
Development of a method for estimating asari clam distribution by combining  

three-dimensional acoustic coring system and deep neural network  

 

Tokimu Kadoi1, Katsunori Mizuno2*, Shoichi Ishida1, Shogo Onozato2, Hirofumi Washiyama3, Yohei 

Uehara3, Yoshimoto Saito4, Kazutoshi Okamoto4, Shingo Sakamoto5, Yusuke Sugimoto5 and Kei 

Terayama1,6,7* 

 

1Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumi-

ku, Yokohama, 230-0045, Kanagawa, Japan. 

2Department of Environment Systems, Graduate School of Frontier Sciences, The University of 

Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan. 

3Shizuoka Prefectural Research Institute of Fishery and Ocean, 5005-3, Bentenjima, Maisaka-cho, 

Chūō-ku, Hamamatsu-shi, Shizuoka, 431-0214, Japan. 

4Marine Open Innovation Institute, 2nd Floor, Shimizu Marine Building, 9-25, Hinode-cho, Shimizu-

ku, Shizuoka-shi, Shizuoka, 424-0922, Japan. 

5Windy Network Corporation, 1-19-4, Higashi-Hongo, Shimoda-shi, Shizuoka, 415-0035, Japan. 

6RIKEN Center for Advanced Intelligence Project, 1-4-1, Nihonbashi, Chuo-ku, 103-0027, Tokyo, 

Japan. 

7MDX Research Center for Element Strategy, Tokyo Institute of Technology, 4259, Nagatsuta-cho, 

Midori-ku, Yokohama, 226-8501, Kanagawa, Japan. 

 

*Corresponding author(s). 

 E-mail(s): kmizuno@edu.k.u-tokyo.ac.jp and terayama@yokohama-cu.ac.jp  

 

Abstract 

Developing non-contact, non-destructive monitoring methods for marine life is crucial for sustainable 

resource management. Recent monitoring technologies and machine learning analysis advancements 

have enhanced underwater image and acoustic data acquisition. Systems to obtain 3D acoustic data 
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from beneath the seafloor are being developed; however, manual analysis of large 3D datasets is 

challenging. Therefore, an automatic method for analyzing benthic resource distribution is needed. This 

study developed a system to estimate benthic resource distribution non-destructively by combining 

high-precision habitat data acquisition using high-frequency ultrasonic waves and prediction models 

based on a 3D convolutional neural network (3D-CNN). The system was applied to asari clams 

(Ruditapes philippinarum), whose population has been declining in recent years in Japan. Clam 

presence and count were successfully estimated in a voxel with an ROC-AUC of 0.9 and a macro-

average ROC-AUC of 0.8, respectively. This system visualized clam distribution and estimated 

numbers, demonstrating its effectiveness for quantifying marine resources beneath the seafloor. 
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Introduction 

 

The seafloor harbors numerous benthic organisms, which are indispensable as marine resources 

targeted by fisheries and for marine ecosystems and material cycles1,2. However, as most benthic 

organisms are always concealed in sediments, determining their population size and observing their 

behavior is difficult. Surveys are inevitably destructive, time-consuming, and costly. Conventional 

sampling methods cannot cover large areas, making it difficult to detect changes over time. This 

limitation is an impediment to sustainable management of sub-benthic resources and environment. 

    Benthic organisms such as asari clam (Japanese littleneck clam, Ruditapes philippinarum) have 

become a concern regarding stock management3. The asari clam is a bivalve that lives in the shallows 

of inner bays and is an important target fishery species. The harvest of asari clams in Japan has been on 

a downward trend, with a significant decrease from 160,000 tons in the 1980s to less than 10,000 tons 

since 2016. Various factors have been revealed as causes for this trend, including overfishing, feeding 

damage, disease and insect damage, and the prey environment4. Monitoring of clams has recently been 

conducted with the aim of sustainable fisheries management and resource conservation; however, this 

relies on manual digging and counting5. The current methods are very costly, and comprehensively 

monitoring the dynamics trends in the asari clam ecosystem over time is difficult. 

    Various monitoring methods have recently been developed by linking technological improvements 

in image and acoustic data acquisition with machine learning analysis, including deep learning6–10. For 

example, two-dimensional (2D) imaging of tracer particles11 and three-dimensional (3D) computed 

tomography (CT) imaging12 have been developed as data acquisition methods under the seafloor. 

