonian E/L2 exhibits consistent trends regardless of the
initial condition used42. The specific heat C, showing a peak
at T ≈ 1.07, aligns closely with the critical temperatures T ≈
1.02–1.04 reported in previous studies35–39.

In contrast to E/L2 and C, the Shannon entropy H and the
structural stability metric ∆SM are sensitive to the initial con-
ditions. For a uniform initial state (circles), H is not conserved
at low temperatures T < 1.07; ∆SM peaks at T ≈ 1.07 akin
to C, reflecting the emergence of stable structures, likely due
to the nuanced balance between thermal agitation and vortex-
antivortex interactions. Meanwhile, for a random initial state
(triangles), H is conserved across all T , and ∆SM mirrors the
trend of E/L2. These observations mirror those derived from
Fig. 6 for the Potts model. The applicability of ∆SM as a re-
liable order parameter for discerning transitions in a physical
system is evidently contingent upon the conservation of H.
Nonetheless, our study of the XY model demonstrates how H
and ∆SM can quantify structural information that traditional
metrics such as C cannot reveal.

STRUCTURAL INFORMATION LANDSCAPE OF
PAINTING

Our exploration of the Shannon entropy H and the struc-
tural stability metric ∆SM across diverse domains—from tex-
tural images to physical models—underscores their capac-
ity to quantify and trace transitions in structural information.
Artistic paintings, with their diverse palettes and styles, offer

a unique arena to extend our investigation further. Metaphori-
cally speaking, the painting process can be likened to a phase
transition, starting from a simple plain canvas and evolving
into a complex composition filled with colors. This evolu-
tion, whether through iterative refinement or direct detailing,
offers distinct trajectories on the structural information land-
scape, akin to how physical systems evolve following trajec-
tories on their potential energy landscapes43–45. Such a land-
scape is expected to be complicated. After all, painting is a
creative activity involving the artist’s craftsmanship, intents,
and decisions. Nonetheless, by examining how H and ∆SM
evolve from the initial blank state to the completed artwork,
researchers could gain insights into and, more importantly,
formulate more precise questions about the dynamic interplay
of elements that constitute artistic complexity.

As an illustration of a trajectory on the structural informa-
tion landscape, Fig. 8 shows a series of screenshots (i–vi),
along with the evolution of H and ∆SM throughout the draw-
ing steps t, normalized against the total number of frames
in a digital painting timelapse. Contrary to systems like the
Potts and XY models (cf. Figs. 6 and 7), H and ∆SM evolve in
largely nonlinear way. Yet, several regimes can be identified.
For instance, an initial transient during which the values of H
and ∆SM are relatively low can be seen for t < 0.25, corre-
sponding to the drafting phase (i) of the illustration. As the
base colors are added at t ≈ 0.25, H and ∆SM both increase
abruptly, with the increase of ∆SM being more pronounced,
indicating the formation of visually stable structures on the
canvas. This is also evidenced by the higher degree of the vi-
sual clarity of screenshot (ii) compared to (i). At t ≈ 0.35, as
the flat background color is added (iii), H further increases; in
contrast, ∆SM decreases due to the reduced contrast between
the subject and the negative space. The value of ∆SM is par-
ticularly sensitive to the background color: large fluctuations
in the metric can be seen as the artist is choosing what color to
use. Meanwhile, the entropy H, as a measure of color diver-
sity, is rather stable against the choice of the flat background
color. For t > 0.35, as details such as lighting, shadows, and
textures are gradually added to the subject (iv), the colors be-
come more diverse, increasing H further. On the other hand,
∆SM is insensitive to the further addition of details, indicating
equilibration in the quantity of visually stable structures, as
reflected by the observation that screenshots (iii) and (iv) ap-
pear visually similar when viewed from afar. At t ≈ 0.85, as
the artist decorates the background to enhance the silhouette
of the subject (v), H and ∆SM again show a step increase, lead-
ing to the equilibration of both metrics. Minor adjustments
during the finishing phase (vi) have no significant impact on
H and ∆SM .

