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ABSTRACT 21 

Leptosperin (methyl syringate-4-O-β-D-gentiobioside) serves as a unique marker for 22 

mānuka honey, derived from the manuka plant (Leptospermum scoparium). Despite its 23 

importance, the biosynthesis pathway of leptosperin remains unreported. This study 24 

investigates the molecular mechanism of leptosperin formation from its aglycone, 25 

methyl syringate (MSYR), in manuka plants. Methyl syringate-4-O-β-D-26 

glucopyranoside (MSYR-glucose) was identified in manuka flower nectar but not in 27 

mānuka honey. MSYR was distributed in the flowers, leaves, branches, and roots of 28 

manuka plants, while MSYR-glucose and leptosperin were only observed in the 29 

flowers. By immersing a cut flowering branch in a deuterium-labeled aqueous medium, 30 

the formation of deuterated leptosperin (leptosperin-d6) and MSYR-glucose (MSYR-d6-31 

glucose) was analyzed. When MSYR-d6 was added, both MSYR-d6-glucose and 32 

leptosperin-d6 were detected. Supplementation with synthetic MSYR-d6-glucose also 33 

generated leptosperin-d6, indicating that gentiobioside moiety in leptosperin forms 34 

through the conjugation of MSYR with D-glucose, followed by the addition of another 35 

D-glucose. 36 

 37 

Keywords: Mānuka honey, Leptosperin, Leptospermum scoparium, Methyl syringate 38 

glucosides, Biosynthesis, Certification 39 
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INTRODUCTION 41 

Mānuka honey is made from the nectar of the manuka plant (Leptospermum 42 

scoparium) collected by honeybees. Nectarous dihydroxyacetone (DHA) in the 43 

honeycomb (and even in a jar) is partially converted to methylglyoxal (MGO), a known 44 

bactericide. In addition, leptosperin (methyl syringate-4-O-β-D-gentiobioside), methyl 45 

syringate (MSYR), lepteridine, pteridine, phenyllactic acid, and 2′-46 

methoxyacetophenone have also been uniquely or abundantly found in nectar 1-3. 47 

Recently, 19 chemicals were tentatively identified by high-resolution mass spectrometry 48 

(MS) as unique compounds in mānuka honey 4. Manuka foliage (leaf) also contains 49 

unique chemicals, such as nortriketones 5. Among these, leptosperin was exclusively 50 

found in Leptospermum species, including manuka 6, 7 (Fig. 1). Leptosperin is relatively 51 

more stable under prolonged storage and heating than other critical chemicals, such as 52 

2′-methoxyacetophenone and MGO 8. Owing to its uniqueness to Leptospermum honey 53 

and its robustness, leptosperin is an essential molecule for Unique Mānuka Factor 54 

(UMF) authentication of mānuka honey by the UMF Honey Association. Because the 55 

amount of leptosperin is one key element for authentication, the quantification of 56 

leptosperin in honey has been achieved by performing MS, fluorescence analysis, or 57 

immunochemical techniques, including immunochromatography 1, 2, 6, 9-11. Given the 58 

need to better understand the unique constituents of Leptospermum honey, including 59 

mānuka honey, this study explored the biosynthetic pathway of one of its key markers, 60 

leptosperin. 61 

In the human body, after ingesting mānuka honey, leptosperin is metabolized 62 

to MSYR by a bacterial β-glycosidase in the gut 12. MSYR is further metabolized to 63 

syringic acid by carboxylesterase 1 or glucuronate conjugates and MSYR sulfates by 64 

phase II enzymes 12, 13. These metabolites and leptosperin circulate in the blood stream. 65 