Acoustic systems with various operating frequencies are commonly used to detect objects buried in 

seafloor sediments. For instance, wooden wrecks buried on the seafloor can be visualized using chirp 

signals with sweep pulses ranging from 1.5 to 13 kHz13. Recently, a new monitoring tool, a 3D acoustic 

coring system, has been developed and used to precisely survey buried roots of plants with an outer 

diameter of 3 to 5 cm using ultrasonic waves with a center frequency of 100 kHz14. In addition, high-

frequency signals with a center frequency of 1 MHz have recently been used to survey small creatures 



of 3–5 cm, such as the clams15. Other deep learning analysis methods have been proposed for monitoring 

seafloor data, such as corals and seaweeds6–8. Furthermore, attempts have been made to classify 

organisms under the seafloor in the laboratory from data acquired with the 3D acoustic coring system9. 

However, such analysis methods need to be verified outside of the laboratory for the practical use of 

the 3D acoustics to estimate the distribution of targets in the obtained 3D data and the validation of such 

methods for benthic resource managements. 

    In this study, we developed a system to estimate the distribution of asari clams in a non-contact 

and non-destructive manner. Our system first acquires 3D benthic data containing clams using the 3D 

acoustic coring system. Then, the system predicts whether and how many clams are present in a local 

voxel region using a 3D convolutional neural network (3D-CNN)16, a method that has been used 

successfully in a wide range of tasks involving 3D data10,17–22. The proposed system can also estimate 

the distribution and number of targets by integrating the prediction results at multiple voxels within a 

certain region. To validate the proposed system, benthic organisms, such as clams and mussels, were 

obtained to verify the estimation. We also reported examples of the distribution visualization and 

estimation results of the count distribution within a certain region. Furthermore, we showed that 

Gradient-weighted Class Activation Mapping (Grad-CAM)23, a visual explanation method for 

interpretation in the prediction of neural network models, can be used to analyze and interpret regions 

that are important for the prediction of 3D data. 

 

 

Results and Discussion 

 

Overview 

The workflow of this study is shown in Figure 1. The proposed system was divided into two parts: 

1) preparation of input data for the deep learning model and 2) prediction by two 3D-CNN models. The 

3D-CNN models predicted the presence or absence of clams and the count of clams in the local voxel 

data. 



 

 

Figure 1. The workflow of the proposed system. This system is divided into two parts: 1) preparation 

of input data for the deep learning model and 2) prediction using the deep learning model. In 1), the A-

core-2000 was first used to measure the reflected waves from the subseafloor (a), extract the areas where 

clams are present (b), and create datasets on the presence/absence and the count of clams for training 

and evaluation of the deep learning model (c). In 2), the datasets created in (c) were used to train two 

independent 3D-CNN models (d), and finally, the 3D-CNN models were evaluated using three 

evaluation metrics (e). 

 

 

Model for classifying the presence or absence of clams 

  



  First, we constructed the 3D-CNN model to discriminate the presence or absence of clams from the 

3D data measured with the A-core-2000. The model training and evaluation were conducted using 

Stratified Group 5-fold cross-validation with the aforementioned data types A and C, including data 

types M containing mussels and sand and AM containing clams, mussels, and others (Figure 2(a)). 

Figure 2(b) and (c) shows the model’s performance using ROC-AUC curves and confusion matrices. 

The prediction achieved an ROC-AUC of 0.90, an accuracy of 0.87, and an F1 score of 0.87. The 

detailed predictions for each data are shown in Figure 2(d). Data type A containing only clams 

consistently exhibited high predictive accuracy, with accuracy exceeding 0.8 across all buckets. In 

contrast, AM and M showed several buckets with accuracy below 0.80, indicating lower overall 

accuracy than A. Additionally, most of the data in C showed high accuracy, except for C1, which had 

a value below 0.8. Predictions using only the intensity information of each voxel without 3D-CNN were 

also performed for comparison. Supplementary Figure 1(a) and (b) shows the classification results using 

the mean and maximum intensity values for each voxel, respectively, with very low ROC-AUC values 

of 0.51 and 0.53. These results indicate that the presence or absence can be estimated with a certain 

level of accuracy using 3D-CNN. 

 



 

Figure 2. Prediction performances of the model for predicting the presence or absence of clams 

in a voxel. The model was trained and evaluated using Dataset 1 (presence or absence of clams). (a) 



Predicted distribution examples for each data type. Note that the presence or absence of clams is 

predicted from the corresponding voxel data, not from these photo images. The prediction is performed 

for the voxel corresponding to each square on these images. Regions marked with × indicate failed 

predictions, and regions marked with ✔︎ indicate successful predictions. (b) and (c) The prediction 

accuracy and the ROC curve for each voxel. (d) The prediction accuracy for each bucket. 

