Supporting Information for

Development of a method for estimating asari clam distribution by combining three-dimensional acoustic coring system and deep neural network

Tokimu Kadoi¹, Katsnori Mizuno^{2*}, Shoichi Ishida¹, Shogo Onozato², Hirofumi Washiyama³, Yohei Uehara³, Yoshimoto Saito⁴, Kazutoshi Okamoto⁴, Shingo Sakamoto⁵, Yusuke Sugimoto⁵ and Kei Terayama^{1,6,7*}

¹Graduate School of Medical Life Science, Yokohama City University, 1-7-29, Suehiro-cho, Tsurumiku, Yokohama, 230-0045, Kanagawa, Japan.

²Department of Environment Systems, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.

³Shizuoka Prefectural Research Institute of Fishery and Ocean, 5005-3, Bentenjima, Maisaka-cho, Chūō-ku, Hamamatsu-shi, Shizuoka, 431-0214, Japan.

⁴Marine Open Innovation Institute, 2nd Floor, Shimizu Marine Building, 9-25, Hinode-cho, Shimizuku, Shizuoka-shi, Shizuoka, 424-0922, Japan.

⁵Windy Network Corporation, 1-19-4, Higashi-Hongo, Shimoda-shi, Shizuoka, 415-0035, Japan.

⁶RIKEN Center for Advanced Intelligence Project, 1-4-1, Nihonbashi, Chuo-ku, 103-0027, Tokyo, Japan.

⁷MDX Research Center for Element Strategy, Tokyo Institute of Technology, 4259, Nagatsuta-cho, Midori-ku, Yokohama, 226-8501, Kanagawa, Japan.

*Corresponding author(s). E-mail(s): <u>kmizuno@edu.k.u-tokyo.ac.jp</u> and <u>terayama@yokohama-</u> <u>cu.ac.jp</u>

Extraction of the habitat of clams

The total value of reflection intensity on the xy plane at each z-coordinate was calculated. Next, after examining the positions of the 1st reflection and the 2nd reflection for each bucket, the 1st reflection was in the range of $800 \le z < 1600$ and the 2nd reflection was in the range of $1600 \le z \le 3000$. Therefore, to extract the area between the 1st and 2nd reflection, for each bucket, the coordinate of the peak Z in the range of $800 \le z < 1600$ plus 50 (Z1) and the coordinate of the peak Z in the range of $1600 \le z \le 3000$ minus 100 (Z2) were calculated. Then, Z2-Z1 was computed. Finally, the values of Z2-Z1 were resized to match the minimum value. Consequently, the three-dimensional data of reflectance intensity measured at $125 \times 100 \times 693$ points in each bucket were used in this study.

SI Figure 1. Performance of the prediction of the presence or absence of clams in a voxel based solely on reflection intensity. (a) ROC curve for predicting the presence or absence of clams in a voxel based on the average reflection intensity. (b) ROC curve for predicting the presence or absence of clams in a voxel based on the maximum reflection intensity.

SI Table 1. The number of clams present in the surveyed area and the predicted number of clams by a model designed to forecast their quantity, including the prediction error. For the prediction, clams with 2 or more voxels were counted as 2.

	Actual	Predict Absolute error	
A1	14	12	2
A2	13	11	2
A3	12	16	4
A4	10	10	0
A6	11	15	4
C1	0	4	4
C2	0	0	0
C3	0	0	0
C5	0	2	2
C6	0	0	0
M1	0	1	1
M2	0	6	6
M3	0	5	5
M4	0	1	1
M5	0	5	5
M6	0	2	2
AM1	15	10	5
AM2	17	19	2
AM3	14	15	1
AM4	10	9	1
AM6	9	9	0

	х	У		Х	У
	40	4	A4	16	5
	23	4		113	1
	31	7		87	1
	17	13		80	19
	8	15		8	17
	98	30		106	50
A 1	39	35		44	49
AI	7	44		117	78
	6	61		35	75
	55	61		55	92
	79	62			
	54	69			
	38	73			
	122	45			
	34	6		27	5
	58	18	A6	70	11
	5	23		66	30
	92	31		119	36
	102	44		62	48
	17	54		89	56
A2	80	64		9	54
	43	96		32	59
	72	97		123	62
	25	98		108	78
	99	76		80	66
	3	97			
	114	94			
A3	22	13			
	38	11			
	44	35			
	63	44			
	88	42			
	39	52			
	52	90			
	94	97			
	9	97			
	114	98			
	72	16			
	110	79			

SI Table 2. Position of reflection from clams in bucket A.

	×	V		Y	V
	109	<u>у</u>		104	y
	70	15	AM4	02	10
	79	15		03	19
	37	14		47	19
	44	23		24	24
	9	25		69	27
	104	24		112	39
	97	31		74	57
AM1	61	42		72	70
	123	51		31	96
	59	52		100	98
	84	53			
	61	61			
	99	88			
	76	83			
	52	98			
	89	5		95	2
	100	13		48	22
	64	19		118	38
	114	21		68	52
	23	23		39	51
	105	34		7	68
	46	37	AM6	48	66
	104	52		83	60
AM2	47	61		119	96
,	83	65			
	55	72			
	23	72			
	123	72			
	04	72 96			
	117	00			
	26	93			
	30	92			
	104	98			
АМЗ	108	0			
	70	2			
	/3	3			
	32	6			
	58	38			
	26	35			
	31	58			
	68	70			
	53	95			
	27	99			
	103	98			
	115	47			
	115	31			
	17	80			
•	17	00]		

SI Table 3. Position of reflection from clams in bucket AM.