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Abstract 

Rodents are widely used to study the toxicity of chemicals, but differences between 

species mean that results from rodents are not always directly transferrable to humans. 

The health of workers exposed to various chemicals and particulates in high doses or for 

long durations is at risk. The respiratory bronchioles and lobular structures are key sites 

for occupational lung diseases like pneumoconiosis, but these structures vary among 

animal species. Understanding these differences is crucial for studying the pathology of 

human occupational lung diseases. However, there is a lack of reviews focusing on 

these structures across different species. This review explores the lung anatomy of 

various mammals and its functional importance in disease to connect animal studies 

with human occupational lung diseases. Our results indicate that artiodactyls, especially 

small pig breeds and goats, are ideal for research because their respiratory bronchioles 

and lobular structures are similar to those of humans. This review aims to enhance the 

use of experimental animal data and improve our understanding of human occupational 

lung diseases, facilitating early detection, treatment, and prevention. 

 

Key words: Comparative anatomy, Respiratory bronchiole, Lobular structure, 

Interlobular septum, Lung 
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Introduction 

Rodents, such as rats and mice, are the most commonly used animals for studying 

chemical toxicity. However, species differences must be considered when applying 

findings from rodents to humans. A number of studies have compared animal and 

human lungs in terms of gas exchange and ventilation1,2, tissue responses to particulate 

toxicity3, particulate deposition and clearance4, and lung high-resolution computed 

tomography (HRCT) images5. Research using genetically modified mice for lung stem 

cell studies6–9 has highlighted anatomical differences between the mouse and human 

lung6. Animals with different lung anatomy may not adequately model human lung 

diseases. Accurate understanding of lung structure and cellular composition is essential 

in order to establish suitable experimental animal models for evaluating 

chemical/particulate toxicity and understanding lung disease pathology. 

Workplaces are key settings where exposure to chemicals/particulates can occur. 

Workers exposed to high concentrations or for prolonged periods of time to a variety of 

chemicals are at risk of developing lung diseases, including pneumoconiosis, an 

occupational lung disease caused by inhaling dust and fibers. Early symptoms may be 

absent, and not everyone exposed will develop lung lesions, leading to lack of 

recognition of developing disease, and resulting in diagnosis only at advanced stages of 

the dissease10. Therefore, appropriate experimental animals are needed for accurate 

understanding, early detection, treatment, and prevention of pneumoconiosis and other 

lung diseases resulting from inhalation of toxic chemicals/particulates. Respiratory 

bronchioles are notably affected by particle deposition, particularly in coal miners11,12. 

Asbestosis, silicosis, and mixed-dust fibrosis, the most common pneumoconioses, show 

significant fibrosis of respiratory bronchioles and alveolar ducts12–16. The lung's 
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lymphatic system removes inflammatory cells and damaged tissue caused by particulate 

matter and microorganisms17, with subpleural and interlobular lymphatics being the 

main routes18. CT imaging of pneumoconiosis often shows small nodules in 

centrilobular regions and thickened interlobular septa19, indicating incomplete removal 

of the deposited material and the importance of lung anatomy. 

Changes in the lungs of Japanese workers exposed to cross-linked water-soluble 

acrylic acid polymers (CWAAP) suggest pneumoconiosis. While inorganic dust is 

known to cause pneumoconiosis, there is no established evidence for organic dust. 

Thus, research on CWAAP-induced disease onset is needed. Workers inhaling CWAAP 

showed fibrosis in the respiratory bronchioles and pleural and interlobular septal 

fibrosis20. In rats, changes were limited to the alveolar regions, with interstitial fibrosis 

of alveolar septa21,22. Although fibrosis was noted, the development of fibrosis and the 

causative factors may have differed in rats and humans, as fibrosis developed in 

different areas of the lung in rats and humans. Therefore, animals with respiratory 

bronchioles and interlobular septa similar to those in humans are required to study this 

pathology. 