 

 

We used Grad-CAM23 to analyze where the prediction model focuses on in a 3D acoustic image to 

determine the presence or absence of clams. Grad-CAM enables the visualization of regions that 

constitute the basis for the predictions made by the model. Figure 3 shows the original images and the 

Grad-CAM visualizations averaged every 10 pixels in the z-direction. The upper rows of Figure 3 show 

examples of successful predictions visualized by Grad-CAM. Figure 3(a) and (b) are cases in which 

clams are present in the voxel, and (c) and (d) are cases in which clams are absent. Figure 3(a) and (b) 

shows that when the model predicted the voxel as the presence of clams, it responded strongly to signals 

that appeared to be clams in relatively deep areas. In contrast, the model focused on shallow areas when 

predicting the voxel as the absence of clams. The lower row of Figure 3 shows examples of failed 

predictions, whereas (e) and (f) represent cases where clams were predicted to be present even though 

there were no clams. Relatively strong signals were observed in the acoustic images; thus, the model 

responded to these signals and predicted the voxel as the presence of clams. As observed in (i) and (j) 

in Figure 3, even C, which contained only sand, contained small clams and stones, which may have 

adversely affected the prediction. Although signals that appeared to be clams were present in the 

acoustic images and were focused by the model to some extent, the predictions were incorrect. These 

results suggest that although there remains room for improvement in accuracy, the prediction model 

focuses on signals that appear to be clams and the prediction of the presence of clams. 

 

 



 

 

Figure 3. Visualized attention by the prediction model using Grad-CAM. The visualized data were 

averaged every 10 pixels in the z-direction. (a) to (h) The original input data visualized in grayscale 

(left) and the corresponding heatmap calculated by Grad-CAM (right). (a) A data where both prediction 

and actual were “presence.” (b) AM data where both prediction and actual were “presence.” (c) C data 

where both prediction and actual were “absence.” (d) C data where both prediction and actual were 

“absence.” (e) C data where the actual was “absence” but predicted as “presence.” (f) M data where the 

actual was “absence” but predicted as “presence.” (g) A data where the actual was “presence” but 



predicted as “absence.” (h) AM data where the actual was “presence” but predicted as “absence.” (i) 

Excavation scene for C data where the actual was “absence” but predicted as “presence.” (j) Excavation 

scene for M data where the actual was “absence” but predicted as “presence.” 

 

Model for classifying the count of clams 

 

 Next, the model for estimating the count of clams was trained and evaluated. The dataset regarding 

the count of clams (Table 3) was used, and model training and evaluation were conducted through 

Stratified Group 5-fold cross-validation. The output was performed as a 3-class classification: “0”, “1”, 

and “2 or more.” Figure 4(a) shows the prediction examples for each data type. Figure 4(b) and (c) 

shows the model’s performance using ROC-AUC curves and confusion matrix. The prediction achieved 

a macro-average ROC-AUC of 0.90, an accuracy of 0.64, and a macro-average F1 score of 0.64. The 

confusion matrix indicated that the discrimination accuracy of “1” and “2 or more” was lower than the 

prediction accuracy of “0”. This is probably because predicting the count of clams becomes difficult 

when the reflections overlap due to the high density of clams. The prediction results for each data type 

regarding accuracy are also shown in Figure 4(d). The accuracy of data type C, which contained only 

sand, was high, whereas that of data types A and M was slightly low. The accuracy of data type AM, 

containing various objects other than clams, was further reduced. This result suggests that small stones 

or clams may make classification more difficult, as discussed in the model predicting presence. 

 

 



 



Figure 4. Prediction results of the model for estimating the clams count. The model was trained 

using Dataset 2 (labels: 0 clams, 1 clam, and 2 or more clams). (a) Examples of predictions for each 

data type. Regions marked with × indicate failed predictions, and regions marked with ✔︎ indicate 

successful predictions. (b) and (c) The prediction model’s performance for each voxel regarding ROC 

curves and confusion matrix. (d) The prediction accuracy for each bucket. 

 

Estimating the distribution of clams 

 

The proposed method enabled us to estimate the distribution of clams (Figures 2(a) and 4(a)) because 

the trained models predicted the presence and count of clams in each voxel. Furthermore, the count of 

clams within a certain region containing multiple voxels was estimated by integrating the prediction 

results. Here, we evaluated the accuracy of estimating the clams contained within each bucket's region, 

consisting of 20 voxels (Figure 5). The estimated and measured counts for each bucket are listed in 

Supplementary Table 1. The overall correlation coefficient was 0.92, and the correlation coefficient for 

only the A and AM data was 0.68, confirming the correlations of the clam counts. The mean absolute 

error (MAE) and mean relative error (MRE) for each data type are presented in Table 1. The MRE 

values were 0.20 for A and 0.12 for AM, indicating that the estimation is possible with an error of 

approximately 10–20%. These results suggest that the count of clams in each region can also be 

estimated, although with some error. 