The metabolism of leptosperin ingested by humans has been gradually elucidated, but 66 

not all of it effects, including its possible contribution to biological functions, are 67 

known. 68 

Reportedly, the manuka plant has four defined chemical markers (4-69 

hydroxyphenyllactic acid, 4-methoxybenzoic acid, phenyllactic acid, and 2′-70 

methoxyacetophenone) authorized by the New Zealand government 3. In manuka plants, 71 

the levels of the four chemical markers, along with DHA, lepteridine, and leptosperin, 72 

increased during flower development 14. The production mechanism of DHA, a 73 
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precursor of MGO, in manuka floral nectar has also been examined 15, 16. However, the 74 

molecular mechanisms underlying biosynthesis of leptosperin and its precursor in 75 

manuka plants has not been reported. Since mānuka honey is often disguised, 76 

knowledge of leptosperin biosynthesis could strengthen the robustness of mānuka honey 77 

authentication and be useful for consumer protection. 78 

The study aim was to investigate how MSYR-4-O-β-D-glucopyranoside 79 

(MSYR-glucose), a key intermediate in leptosperin biosynthesis and a component of 80 

manuka nectar, is produced and further metabolized by manuka plants. We used stable 81 

isotopic template molecules to show that MSYR-glucose was primarily generated from 82 

MSYR, and leptosperin was then constructed from MSYR-glucose with another 83 

glucose. 84 

  85 
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MATERIALS AND METHODS 86 

Materials 87 

Tetra-O-acetyl-α-D-glucopyranosyl bromide and forchlorfenuron (FCF) were 88 

obtained from Tokyo Chemical Industry Co. Ltd. (Tokyo, Japan). Gentiobiose 89 

octaacetate was purchased from Carbosynth, Ltd. (Staad, Switzerland). CD3I was 90 

obtained from Cambridge Isotope Laboratories, Inc. (Tewksbury, MA, USA). 91 

Tetrabutylammonium bromide was a product of Kishida Chemical Co. Ltd. (Osaka, 92 

Japan). MSYR was purchased from Alfa Aesar (Ward Hill, MA). Sodium methoxide (1 93 

mol/L) was purchased from Kanto Chemical Co. Inc. (Tokyo, Japan). Dimethyl 94 

sulfoxide (DMSO) and formic acid (FA) were purchased from Fujifilm Wako Chemical 95 

Corporation (Osaka, Japan). Leptosperin was chemically synthesized according to a 96 

previously reported method 17. Samples of mānuka honey (Manuka South, 100% Pure 97 

New Zealand Honey, and Honey Valley) were obtained from Manuka South and Green 98 

Bay Co. 99 

 100 

Synthesis of MSYR-d6, MSYR-glucose, MSYR-d6-glucose and leptosperin-d6 101 

A phase-transfer catalyst was used to synthesize MSYR-glucose 18. To a 102 

reaction mixture containing MSYR (146 mg), tetra-O-acetyl-α-D-glucopyranosyl 103 

bromide (290 mg), and tetrabutylammonium bromide (290 mg) in 15 mL of CHCl3, 10 104 

mL of NaOH (1 mol/L) was added and stirred vigorously at ambient temperature for 5 105 

h. The reaction mixture was dissolved in 200 mL ethyl acetate and washed with 5% 106 

Na2CO3, water, and saturated brine. After drying over anhydrous Na2SO4, the extract 107 

was concentrated under vacuum. The concentrate was then separated by elution using a 108 

solvent mixture of hexane/ethyl acetate (2:3) on two 1-mm-thick Merck silica gel plates. 109 

The acetylated product (166 mg) was reacted with 1.2 mL sodium methoxide in 10 mL 110 

CH3OH. After 15 min, the solution was applied to an Amberlite® IR120B (Organo 111 

Corp., Tokyo, Japan) column (15 × 280 mm) and eluted with 300 mL of CH3OH. The 112 