Mapping the structural information landscape

Our timelapse video analysis has illuminated the complex
landscape of structural information inherent in creative pro-
cesses, with H and ∆SM functioning as navigational tools to
track an artist’s specific chosen journey toward completing a
painting. This exploration prompts us to consider how these
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tools can be applied to estimate or partially map the structural
information landscape of specific artworks, especially those
in which timelapse is not available.

The paintings by Piet Mondrian, renowned for his pivotal
role in the De Stijl movement and his advocacy for Neoplas-
ticism, offer an ideal testbed. The art style of Mondrian is
characterized by an emphasis on fundamental forms (hori-
zontal and vertical lines) and a restricted palette (white, gray,
black, red, blue, and yellow), striking a balance between order
and disorder46–49. “Composition with Red, Blue and Yellow”
stands out as a prime example of Mondrian’s artistic vision. It
features a deceptively simple arrangement of vertical and hor-
izontal lines that partition the nominally square canvas into
three color blocks and four white blocks. This simplicity pro-
vides a unique opportunity for us to generate digital variants,
enabling targeted inquiries into Mondrian’s choice of compo-
sition, in particular, his placement of the three colors in the
seven blocks.

Fig. 9 presents a scatter plot mapping the C7
3 × 3! = 210

digital variants of “Composition with Red, Blue and Yellow”,
each having a distinct placement of colors, onto the entropy-
stability plane. Each data point corresponds to a different vari-
ant. The cluster of points underscores the diverse range of
structural information generated by these variants. Notably,
the digital replica of the original artwork, denoted by a star,
is positioned close to the global maximum of ∆SM . This sug-
gests that Mondrian’s strategic color placement enhances the
structural stability of the composition. Recall that a larger
value of ∆SM implies a greater degree of balance between
order and disorder; such observation may reflect Mondrian’s
neoplasticist ideals of harmony and equilibrium. Furthermore,
the scatter plot reveals that while some variants share the same
value of H, indicating that for a fixed diversity of colors, their
values of ∆SM can vary significantly. This highlights the nu-
anced effect of color placement on the visual impact of an
artwork.

Navigating the structural information landscape

Our analysis in the previous section is tailored to a single
artwork of Mondrian, and we acknowledge that the findings
do not extend to his entire body of work. Nonetheless, the
insights gained hold significant implications for the composi-
tional analysis and design of visual communication elements
like emotes, logos, comic panels, and frames in animations
or movies. These media demand that their content be imme-
diately graspable, often at reduced sizes or within split sec-
onds50. In such a scenario, maximizing the visual stability of
an image, quantifiable through ∆SM , becomes crucial.

As a practical demonstration, we utilize H and ∆SM to re-
fine the composition of a pixel art emote for the video game
Holo X Break. The goal is to ensure that the identity, pos-
ture, and expressions of the subject are discernible, even when
displayed on small screens typical of video game interfaces.
Fig. 10A depicts several compositions of the emote featuring
Hololive Production talent Sakura Miko at different levels z
of zoom and rescaled to a dimension of 512×512 by nearest

FIG. 9. Structural analysis of digital variants of Piet Mondrian’s
“Composition with Red, Blue and Yellow”. The scatter plot maps
210 digital variants, each with unique color placements with the
seven blocks, onto the entropy-stability plane defined by the Shannon
entropy H and the structural stability metric ∆SM . The star symbol
(⋆) represents the digital replica of the original composition. Circles
represent other variants. Inset images depict the color placements of
the replica and several representative variants.

neighbor interpolation51. In plots below the compositions, H
and ∆SM are presented as functions of z. For the original com-
position (z = 1), the portrait only occupies a small portion of
the whole canvas, leading to a small value of structural infor-
mation content for the emote, as revealed by the relatively low
values of H and ∆SM . Subsequent inspection of H and ∆SM
for various choices of z reveal that, while ∆SM plateaus for
z ≥ 5, H peaks at z = 5, suggesting optimal color diversity at
this scale. This leads us to select the composition with z = 5
for subsequent refinement.