In this review, the definitions of respiratory bronchioles and lobular structures are 

based on the following references23–25. Briefly, respiratory bronchioles are defined as 

the transition zone between the conducting airways and the respiratory air spaces23. 

They have structures similar to non-respiratory bronchioles except for the presence of 

openings for alveoli in their walls and shorter epithelial cells. Secondary lobules, as 

proposed by Miller24 and Reid25, are defined as the smallest units of lung structure, 

bordered by connective tissue septa (interlobular septa). 
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Comparative anatomical studies on respiratory bronchioles and pulmonary lobule 

structures are crucial for understanding human occupational respiratory diseases. They 

will also benefit researchers studying human respiratory diseases. However, 

comprehensive reviews focusing on these structures across different animal species are 

limited23. The aim of this review is to provide an overview of the morphology and 

function of human respiratory bronchioles and pulmonary lobule structures and detail 

these structures in different animals to identify the best animal models for studying 

occupational respiratory diseases. 

 

Material used for the overview of the lung histology 

All animal species presented in this review are listed in Table 1 and Table 2. 

Gross images and histopathological images using HE-stained slides were observed by 

us for the animal species listed in Table 1. 

Lung tissues of rats and mice were provided by the Japan Bioassay Research Center, 

Microminipig lung tissues were provided by Gifu University, domestic pig, goat, and 

cow lung tissues were provided by Azabu University, and Naked Mole-Rat were 

provided by Kumamoto University. Whole slide images of gray squirrel, chinchilla, 

capybara, squirrel monkey, goat, reindeer, alpaca, donkey, pantropical spotted dolphin, 

black rhinoceros, bengal tiger, Japanese raccoon dog, Chinese wolf, and koala were 

provided by Osaka Metropolitan University. 

Information on the presence or absence of respiratory bronchioles and interlobular 

septa was obtained from published articles (Table 2)23,26–31. The number of lung lobes 

for each of the animals in Tables 1 and 2 was also obtained from published articles23,32–

38. 
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Morphology and Function of Human Bronchioles and Lung Lobular Structure 

The human trachea forms a complex system of branching airways known as the 

"bronchial tree," which undergo approximately 23 divisions39. As these airways branch, 

their number increases while their diameter decreases. In the peripheral airways, 

including the respiratory bronchioles, the cross-sectional area and total volume increase 

dramatically, slowing down the air flow until it nearly stops in the periphery40. Most of 

the airways are lined with pseudostratified ciliated epithelial cells, which decrease in 

height towards the periphery. The airway mucosa includes goblet cells, serous cells, and 

acinar cells in the submucosal glands41. The coordinated activity of cilia and goblet cell 

secretions forms the mucociliary escalator, essential for removing inhaled particles from 

the lungs. The alveolar epithelium mainly consists of type I alveolar epithelial cells for 

gas exchange and type II alveolar epithelial cells for surfactant production. Alveolar 

macrophages process and remove inhaled particles, initiate immune responses, and 

protect the alveoli42. 

Respiratory bronchioles, located between the terminal bronchioles and alveolar 

ducts, give rise to alveoli. This region is prone to specific lesions due to: 1) areas of 

poor ventilation where fine particles accumulate, potentially affecting nearby respiratory 

bronchioles; 2) being a transitional zone where air moves between narrow and wide 

spaces, causing complex airflow and stasis; and 3) the lack of cilia in respiratory 

bronchiolar epithelial cells, making clearance less effective. These factors make the 

respiratory bronchioles sites of potential vulnerability in the lung, for example, 

respiratory bronchioles are a common site for diffuse lung diseases like 



 8 

pneumoconiosis. Therefore, studying occupational respiratory diseases using animals 

without respiratory bronchioles may underestimate the impact of inhaled chemicals and 

particulates.  

The interlobular septa, seen as connective tissue sheaths extending from the pleura 

into the lung parenchyma, contain lymphatic vessels and veins12. Pulmonary lymphatic 

vessels protect the lungs from airborne particles and microorganisms, allow fluid influx, 

and remove foreign substances and damaged tissue, keeping the lungs clean. 