MSYR-glucose was obtained after concentration in vacuo (47% from MSYR). The 113 

product was purified by preparative high-performance liquid chromatography (HPLC) 114 

on a Wakosil-II 5C18HG column (20 × 250 mm, Wako Pure Chemical Industries), with 115 

an elution solvent mixture containing water/CH3OH (7:3) at a 5.0 mL/min flow rate at 116 

ambient temperature. The 13C nuclear magnetic resonance (NMR) spectrum was 117 

obtained on a Bruker AVANCEⅢ400HD spectrometer using the solvent peak as the 118 
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internal standard (dC 150.0 ppm) and showed good agreement with previous 13C NMR 119 

spectra 19. Combined with the mass spectra, the structure, including the β-glucoside 120 

bond, was confirmed as [M+NH4]+: Theoretical for C16H26O10N 392.1551, found 121 

392.1544; [M+FA–H]−: Theoretical for C17H23O12 419.1195, found 419.1197. 122 

For MSYR-d6-glucose and leptosperin-d6 synthesis, MSYR-d6 was prepared 123 

as described previously 17, except that CD3I was used. The mass spectra ([M+H]+: 124 

Theoretical for C10H7D6O5 219.1134, found 219.1108; [M–H]–: Theoretical for 125 

C10H5D6O5 217.0989; found 217.0991) suggested that this product contains six 126 

deuterium atoms. Moreover, a signal at dH 7.32 ppm (s, 2H) on the 1H NMR spectrum 127 

(CDCl3) suggested a symmetrical product structure. Two hexa-deuterated samples, 128 

MSYR-d6-glucose and leptosperin-d6, were prepared by conjugating MYSR-d6 to tetra-129 

O-acetyl-α-D-glucopyranosyl bromide or to hepta-O-acetyl-α-gentiobiosyl bromide, 130 

which was prepared from gentiobiose octaacetate 20. The products were purified in a 131 

manner similar to that for leptosperin 7 and MSYR-glucose. 132 

The following MS results were obtained: MSYR-d6-glucose ([M+NH4]+: 133 

Theoretical for C16H20D6O10N 398.1928, found 398.1934; [M+FA–H]–: Theoretical for 134 

C17H17D6O12 425.1572, found 419.1575). Leptosperin-d6 ([M+NH4]+: Theoretical for 135 

C22H30D6O15N 560.2456, found 560.2462; [M+FA–H]–: Theoretical for C23H27D6O17 136 

587.2100, found 587.2101). 137 

 138 

Sample preparation 139 

Manuka (Leptospermum scoparium) plants were purchased from retail stores 140 

(garden stores). Nectar was repeatedly collected from several flowers by pipetting with 141 

50 µL of water. A centrifugal filtration apparatus (Sartorius, Vivaclear Mini, 0.8 µm) 142 

was then used to filter the obtained aqueous nectar. The flowers (with pistil, petal, and 143 

sepal), leaves, and branches (n = 3) were collected, weighed, and transferred to a tube 144 

containing beads (Lysing Matrix A). The solvent (methanol/water = 1/1) (0.1 g 145 

sample/mL) was added to the sample, and the tube contents were homogenized for 40 146 

sec at 6.0 m/sec on a Fast Prep 24 5G (MP-Biomedicals). The tube was then centrifuged 147 

to remove debris and beads. The supernatant was collected and filtered, as previously 148 

described. 149 

The mānuka honey was diluted to 0.1 g/mL in water, centrifuged, and the 150 

supernatant analyzed as described in the HPLC-fluorescence analysis section. 151 
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 152 

Experiment with MSYR-d6 or MSYR-d6-glucose supply 153 

A branch (approximately 5 cm) with three flowers was cut, and the edge of 154 

the branch was immersed in a tube containing 10% dimethyl sulfoxide (DMSO) in 155 

water containing 1 mM MSYR-d6 or MSYR-d6-glucose. After 24 h at room 156 

temperature, the flowers were collected and homogenized. The samples were then 157 

filtered as described previously. 158 

 159 

HPLC-fluorescence analysis 160 

HPLC (Shimadzu Prominence) connected to a fluorescence detector (RF-161 

10AXL) was performed to separate and identify the chemical components in aqueous 162 

samples from nectar or mānuka honey. The separation was performed on a Kinetex XB-163 

C18 column (5.0 µm, 4.6 × 150 mm, Phenomenex) by gradient elution with 0.1% FA in 164 

water (solvent A) and acetonitrile (solvent B) at a 1.0 mL/min flow rate. The detector 165 

was set to an excitation wavelength of 267 nm and an emission wavelength of 362 nm. 166 