In our pursuit of an optimal background color for the emote
design, we select cyan as our initial guess. We set its hue, h, as
our reference point at 0◦. Fig. 10B presents this reference case
alongside variants with different hues. The plots below show
H and ∆SM as functions of h. From a distance, the variants
with h = −160◦ and 180◦ result in backgrounds that merge
with the subject’s pink hair, obscuring her silhouette. These
options are readily excluded from consideration. Meanwhile,
the distinction among the variants with h =−120◦, −60◦, 0◦,
and 60◦ are subtler. Here, ∆SM proves invaluable. While H re-
mains constant across all hues—since altering the background
color does not diversify the color palette of the emote—∆SM
identifies three peaks at h = 0◦, −60◦, and 60◦, correspond-
ing to the hues cyan, green, and blue. This reflects the com-
plementary and triadic relationships to pink, underscoring the
utility of ∆SM in refining the choice of color to enhance vi-
sual clarity. It is worth noting that the value of ∆SM obtained
for the emote when triadic hues are used as the background
is larger than that obtained if the complementary hue is used.
This is because the Euclidean color distance between the sub-
ject’s white outfit and green or blue is greater than the distance
between white and cyan. Nonetheless, since the outfit is not
our focus, we simply retain cyan (h = 0◦) as the background
hue, leveraging its complementary relationship to pink. Fur-
ther enhancements are explored by adjusting the saturation s
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FIG. 10. Refinement of video game emote featuring Hololive Production talent Sakura Miko. (A) Emote designs with various levels of zoom
z. The plots beneath illustrate the Shannon entropy H and the structural stability metric ∆SM as functions of z. (B) Emote designs with various
background hues h. The hue of cyan is marked as zero for convenience. The plots beneath show H and ∆SM as functions of h. (C and D)
Emote designs with various levels of saturation s of the cyan background and the overall composition. The plots below show H and ∆SM as
functions of s. (E) A screenshot of the finalized emote in the video game Holo X Break. Used with permission from Team HoloCure (X/Twitter
ID: @HoloCureGame).

of the cyan background and the overall composition, as de-
picted in Figs. 10C and D, respectively. An increase in s di-
rectly correlates with a rise in ∆SM . This leads us to select a
higher saturation for the final emote design, as depicted by the
in-game screenshot (Fig. 10E).

To inspect how our refined emote compares to other emotes,
we construct a scatter plot (Fig. 11) mapping the 149 emotes
in Holo X Break created by us (denoted as star symbols) and
23 artists (other symbols) onto the entropy-stability plane.
The mean values of H and ∆SM for the ensemble of emotes are
4.63± 1.15 and 0.275± 0.057, respectively. The star linked
by a solid line represents the refined emote, with the line vi-
sualizing the refinement process (Figs. 10A and D) as a tra-
jectory on the entropy-stability plane. The other three stars
represent emotes drawn solely based on our artistic intuition,
without using H and ∆SM as guidance. The refined emote
has H = 4.18 and ∆SM = 0.287, which are situated in prox-
imity to the ensemble mean values, demonstrating the rele-
vance of H and ∆SM to the informed decision-making during
the creative process. Meanwhile, for the other three emotes,
∆SM = 0.189,0.201 and 0.278, two of which are a standard
deviation below the ensemble mean, signifying that there is
room for refinement in terms of their visual clarity.

Ascending the structural information landscape

Intriguingly, emotes by chibi artists Chroneco, Keenbiscuit,
and Misa, who portray body proportions in a super-deformed,
stylistically distorted way, tend to have larger values of ∆SM
(Fig. 11). These values can be as large as 0.4, two standard
deviations in excess of the ensemble mean, suggesting that
these artists are effective mountaineers in the structural infor-
mation landscape. This observation prompts us to investigate
the factors that contribute to the larger values of ∆SM attained
by their emotes.