Impairment of this function can lead to lesions. Thickening of the interlobular septa is a 

common feature in CT images of pneumoconiosis patients19. The presence of lobular 

structures significantly influences lung lesion morphology. Thus, studying occupational 

respiratory diseases in animals with lobular structures is crucial for understanding the 

histopathology of human lung diseases. 

This review examines the presence or absence of respiratory bronchioles and lobular 

structures in the lungs of various experimental and domestic animals. Based on findings 

from our research (Table 1) and the accumulated knowledge in the literature (Table 2), 

we discuss the optimal animal species for studying occupational respiratory diseases in 

humans. 

 

Rodents 

Rats (Rattus norvegicus) and mice (Mus musculus) are commonly used laboratory 

animals. Their lungs do not contain either respiratory bronchioles or lobular structures. 

While human lungs exhibit a polygonal pattern on the surface due to lobular structures, 

this pattern is absent in rats (Fig. 1A, B) and mice (Fig. 2A, B). Microscopic 
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examination also fails to reveal connective tissue separating lobules in these rodents 

(Fig. 1C, Fig. 2C). Thus, the lobular structure seen in humans is absent in rats and mice. 

Figures 1 and 2 show the lack of respiratory bronchioles in rats (Fig. 1D, E) and mice 

(Fig. 2D, E). Furthermore, their visceral pleura and interstitial connective tissue are 

relatively thin compared to domestic animals and nonhuman primates43. Notably, our 

inhalation studies with rats and mice using nanomaterials like indium tin oxide (ITO) 

particles44, multi-walled carbon nanotubes (MWCNT)45–47, and titanium dioxide 

nanoparticles48,49 revealed no interlobular septa lesions or identifiable lobular structure 

lesions. 

To find rodents with lung structures more similar to humans, we studied some 

unique rodent species. In the naked mole-rat (Heterocephalus glaber), the longest-living 

rodent with a lifespan of about 30 years, the lung surface did not exhibit the polygonal 

pattern during gross examination (Fig. 3A, B). Histological examination also showed no 

interlobular septa or respiratory bronchioles (Fig. 3C, D, E). Similarly, the gray squirrel 

(Sciurus carolinensis) and the chinchilla (Chinchilla lanigera)（Table 1）, gerbil 

(Meriones unguiculatus), hamster (Mesocricetus auratus), guinea pig (Cavia porcellus), 

and rabbit (Oryctolagus cuniculus) 23(Table 2) also lacked both interlobular septa and 

respiratory bronchioles. The capybara (Hydrochoerus hydrochaeris), the largest rodent 

with a body weight of 47 kg, also did not show the polygonal pattern or interlobular 

septa on the lung surface (Fig. 4A, B). However, respiratory bronchioles were observed 

in the capybara, making it the only rodent in this study with such a feature (Table 1, Fig. 

4C). These findings suggest that larger body size may contribute to the presence of 

respiratory bronchioles in rodents, but it does not lead to the development of lobular 

structures. 
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Nonhuman Primates 

In cynomolgus monkeys (Macaca fascicularis), a common primate used in research, 

the polygonal pattern present in human lungs could not be observed on the lung surface 

(Fig. 5A). Consistent with this, no lobular structures were found in the lungs (Fig. 5B). 

However, respiratory bronchioles were clearly visible (Fig. 5C, D). The presence of 

airway smooth muscle tissue beneath the bronchiolar epithelium made the alveolar 

structures in the respiratory bronchioles easily identifiable. The lung surfaces of the 

common marmoset （Callithrix jacchus） also showed neither a polygonal pattern (Fig. 