The linear gradient program was as follows: 0 min (10% B), 10 min (40% B), 11 min 167 

(10% B), and 22 min (10% B).  168 

 169 

Ultra-HPLC quadrupole time-of-flight mass spectrometry (UHPLC-Q-TOF MS) 170 

analysis 171 

The filtrate was mixed with an equal volume of 10 ng/mL FCF as an internal 172 

standard. Standards containing MSYR, MSYR-d6, MSYR-glucose, MSYR-d6-glucose, 173 

leptosperin, and leptosperin-d6 (Fig. 1) were mixed with the internal standard to 174 

generate a standard curve. The sample was separated on an Exion UHPLC instrument 175 

(Sciex) with a Kinetex XB-C18 column (2.6 µm, 2.1 × 100 mm) and gradient elution. 176 

The mobile phase was 0.1% FA in water (solvent A) and methanol (solvent B), and the 177 

flow rate was 0.4 mL/min. The linear gradient program was as follows: initial 0% B, 4.5 178 

min 100% B, 5 min 0% B, and hold for 5min before the next injection. The eluate was 179 

introduced into a Q-TOF mass spectrometer (SCIEX X500R). Information-dependent 180 

analysis (IDA), high-resolution multiple-reaction monitoring (MRMHR), and product 181 

ion scans in positive or negative modes were performed. The combinations of MRMHR 182 

and TOF-MS are listed in the Supplementary Materials (Tables S-1 and S-2). Negative 183 
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MRM was used to quantify the glucosides, and positive MRM was performed for the 184 

aglycones MSYR/MSYR-d6. 185 

 186 

Statistical analysis 187 

Unless otherwise indicated, all experiments were performed on n = 3 samples, 188 

and the quantitative results are expressed as the mean ± standard deviation.  189 

  190 
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RESULTS 191 

 192 

Identification of MSYR-glucose in the nectar of manuka plants 193 

Leptosperin has unique fluorescence characteristics 2, 9, and sensitive 194 

leptosperin detection from the nectar of manuka flowers was accomplished during 195 

chromatographic separation with a fluorescence detector (excitation = 267 nm/emission 196 

= 362 nm). As shown in Fig. 2, two peaks were observed for the nectar sample. The 197 

elution time (7.3 min) of the earlier peak was identical to that of the authentic 198 

leptosperin. The later peak was assumed to be MSYR-4-O-β-D-glucopyranoside 199 

(MSYR-glucose) because the retention time (8.5 min) matched that of the chemically 200 

synthesized MSYR-glucose. Leptosperin has previously been found in manuka flower 201 

nectar and mānuka honey 2, 3 (Fig. 2), but there have been no reports of MSYR-glucose 202 

in nectar or honey. To further confirm this result, the nectar sample was separated and 203 

analyzed by UHPLC-Q-TOF. We observe signals for [M+NH4]+ at 392.1559 (theoretical 204 

392.1551 for MSYR-glucose) with positive ionization and for [M+FA–H]− at 419.1193 205 

(theoretical 419.1195) with negative ionization of the compound. The positive/negative 206 

fragmentation patterns of the peak matched the fragmentation pattern of the synthetic 207 

MSYR-glucose (Fig. S1), and the predicted fragmentations from the chemical structure 208 

of MSYR-glucose (data not shown). On the basis of these results, this compound was 209 

identified as MSYR-glucose. The MSYR-glucose in the nectar was 40% of the intensity 210 

of nectary leptosperin (Fig. 2). Because the fluorescence properties of MSYR-glucose 211 

were the same as those of leptosperin (data not shown), the peak intensity reflected the 212 

amount. From a structural point of view, the presence of MSYR-glucose in the nectar of 213 

manuka could indicate the participation of the mono-glucoside in the leptosperin 214 

biosynthesis. 215 

 216 

Distribution of unique MSYR-related chemicals in manuka plants 217 

The distribution of MSYR-related chemicals in manuka plants was examined. 218 

The flowers, leaves, roots, and branches were separately homogenized, and MSYR, 219 