 

 

 



 

Figure 5. Estimated and actual count of clams per local region (bucket). The count of clams per 

bucket was calculated by integrating the results predicted by the model to estimate the count of clams. 

 

 

Table 1. MAE and MRE for predicting the count of clams for each data type. The count of clams was 

estimated for each bucket using the prediction model of the count of clams. The MAE in the count of 

clams was calculated for each data type. MRE was calculated only for A and AM because relative 

absolute error cannot be calculated when the count of clams is zero. 

 A C M AM 

MAE 2.4 1.2 3.3 1.8 

MRE 0.20 - - 0.12 

 

 

Conclusion 



In this study, we prepared and measured benthic data, including clams, to validate the resource survey 

method using the three-dimensional acoustic coring system. Using the measured data, two prediction 

models based on 3D-CNN were trained and evaluated to estimate the presence and count of clams. We 

successfully estimated the presence or absence of clams in each voxel with an ROC-AUC of 

approximately 0.9 and the count of clams in local areas with a macro-average ROC-AUC of 0.8. The 

count of clams within a certain area (bucket) was confirmed to be estimated by MAE values of 0.12 or 

0.20. These results indicate the potential of the proposed method for estimating benthic resources. 

 

However, this study has the potential for improvement. First, the prediction accuracy tended to decrease 

when factors other than clams were introduced, such as AM. To solve this problem, it is beneficial to 

prepare a larger amount of various data and to use more advanced neural networks, such as vision 

transformers, to process voxel data for learning. Because the measurement speed of data by A-core-

2000 is slow and the measurement area is relatively narrow, considerably faster measuring devices 

(array sonar system) are needed. As this study was conducted in a relatively controlled environment, 

verification in the outside field is desired in the future. 

 

Methods 

Data preparation and measurement using the acoustic coring system 

Preparation of benthic data containing clams. Benthic data, including clams, were obtained from a 

portable pool at the Hamanako Branch, Shizuoka Prefectural Research Institute of Fishery, Shizuoka 

Prefecture, Japan. Four types of benthic data were prepared to verify whether estimation could be 

performed for various types of data: control data containing sand only (C), data containing asari clams 

and sand (A), data containing a mixture of mussels and sand (M), and data containing a mixture of 

clams, mussels, and other materials (AM). Each benthic data was prepared by placing sand and mussels 

from Lake Hamana in a rectangular bucket with internal dimensions of 580 × 155 × 200 mm. Six 

buckets were prepared for each data type. For the A and AM data, 40 live clams from the nearby Mikawa 



Bay were placed in each bucket three days before the measurement date and stored until the 

measurement date. 

 

Measurement using the acoustic coring system. The A-core-200024 was used to observe benthic data 

in the prepared buckets (Figure 1(a)). The bucket’s 250 × 200 mm area was scanned at 2 mm intervals 

while continuously irradiated with ultrasound at a center frequency of 500 kHz, and the reflected sound 

wave was measured and recorded. Envelope processing was performed on the recorded waveform data. 

The acoustic image constructed by the Viewer24 showed that the reflection from the clams was between 

reflections from the soil surface and reflection from the soil surface again (the 2nd reflection in Figure 

1(b)). In this study, the range of analysis was defined as the area between the first and second reflections 

(multiple reflections) from the sediment surface. The total reflection intensity in the XY plane was 

calculated for each z-coordinate in the 3D data of the acquired reflection intensity, the region of clam 

presence was extracted, and the size was standardized for each bucket (Sl). Therefore, the 3D data of 

reflectance intensity measured at 125 × 100 × 693 points in each bucket were used in this study. 

 

Manual identification of positions of asari clams. The positions of asari clams in the measured data 

were identified to evaluate the prediction models. First, x and y coordinates, the candidate positions of 

asari clams in the horizontal direction, were manually obtained from the reflection intensity data. Next, 

the positions of the asari clams were identified by comparing them with the image data of the dug clams 

taken at the time of measurement. The backscatter of the clams was measured, and the center position 

of the backscatter was defined as the clam position. The data on the positions of the clams were recorded 

in Supplementary Tables 2 and 3. The data in A5, C4, and AM5 were excluded from the data set because 

mechanical issues with the probe resulted in excessive noise, rendering the measurements inaccurate.  