5E) nor microscopic interlobular septa (Fig. 5F). In contrast, respiratory bronchioles 

were easily observed (Fig. 5G). Similarly, in squirrel monkeys (Saimiri sciureus), we 

observed respiratory bronchioles but not the lobular structures (Table 1). Rhesus 

monkeys (Macaca mulatta) 50, the most used nonhuman primate experimental animal in 

certain types of experiments such as vaccine trials, have also been reported to have 

respiratory bronchioles, but few interlobular septa 23,26(Table 2). No clear anatomical 

differences could be identified between the Old World monkeys, cynomolgus monkeys 

and rhesus monkeys, and the New World monkeys, common marmosets and squirrel 

monkeys, and respiratory bronchioles were observed in both, but no clear lobar 

structures were found. 

Non-human primates used in nonclinical safety studies have lungs more 

anatomically similar to human lungs than those of rats and mice. This similarity is due 

to the presence of cartilage and submucosal glands in their bronchial tubes and the 

existence of respiratory bronchioles32. However, we found no evidence of the presence 
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of lobular structures, which are critical sites for occupational lung diseases. Therefore, 

our investigation indicated that no primate species had both respiratory bronchioles and 

lobular structures comparable to those in humans. 

 

Cetartiodactyla 

In pigs (Sus scrofa domesticus), both respiratory bronchioles and interlobular septa 

are present (Table 1). Figure 6A shows the appearance and lobular structure of the pig 

lung, which has four lobes on the right and three on the left. The Microminipig51, bred 

for research, displays a clear polygonal pattern on the lung surface (Fig. 6B, C) and 

well-defined interlobular septa (Fig. 6D). Histologically, the microminipig lung is 

divided by thin connective tissue and vasculature (Fig. 7A-D). Distal to the terminal 

bronchioles, respiratory bronchioles are seen, where bronchiolar epithelium and alveolar 

epithelium coexist, supported by smooth muscle (Fig. 7E). Therefore, pigs, unlike rats 

and mice, have a lung structure similar to that of humans due to their prominent 

interlobular septa. The Mizo local pig, reared in Mizoram highlands, has thick visceral 

pleura and interlobular septa with elastic fibers, potentially enhancing lung elasticity 

and well-developed respiratory bronchioles improving respiratory efficiency52. This 

makes pigs sensitive models for studying diseases involving the interlobular septa. 

Minipigs are also used for studying infectious diseases53,54 and COPD, a leading cause 

of human mortality55,56. Additionally, cystic fibrosis (CF), caused by mutations in the 

CF transmembrane conductance regulator (CFTR) gene, affects both humans and 

pigs57,58. In particular, CF studies of the lung using pigs are known to have advantages 

over studies using mice, due to their well-developed sub-mucosal glands59,60. Thus, pigs 
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have a lung structure suitable for evaluating human respiratory disease pathology and 

will be valuable for respiratory disease research, potentially accelerating early detection, 

treatment, and prevention of human respiratory diseases. 

Goat (Capra Linnaeus) lungs also exhibit both respiratory bronchioles and 

interlobular septa (Table 1). In goat lungs, a partial polygonal pattern can be observed 

(Fig. 8A), and cross-sectional and histopathological examination reveals distinct 

interlobular septa in continuity with the pleura (Fig. 8C). However, while interlobular 

septa are present, the pattern of interlobular septa does not appear to be as well 

developed as in the pig (Fig. 8B). On the other hand, respiratory bronchioles are more 

distinct in the goat compared to pigs (Fig. 8E). 

In the lungs of cows (Bos taurus), both respiratory bronchioles and interlobular 

septa are prominent (Table 1). A polygonal pattern can be seen macroscopically (Fig. 