MSYR-glucose, and leptosperin contents were quantified. Typical MRMHR 220 

chromatograms are shown in Fig. 3A. Two MRMHR transitions for one molecule were 221 

monitored to identify individual molecules. Leptosperin and MSYR-glucose were 222 

observed at 2.78 min and 3.10 min, respectively. Notably, when monitoring MSYR, the 223 
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sample peak matched the standard MSYR (3.85 min), and two earlier additional peaks 224 

(2.7 and 3.15 min) were observed. The earlier peaks originated from the fragmentation 225 

of MSYR-glucose and leptosperin to MSYR during the ionization process. MSYR 226 

(approx. 0.2–1 nmol/g tissue) was detected in all manuka parts examined. MSYR-227 

glucose and leptosperin were more abundant in flowers but not detected in the leaves, 228 

roots, and branches under the experimental conditions (Fig. 3B). The MSYR-glucose 229 

amount in the flowers was 6.5 times higher than the leptosperin amount, which was the 230 

opposite of the nectar amount (Fig. 2). 231 

 232 

Biosynthesis of deuterium leptosperin and MSYR-glucose from MSYR-d6 233 

To distinguish naturally presented MSYR, we chemically synthesized MSYR-234 

d6. MSYR-d6 (1 mM) was then added to a cross section of branches with manuka 235 

flowers. After 24 h, the flowers were homogenized, and the MSYR-related chemicals 236 

with six deuterium atoms were analyzed as described in the Materials and Methods. 237 

Signals for MSYR-d6-glucose and leptosperin-d6 were observed (Fig. 4A, B). The 238 

fragmentation patterns of deuterium glucosides, MSYR-d6-glucose, and leptosperin-d6 239 

indicated liberation of the MSYR-d6 moiety ([M–H]− 217) by collision-induced 240 

dissociation (Fig. 4A, C). 241 

The presence of MYSR-d6 (approximately 800 nmol/g flower) indicated that 242 

the supplemented MSYR-d6 was transported to flowers via the phloem (Fig. 5A, open 243 

bar). Simultaneously, MSYR-d6-glucose (approximately 200 nmol/g flower; Fig. 5B, 244 

filled bar) and leptosperin-d6 (approx. 5.3 nmol/g flower; Fig. 5C, right bar) were 245 

detected in the flowers. These findings suggest that MYSR-glucose is synthesized from 246 

MSYR. Leptosperin was formed by conjugating MSYR-glucose with additional glucose 247 

and/or by conjugating MSYR with gentiobiose (diglucoside). 248 

 249 

MSYR-d6-glucose supplemented generates the deuterium leptosperin 250 

To confirm further conjugation of MSYR-glucose with additional glucose, 251 

MSYR-d6-glucose was supplemented, and the formation of leptosperin-d6 in the flower 252 

was analyzed. As shown in Fig. 4C, the leptosperin-d6 signal was observed at 2.7 min 253 

(Fig. 4C, c). Detection of supplemented MSYR-d6-glucose in the flower (approximately 254 

450 nmol/g flower) indicated that significant amounts of MSYR-d6-glucose were 255 

transported to the flower (Fig. 5B, open bar). Formation of leptosperin-d6 (approx. 5.5 256 
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nmol/g flower) was observed after MSYR-d6-glucose supplementation (Fig. 5C, right 257 

bar), which was approximately five-fold higher than that after MSYR-d6 258 

supplementation (Fig. 5C, left bar). These findings indicate at least one pathway of 259 

leptosperin synthesis from MSYR-glucose with additional glucose. Interestingly, when 260 

MSYR-d6-glucose was added, the cleaved product MSYR-d6 was also observed (Fig. 261 