Figure 12 compares eight 512×512 emotes—three created
by us (A, B, and H) and six by chibi artists Chroneco (C and
D), Keenbiscuit (E and F), and Misa (G)—along with their
color distributions in the RGB space. The axis labels R, G, and
B indicate the color intensity in the red, green, and blue chan-
nels, respectively. Each data point corresponds to a unique
color c, with its size proportional to the probability pc of pix-
els of that color. The mean distance between all data point
pairs, scaled by their sizes, gives the mean color distance ⟨dc⟩.
The values of ∆SM for each emote are also provided. Recall,
from [4], that ⟨dc⟩ is the theoretical maximum ∆SM of an im-
age given its color histogram. The ratio φ = ∆SM/⟨dc⟩ quanti-
fies the effectiveness of the color spatial arrangement in max-
imizing ∆SM . For all emotes in Figs. 12A–G, φ ranges from
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FIG. 11. Structural analysis of emotes featured in the video game
Holo X Break. The scatter plot maps 149 emotes created by the au-
thors and 23 artists onto the entropy-stability plane defined by the
Shannon entropy H and the structural stability metric ∆SM . The
values of H have a mean of 4.63± 1.15, while ∆SM has a mean of
0.275±0.057. The star symbol (⋆) linked by a solid line represents
the refined emote shown in Fig. 10E. The line visualizes the trajec-
tory of the refinement process (Figs. 10A and D) of that emote on the
entropy-stability plane. The other three stars represent emotes that
are drawn by the authors purely based on artistic intuition. Plus signs,
squares, and triangles correspond to works by chibi artists Chroneco
(X/Twitter ID: @chrone co), Keenbiscuit (X/Twitter ID: @keenbis-
cuit), and Misa (X/Twitter ID: @Misamisatotomi), respectively. Cir-
cles denote works by other contributing artists.

0.769 to 0.882, indicating that their ∆SM values are rather
close to the maximal values achievable with their respective
color histograms.

Our refined emote (Fig. 12A), consisting mostly of reddish
colors, has the most data points positioned near the R = 1
plane, occupying larger portions of the RGB space than brown
from the line art and cyan from the background. The position
(0,1,1) of cyan results in larger color distances with its com-
plementary reddish colors, which are located close to (1,0,0).
This contributes to a larger value of ⟨dc⟩ and hence higher
∆SM of the emote. In our other emote (Fig. 12B), the data
points form a nominally diagonal curve in the RGB space be-
tween the origin and (1,1,1), as we used the color-trace tech-
nique, aka line coloring, to blend the black contours with their
nearby colors for a softer appearance. The data point sizes are
rather uniform along the curve, except for the whitish colors.
The dominance of the whitish colors, which have small color
distances from each other, as well as the rarity of their com-
plementary blackish colors, result in a lower value of ⟨dc⟩. In
turn, this leads to a lower ∆SM compared to our refined emote.

On the other hand, emotes by Chroneco (Figs. 12C and
D) demonstrate drastically different distributions of the data
points. In particular, brown occupies a considerably larger
portion of the RGB space compared to our emotes, which
can be attributed to the artist’s heavy use of thick brown lines
to illustrate their subject. Brown, located close to the origin,
has large color distances with whitish colors, contributing to a
larger value of ⟨dc⟩. On the other hand, the artist’s use of sim-
ple shapes effectively clusters the colors into several large ar-
eas in the emote, minimizing the local color distances in those
regions, leading to a lower value of S and, hence, a larger
value of ∆SM . The same observation applies to the emotes by