9A, B), and connective tissue and vasculature define interlobular septa histologically 

(Fig. 9C, D). Respiratory bronchioles with mixed bronchiolar epithelium and alveoli are 

also observed (Fig. 9E). The lungs of the alpacas (Vicugna pacos) (Table 1) and camels 

(Camelus Linnaeus)27,61, two members of the family Camelidade, also have both 

interlobular septa and respiratory bronchioles. Silicosis can develop in camels and, 

similarly to humans, is associated with diffuse to nodular fibrosis due to dust 

accumulation, with thickened interlobular septa and interalveolar septa infiltrated by 

fibrous tissue and inflammatory cells27. The lungs of reindeers (Rangifer tarandus) 

(Table 1) and sheep (Ovis aries)23 (Table 2), which belong to the family Cervidae, also 

possess respiratory bronchioles and interlobular septa. These Cetartiodactyla species, 

having both respiratory bronchioles and lobular structures, may also be suitable for 

studying human occupational respiratory diseases. 
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In contrast, the pantropical spotted dolphin (Stenella attenuata), a marine 

Cetartiodactyla species, has different bronchial and alveolar structures. The bronchial 

and lung structure of the dolphin is schematized in Figure 10A. The lobular structure 

was unclear in the dolphin lungs (Fig. 10B), while their terminal bronchioles and alveoli 

were distinct, with cartilage extending to the distal bronchioles (Fig. 10C). Numerous 

well-developed myoelastic sphincters (MES) formed circular expansions around the 

terminal bronchiole (Fig. 10C), creating constrictions (Fig. 10C, D). Unlike terrestrial 

species, dolphin alveoli have shallow depressions. This unique structure suggests MES 

regulate airflow, protecting alveoli and maintaining gas exchange in marine species in 

the deep sea62. 

 

Other species 

In the order Perissodactyla, both donkeys (Equus asinus) and black rhinoceroses 

(Diceros bicornis) showed a slight polygonal pattern on the lung surfaces (Table 1). 

Donkeys and black rhinoceroses had interlobular septa but not as pronounced as pigs, 

and respiratory bronchioles were not identified. Horses also have interlobular septa, but 

with incomplete septal separation of lobules29. Thus, horses differ from pigs, which 

have pronounced interlobular septa. In addition, the lungs of horses (Equus caballus) 

have been reported to be devoid of respiratory bronchioles （Table 2）23,29. This suggests 

that although hoofed ungulates, including various terrestrial even-toed ungulates, have 

lobulated lung structures, only a limited number of animal species have both 

interlobular septa and respiratory bronchioles. 
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In the order Carnivora, Bengal tigers (Panthera tigris tigris), Japanese raccoon dogs 

(Nyctereutes viverrinus viverrinus), and Chinese wolves (Canis lipus chanco) lack 

interlobular septa but have prominent respiratory bronchioles (Table 1). Dogs (Canis 

familiaris), including beagle dogs, which are often used in experiments, also have 

notable respiratory bronchioles with branching patterns similar to those in humans23,30 

(Table 2). Ferrets (Mustela putorius furo), known to possess respiratory bronchioles, are 

considered better human models than rodents31(Table 2). Kock et al. found that 

inhalation exposure of rats, monkeys, and ferrets to ozone caused more severe acute 

damage to the lung epithelium in ferrets, which like humans and monkeys have 

respiratory bronchioles, than in rats31. As discussed above, some Carniviora have well-

developed respiratory bronchioles and are useful models for the human peripheral 

airways, but they are not appropriate as models for assessing the effects of the septum 

as similarly to rats and mice they lack interlobular septa. In the order Marsupialia, 

koalas (Phascolarctos cinereus) have neither lobular structures nor respiratory 

bronchioles (Table 1). 

 

Discussion and conclusion 

Using pigs, particularly miniature pigs like minipig and Microminipig, can bridge 

the gap between the results from rodent studies and human clinical studies, enhancing 

our understanding of respiratory diseases in humans. Minipigs are commonly used in 

regulatory toxicity studies, with the Göttingen minipig being the preferred choice in 

Europe, and their use is accepted by regulatory authorities63. In Europe, minipigs are 

increasingly replacing beagle dogs in safety pharmacology studies63. Already, Koch et 
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al. at the Fraunhofer Institute in Germany have developed an inhalation model for 

Göttingen minipigs64. This model includes a mask that ensures precise and reproducible 

delivery of aerosol and gaseous substances to the airways. They have also developed a 

head-only exposure system and demonstrated the particle size dependence of lung 

deposition using a chemical tracer method65. 