 

Preparation of datasets for model training and evaluation. Datasets 1 and 2 were created to construct 

models to predict the presence or absence of clams in a local voxel and the count of clams in a local 

voxel. First, the data obtained from each bucket was divided into 25 × 25 pixels, shifting every 1 pixel 

in the horizontal direction, resulting in 124,689 local voxel data, each with size 25 × 25 × 693 pixels 



(Figure 1(b)). Here, backscatter data of clams could be included in the boundary of the divided data. 

Therefore, if the position of a clam recorded above was included in a local voxel or the shortest distance 

of the position from a local voxel was less than 11 pixels, the local voxel data was regarded as including 

the clam. Based on the positions of clams identified in the above Section, for Dataset 1, a label of 

“Absence” was assigned if no clams were included in a local voxel data, and “Presence” was assigned 

if at least one clam was included in a local voxel data. The number of labeled data is presented in Table 

2; for C and M, all data were labeled as “absence” because no clams were included in the buckets. Based 

on the positions of clams identified in the above Section 3.1.3, for Dataset 2, the count of clams was 

assigned as a label (Table 3). The number of data containing three or more clams in one local voxel was 

very small (1,137); therefore, data containing three or more clams were treated as data containing two 

or more clams. Datasets 1 and 2 were created by randomly extracting data from the 124,689 local voxel 

data, each with a size of 25 × 25 × 693 pixels; thus, the number of data for each label was approximately 

the same. 

 

Table 2. Dataset regarding the presence or absence of clams (Dataset 1) 

 Absence Presence 

A 2,125 16,717 

C 13,000 0 

M 15,600 0 

AM 2,075 19,177 

Total 32,800 35,894 

 

 

Table 3. Dataset on the count of clams (Dataset 2) 



 0 1 ≥2 

A 1,147 2,500 1,939 

C 1,250 0 0 

M 1,500 0 0 

AM 1,034 2,500 3,136 

Total 4,931 5,000 5,075 

 

 

Classification using deep neural networks  

 In this study, we employed the 3D-CNN16 to develop the prediction models. 3D-CNN has 

demonstrated success in various tasks involving 3D data, such as classification, detection, and 

segmentation of medical images10,17–20, as well as action recognition21,22. It mainly consists of 

convolutional, pooling, and fully connected layers. We modified the 3D-CNN developed in our 

previous study9 to build two independent models: one for classifying the presence or absence of clams 

and another for classifying the count of clams. In the model for classifying the presence or absence of 

clams, we used Dataset 1, containing information on the presence or absence of clams as input and 

obtained outputs of either ‘Absence’ or ‘Presence’ (Figure 6). The model employed the Adam optimizer, 

with a batch size of three and a learning rate of 10-6, and was trained for a maximum of 50 epochs, 

stopping if there was no improvement for 10 epochs. For the model classifying the count of clams, we 

used Dataset 2, containing information on the count of clams as input, and obtained outputs of ‘0’, ‘1’, 

or ‘2 or more clams’ (Figure 6). The model employed the Adam optimizer, with a batch size of three 

and a learning rate of 10-6, and was trained for a maximum of 30 epochs, stopping if there was no 

improvement for 10 epochs. 

 In this study, TensorFlow (version 2.4.1)25 was used to construct two 3D-CNN models, and the 

performance of the models was evaluated using Stratified Group 5-fold cross-validation26. The groups 



represented each bucket. Additionally, the dataset was divided into training (60%), validation (20%), 

and test (20%) sets. 

 

 

 

 

Figure 6. Overview of predictions using 3D-CNN. Training and evaluation of 3D-CNN models were 

conducted using Dataset 1 on the presence/absence of clams (a) and Dataset 2 on the count of clams (b).  

 

 

Evaluation metrics of the prediction model 

  

 Three evaluation metrics were employed to evaluate the trained models: accuracy, F1-score, and the 

area under the receiver operating characteristic curve (ROC-AUC). Accuracy represents the proportion 

of correctly predicted data, while F1-score is defined as the harmonic mean of precision and recall: 

 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2 ∙ 𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 



 

 ROC-AUC refers to the area under the ROC curve, which plots the true-positive rate against the 

false-positive rate as the classification threshold varies. Each metric ranges from 0 to 1, with higher 

values indicating better model performance. Furthermore, to evaluate the model for classifying the 

count of clams, we used macro-average ROC-AUC and F1-score, which are the averages of the ROC-

AUC and F1-score calculated for each class. Macro-average refers to the method of computing the 

ROC-AUC and F1-score for each class individually and then averaging these scores. This metric 

considers the performance of each class equally and allows for a balanced evaluation of the overall 

performance, even in cases with class imbalance. 

 

  

Data availability  

The code for the machine learning is available on GitHub at https://github.com/ycu-iil/ 

Asari3DCNN. 
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