Keenbiscuit (Figs. 12E and F) and Misa (Fig. 12G).
These findings mentioned above afford the development

of a holistic optimization workflow, more effective than the
greedy refinement strategy we employed in Fig. 10, to create
artworks that have high visual clarity as measured by ∆SM .
Perhaps the most reasonable way is to initially select a man-
ageable number of main colors with a large value of ⟨dc⟩.
Then, illustrate the artwork using simple shapes composed
of those main colors. Finally, add details such as highlights,
shadows, gradation, or textures and fine-tune the balance of
different elements until completion. We utilized this recipe to
create an optimized version of our emote, shown in Fig. 12H,
which contrasts with the original depicted in Fig. 12A. The
emote has a structural stability metric of ∆SM = 0.426, which
is higher than the values shown in Fig. 11 for the 149 emotes
featured in Holo X Break, verifying the effectiveness of our
proposed workflow.

Information thermodynamics of digital art

A key finding of this study is the realization that colors in
visual art serve as state variables. This realization is rooted
in the similarity between ∆S, energy E, and specific heat C,
which points to an energetic interpretation of ∆SM as the max-
imal structural energy difference between the slightly melted
and fully melted versions of the original image. This affords a
thermodynamic perspective on the analysis of digital art. Our
examination of emotes produced by chibi artists further bol-
sters this perspective, as those artists consistently achieve re-
markably high values of ∆SM . This suggests that their use of
simple shapes and carefully chosen color palettes effectively
minimizes the local color distances di j (and, hence, structural
energy S) while maximizing the global mean color distance
⟨dc⟩ (and, hence, S∗). This approach echoes certain optimiza-
tion principles of thermodynamics52, where systems tend to
maximize their entropy, thus attaining thermally stable con-
figurations.

The thermodynamic perspective on digital art opens up ex-
citing avenues for future research and application. By leverag-
ing the tools and concepts of thermodynamics, such as phase
diagrams, free-energy landscapes, and optimization princi-
ples, researchers and artists can gain deeper insights into the
dynamics of artistic composition, the factors influencing vi-
sual stability, and the strategies for creating effective digital
artworks. This interdisciplinary approach promises to enrich
our understanding of the creative process and to provide a
framework for the systematic analysis and design of digital
art.

COMPARISON WITH OTHER STRUCTURAL
MEASURES

The introduction of the structural stability metric ∆SM in
this study marks a significant advancement in the quantifica-
tion of the visual clarity of digital images. Distinguished by its
non-parametric nature and mathematical simplicity, ∆SM tran-
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FIG. 12. Three-dimensional scatter plots visualizing the distribution of the fifty most frequent colors within the RGB space for eight different
emotes of dimension 512× 512. The emotes, which are featured in the video game Holo X Break, are created by (A and B) the authors,
(C and D) Chroneco, (E and F) Keenbiscuit, and (G) Misa. (H) An optimized version of the emote in A. From A to G, the emote depicts
Hololive Production talent Sakura Miko, Nanashi Mumei, Ninomae Ina’nis, IRyS, Fuwawa Abyssgard, Nerissa Ravencroft, and Juufuutei
Raden, respectively. The mean color distance ⟨dc⟩ and structural stability metric ∆SM of the emotes are also shown for comparison. All
artworks are used with permission from the artists.

scends the limitations of several existing approaches, offering
a more intuitive and comprehensive measure of structural in-
formation.

One of the key advantages of ∆SM is its independence of
adjustable parameters. This is in contrast to existing methods
that require the tuning of parameters, such as the quality factor
of the JPEG file format in image compression techniques2,4,
the grid size used to sample ordinal patterns in delentropy5,6

and permutation entropy7–9, or the number of spatial averag-
ing steps in renormalization-based methods10,11, all of which
are typically based on subjective criteria. This renders ∆SM
more objective and universally applicable across various im-
age types and artistic styles.

Another significant advantage of ∆SM is its mathematical
simplicity, which not only facilitates straightforward compu-
tation but also makes the concept easily understandable to a
wide audience, including art practitioners who may not have
formal mathematical training. This simplicity has been con-
firmed through our communications with artists in the field,
who have been able to grasp and appreciate the method with-
out difficulty. The capacity of ∆SM to convey complex ideas
about structural stability and visual clarity in an intuitive
manner will be particularly valuable in collaborative settings
where scientists and artists aim to bridge the gap between
quantitative analysis and creative expression.