Pigs have respiratory bronchioles and lobular structures, making them ideal for 

studying occupational respiratory diseases like pneumoconiosis. In addition to the 

ethical issues that need to be considered when experimenting with nonhuman primates, 

miniature pigs are more suitable for inhalation studies of environmental hazards 

compared to nonhuman primates and beagle dogs. We are currently developing a 

technique to administer a chemical suspension directly into the lungs of pigs, similar to 

the intratracheal administration method used in rodents.  

The review re-confirms that even-toed ungulates have prominent respiratory 

bronchioles and lobular structures. Pigs have more pronounced lobular structures than 

humans, making them sensitive to changes such as interlobular septa thickening. Goats 

have even more developed respiratory bronchioles than pigs, potentially making them 

more sensitive to lesions like silicotic nodules and asbestos lung. The manageable size 

of miniature pigs and miniature goats makes them suitable for long-term experiments to 

induce chronic diseases like end-stage pulmonary fibrosis, lasting up to two years. We 

are planning a study in which Microminipigs will be administered asbestos and 

observed for two years to test the ability of this animal model to detect carcinogenicity. 

Recent advancements, such as single-cell RNA sequencing (scRNA-seq), have 

identified novel cell subsets in the respiratory organs of both healthy and diseased 

humans, which provides new insights into disease pathology66–70. Studies have shown 
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that AT0/RAS cells, specifically found in the respiratory bronchioles, are present in 

ferrets71 and monkeys72, but not in mice, highlighting significant species differences at 

the single-cell resolution level. We have confirmed that these cell subsets are abundant 

in Microminipig lungs (data not shown). 

Utilizing new research methods and selecting suitable experimental animals will 

advance our understanding of human respiratory diseases, leading to early detection, 

improved treatment, and preventive strategies. 
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Figure legend. 

Figure 1. 

Macroscopic and microscopic images of the F344 rat lung. 

A: Macroscopic overview of a whole rat lung. B: Magnification of the boxed area in 

panel A. No polygonal pattern can be observed. C: Overall histopathologic view of the 

left lung. D: High magnification of Fig.1C, showing the boundary between bronchi and 

alveoli. E: High magnification of Fig.1D.  

AD: Alveolar duct; Al: Alveoli; BADJ: bronchiole-alveolar duct junction; TB: Terminal 

bronchiole.  

 

Figure 2. 

Macroscopic and microscopic images of the B6D2F1mouse lung. 

A: Macroscopic overview of a whole mouse lung. B: Magnification of the boxed area in 

panel A. No polygonal pattern can be observed. C: Overall histopathologic view of the 

left lung. D: High magnification of Fig.2C, showing the boundary between bronchi and 

alveoli. E: High magnification of Fig.2D.  

AD: Alveolar duct; Al: Alveoli; BADJ: bronchiole-alveolar duct junction; TB: Terminal 

bronchiole.  

 

Figure 3. 

Macroscopic and microscopic images of the lung of a naked mole-rat. 

A: Overall view of the chest of a naked mole-rat. B: Macroscopic lung structure (right 4 

lobes, left 3 lobes). C: Microscopic overall view of the lung. D: High magnification of 
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Fig.3C, showing the boundary between bronchi and alveoli. E: High magnification of 

Fig.3D. 

AD: Alveolar duct; Al: Alveoli; BR: Bronchiole; TB: Terminal bronchiole. 

 

Figure 4. 

Macroscopic and microscopic images of the lung of a capibara. 

A: Macroscopic image of the lung. B: Microscopic image of the lung. C: High 

magnification of Fig.4B, showing the boundary between bronchi and alveoli. 

AD: Alveolar duct; Al: Alveoli; RB: Respiratory bronchiole; Arrow: alveoli associated 

with respiratory bronchioles. 