5A, right bar), which suggests that MSYR-glucose can be partly cleaved into MSYR by  262 

glycosidase. 263 

  264 
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DISCUSSION 265 

Mānuka honey has high antibacterial activity owing to MGO, which 266 

originates from plant-derived DHA 21, 22, and is thought to also have anti-inflammatory 267 

effects, among others. Owing to its scarcity and expected functionalities, mānuka honey 268 

is expensive, which could lead to marketing of honey that is made to look like mānuka 269 

honey. To certify “genuine” mānuka honey, leptosperin was used as one marker because 270 

it is exclusively found in the mānuka honey 6, 7. However, the reason for the uniqueness 271 

of leptosperin remains unclear. In this study, we found MSYR-glucose in nectar and 272 

manuka flowers. MSYR-glucose has been identified from anis (Pimpinella anisum) 19, 273 

but there are no reports of MSYR-glucose being found in mānuka honey or the plant. 274 

From a structural perspective, MSYR-glucose could be an intermediate of leptosperin, a 275 

diglucoside of MSYR (Fig. 1). Because presence of leptosperin has already been 276 

included in the UMF certification of mānuka honey, knowledge of the biosynthesis of 277 

leptosperin in manuka plants is vital to strengthen the certification. In addition, the lack 278 

of MSYR-glucose in mānuka honey (Fig. 2) is interesting because MSYR-glucose is 279 

abundant in plant nectar of manuka (Fig. 3B). This discrepancy in MSYR-glucose is 280 

currently under investigation and is briefly discussed in this section. From an applied 281 

perspective, if MSYR-glucose is abundant in mānuka honey, it is possible that manuka 282 

flowers or pollen were artificially added to increase the content of leptosperin, which is 283 

an important element in the certification/grading system of mānuka honey. 284 

The distribution of the MSYR-related chemicals was also examined. MSYR 285 

was found in the flowers, leaves, roots, and branches (Fig. 3). Conversely, MSYR-286 

glucose and leptosperin were found in flowers, but were below the detection limits in 287 

the other parts examined. These findings suggest that leptosperin and MSYR-glucose 288 

are synthesized in the flowers. 289 

We observed serial conjugations of glucose with MSYR to build MSYR-290 

glucose and then leptosperin. Notably, the tri-glucoside of MSYR was also detected 4. 291 

Plant glucosides are often synthesized by the 1 UDP-glucosyltransferase (UGT/GT1) 292 

family 23, 24. Reportedly, quercetin 3-O-gentiobioside and curcumin-4′-O-gentiobioside 293 

are generated from their respective mono-glucosides by CaUGT3 (Catharanthus roseus 294 

glycosyltransferase 3) 25, 26. The enzyme responsible for the glucosylation of MSYR 295 

remains to be elucidated. A whole-genome assembly of Leptospermum scoparium has 296 
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previously been shown 27, and information on this gene could be beneficial for future 297 

studies on enzyme identification. 298 

As mentioned, leptosperin is a unique molecule found in manuka plants and 299 

honey. MSYR is rich in mānuka honey but is also observed in asphodel honey and 300 

Zantaz (Bupleurum spinosum) honey 28, 29. We have previously confirmed that asphodel 301 

honey does not contain leptosperin 7. Additionally, we have found that the tea tree 302 

(Melaleuca alternifolia), which belongs to the same Myrtaceae (subfamily 303 

Leptospermoideae) as manuka, has MSYR and MSYR-glucose, but not leptosperin 304 

(unpublished observation). There are two possible reasons for the uniqueness of 305 

leptosperin: 1) MSYR is not a common phytochemical, and 2) the enzyme 306 

(glucosyltransferase) is unique that has not yet been identified.  307 

In this study, MSYR-glucose was identified for the first time in mānuka 308 

nectar. MSYR-glucose was more than six-fold richer than leptosperin in flowers (Fig. 3) 309 

but only approximately one-third of leptosperin in the nectar (Fig 2). Leptosperin is 310 

abundant in mānuka honey, but MSYR-glucose is not. A high-sensitivity mass 311 

spectrometer detected only trace MSYR-glucose in mānuka honey (unpublished 312 

observation), which suggests that an enzyme from the nectar or honeybee stomach 313 