Moreover, ∆SM takes into account both the intensity and
color of pixels, making it more suitable for analyzing the

structural stability of color images, which are central to most
artworks. This is in contrast to image compression-based
measures and permutation entropy or delentropy-based mea-
sures, which neglect the role of color in structural informa-
tion. The structural stability metric ∆SM is also robust against
changes in image resolution, making it more suitable for an-
alyzing intrinsic structures depicted in images. This is par-
ticularly important for artworks where the content and com-
position, rather than the resolution, are the primary carriers
of structural information. In comparison, image compres-
sion techniques assess structural information based on com-
pressibility, which is largely dependent on image resolution.
Furthermore, ∆SM uses the flipping of pixel pairs as a means
of perturbation, which preserves the integrity of visually sta-
ble structures and the color histogram of the artwork. This
approach avoids the issues faced by renormalization-based
methods, where spatial averaging can destroy most structural
information in certain artistic styles, such as pixel art.

Despite its numerous advantages, ∆SM has some limitations
that are worth noting. One limitation is that ∆SM relies solely
on pixel pair flipping as a means of perturbation, which may
not capture all types of distortions that can affect the visual
clarity of an image. Additionally, while ∆SM considers both
the intensity and color of pixels, it does not explicitly ac-
count for the perceptual aspects of color, such as the vary-
ing sensitivity of the human visual system to different colors.
These limitations may affect the extent to which ∆SM can cap-
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ture certain types of structural information in digital images.
Nonetheless, these limitations can be easily overcome by in-
corporating other types of distortion as perturbation and by
replacing RGB color space with perceptually uniform color
spaces53.

CONCLUSIONS AND OUTLOOKS

To summarize, we have examined the application of the
structural stability metric ∆SM across various domains, from
the analysis of textures and physical models to the exploration
of artistic expression and the refinement of emotes. Our find-
ings demonstrate that, together with the Shannon entropy H,
∆SM serves as a powerful tool for dissecting the intricate land-
scape of structural information. Through analyzing the Potts
and XY models, the artwork of Piet Mondrian, and the de-
sign of video game emotes, the pivotal role of structural stabil-
ity in the scientific and creative realms has been illuminated.
These diverse applications underscore the versatility of ∆SM
as a tool for extracting nuanced structural information from
digital images, enhancing decision-making and data analysis
in both scientific and creative fields.

In the scientific realm, the potential applications of ∆SM
extend well beyond the cases presented in this paper. A
compelling avenue for future research involves applying the
metric to dissect the dynamic evolution and composition of
r/place, an online collaborative art project and social experi-
ment hosted on Reddit54,55. This platform transforms a blank
canvas into a mosaic of collective creativity, offering a unique
playground for one to examine social dynamics and commu-
nity interaction56. Additionally, employing ∆SM to analyze
natural patterns, such as animal skins57–60, cracks in drying
colloidal films61–63, and flow instabilities64–68, could yield
new insights, from the standpoint of structural information,
into the mechanisms that govern their formation.

In the artistic realm, future research could leverage ∆SM to
scrutinize the composition of film and animation frames, of-
fering insights into the visual aspect of emotional arc in sto-
rytelling69,70. It could also be interesting to prepare images
of various values of ∆SM and test those images against hu-
man observers or different saliency models in computer vi-
sion71–73, thereby achieving a deeper understanding regard-
ing the relation between the structural stability and percep-
tion aspects of images. Another promising direction could
involve the application of the metric to study digital repli-
cas of historically and culturally significant artworks74–77, as
we did for Mondrian’s “Composition with Red, Blue and
Yellow”, enhancing our comprehension and appreciation of
human artistry in an era that is increasingly dominated by
machine-generated imagery78,79.
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