 

Figure 5. 

Macroscopic and microscopic images of the lung of a monkey. 

A: Macroscopic image of the lung of cynomolgus monkey. B: Microscopic image of the 

lung of cynomolgus monkey. C: High magnification of Fig.5B, showing the boundary 

between bronchi and alveoli. D: High magnification of Fig.5C. E: Macroscopic image 

of the lung of a common marmoset. F: Microscopic image of the lung of a common 

marmoset. G: High magnification of Fig.5F, showing the respiratory bronchiole. 

AD: Alveolar duct; Al: Alveoli; RB: Respiratory bronchiole; Arrow: alveoli associated 

with respiratory bronchioles. 

 

Figure 6.  

Macroscope images of the lung of a Microminipig. 

A: Schematic diagram of the lobular structure and peripheral airways of the pig lung. B: 
Overall view of the lung. C: High magnification of Fig.6B, showing the polygonal 
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pattern on the surface of the lung. D: Lung tissue specimen. The red and yellow dotted 
lines indicate lung lobules. 

Ar: Artery; IS: Interlobular septum; RB: Respiratory bronchiole; TB: Terminal 

bronchiole. 

 

Figure 7. 

Microscope images of the lung of a Microminipig.  

A: The site of excision when preparing the pathological specimen. B: Microscopic 

image of the lung specimen, showing very prominent lobular structures and interlobular 

septa. C: Histology showing distinct lobules surrounded by interlobular septa. D: 

Interlobular septa composed of interstitium containing lymphatic vessels and veins. E: 

Respiratory bronchioles. Bronchiolar epithelium and alveoli (arrows) are intermingled. 

AD: Alveolar duct; Al: Alveoli; IS: Interlobular septum; Ly: Lymphatic vessel; RB: 

Respiratory bronchiole; TB: Terminal bronchiole; Ve: vein; Arrow: alveoli associated 

with respiratory bronchioles. 

 

Figure 8. 

Macroscopic and microscope images of the lung of a goat. 

A: Macroscopic high magnification of a goat’s lung, showing a partial polygonal pattern 

on the surface of the lung. B: Lung tissue specimen. Interlobular septa continuous with 

the pleura are observed. C: Microscopic image of a lung specimen from a goat. D: High 

magnification of Fig.8C, showing an interlobular septum continuous with the pleura. E: 

High magnification of the lung of a goat, showing the boundary between bronchi and 

alveoli. 
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Al: Alveoli; IS: Interlobular septum; RB: Respiratory bronchiole; IS: Interlobular 

septum; Arrow: alveoli associated with respiratory bronchioles. 

 

Figure 9. 

Macroscopic and microscope images of the lung of a cow (Holstein). 

A: Macroscopic overview of a whole cow lung. B: Magnification of the boxed area in 

panel A. C: Microscopic image of the lung, showing very prominent lobular structures 

and interlobular septa. D: High magnification of Fig.9C, showing interlobular septum. 

E: High magnification of the lung of a cow, showing the boundary between bronchi and 

alveoli. 

AD: Alveolar duct; Al: Alveoli; IS: Interlobular septum; Ly: Lymphatic vessel; RB: 

Respiratory bronchiole; IS: Interlobular septum; Ve: vein; Arrow: alveoli associated 

with respiratory bronchioles. 

 

Figure 10. 

Microscope images of the lung of a dolphin. 

A: Schematic diagram of a terminal respiratory unit of the dolphin lung, with the well-

developed Myoelastic sphincters and externally supported Cartilage in the terminal 

bronchioles, a feature that makes them quite different from other mammals. B: 

Microscopic image of the lung. C: High magnification of Fig.10B, showing the 

boundary between bronchi and alveoli. D: High magnification of Fig.10C.  

Al: Alveoli; Cl: Cartilage; MES: Myoelastic sphincters; TB: Terminal bronchiole. 

 