(including microbes) cleaves the glucoside bond between MSYR and the glucose of 314 

MSYR-glucose, but not the bonds in leptosperin, during honey maturation. This 315 

possibility is currently being investigated. 316 

We confirmed the assembly of glucosides to synthesize the unique chemical 317 

leptosperin from a chemical perspective, but this study has some drawbacks. First, the 318 

enzyme that mediates glucosylation has not yet been identified. Second, the reason for 319 

the discrepancy in the ratio of MSYR-glucose to leptosperin between the flower and 320 

nectar is unknown. 321 

In summary, we identified MSYR-glucose in nectar and in flowers of the 322 

manuka plants. Stable isotopic MSYR and MSYR-glucose were prepared and used to 323 

study the dynamics of the native chemicals. MSYR-glucose was found to have an 324 

essential role as a critical intermediate in leptosperin biosynthesis. However, the key 325 

enzyme is unknown, but a future investigation might demonstrate the uniqueness of the 326 

manuka plant and strengthen the authentication of mānuka honey performed by 327 

measuring its leptosperin content. 328 

  329 
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Figure legends 353 

 354 

Figure 1. Chemical structures of methyl syringate (MSYR)-related chemicals. 355 

Left: native (natural) MSYR, MSYR-glucose, and leptosperin. Right: deuterium-labeled 356 

MSYR, MSYR-glucose, and leptosperin. Arrows indicate the direction of biosynthesis. 357 

 358 

Figure 2. HPLC-fluorescent detection of manuka nectar and honey. Manuka honey and 359 

manuka nectar were analyzed by HPLC. Top left: Standard leptosperin. Top right: 360 

Standard MSYR-glucose. Left below: Mānuka honey. Right below: Manuka nectar. 361 

 362 

Figure 3. Distribution of natural methyl syringate (MSYR)-related phytochemicals. 363 

Plant tissues were homogenized and analyzed as described in the Materials and 364 

Methods. (A) Typical MRMHR chromatograms of manuka flower homogenate. (B) 365 

Quantification of MSYR-related phytochemicals in plant tissues. 366 

 367 

Figure 4. Identification of methyl syringate (MSYR)-d6-glucose and leptosperin-d6 368 

biosynthesis in manuka plants. MSYR-d6 was supplemented and analyzed (A, B, a, b). 369 

MSYR-d6-glucose was supplemented and analyzed (C, c). MSYR-d6-glucose was 370 

tracked by monitoring the extracted ion at 425, corresponding to the [M+FA–H]– of 371 

MSYR-d6-glucose in TOF/MS (A). Leptosperin-d6 was tracked by monitoring the 372 

extraction ion at 587, corresponding to [M+FA–H]– of leptosperin-d6, from TOF/MS (B, 373 

C). The product ion scans of the respective precursors (425 or 587) and the chemical 374 

structures with the possible cleaved sites for the generation of fragment 217 are shown 375 

(a, b, c). 376 

 377 

Figure 5. Quantitation of deuterium glucosides in flowers supplemented with methyl 378 

syringate (MSYR)-d6 or MSYR-d6-glucose. The cut edge of the plant branch was 379 

immersed in aqueous water containing 1 mM MSYR-d6 or MSYR-d6-glucose. “MSYR-380 

d6 +” and “MSYR-d6-Glc +” mean the supplementation of MSYR-d6 and of MSYR-d6-381 

glucose (1 mM), respectively. Three chemicals with six deuterium atoms were analyzed 382 

and quantified. (A) MSYR-d6. (B) MSYR-d6-glucose. (C) Leptosperin-d6. An open bar 383 

indicates the quantitative results of the same chemicals as those supplemented, 384 
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indicating that the chemical was transferred to the tissue. The filled bars indicate the 385 

formation of newly biosynthesized deuterium-containing compounds.  386 

 387 

 388 
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Figure 2 498 
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Figure 3 502 
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Figure 4 506 
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Figure 5 511 
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