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Abstract

The hippocampal formation is a crucial brain region for spatial cognition and episodic memory.
The BRA data noted in this data paper focused on the anatomical structure of this region and its
functionality in spatial cognition.
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1 Context

This data paper reports BRA data on spatial cognition, particularly in rodents. In the fields of neuroscience
and cognitive science, knowledge has accumulated on how the hippocampal formation contributes to the spa-
tial cognition of organisms. Tolman demonstrated that rats searching for food in an environment learn spatial
representations that enable flexible behavior in response to familiar path obstructions, rather than simple stimulus-
response associations, and he termed this spatial representation a cognitive map (Tolman, 1948). Later, various
cells supporting the cognitive map, such as place cells and grid cells, were reported to exist in the hippocampal
formation (O’Keefe & Nadel, 1979) .

Taniguchi et al. integrated neuroscientific knowledge of the hippocampal formation (HF) with engineering
knowledge from robotics, specifically simultaneous localization and mapping (SLAM), to propose a probabilistic
generative model for navigation in uncertain environments. The hippocampal formation-inspired probabilistic
generative model (HF-PGM) is designed to closely match the anatomical structure and functions of the hip-
pocampal formation (Taniguchi, Fukawa, & Yamakawa, 2022).

2 Method

BRA-driven development/SCID method BRA-driven development is a methodology for building soft-
ware based on brain architecture (Yamakawa, 2021). It acknowledges that neuroscience knowledge is still in-
sufficient to elucidate the whole picture and constructs a hypothetical software architecture using anatomical
structures as constraints. The structure-constrained interface decomposition (SCID) method was used to de-
sign software consistent with the brain’s structure and function as obtained through neuroscience. The software
consisted of the following three steps:

Step 1. Brain Information Flow (BIF) construction.

Step 2. Consistent determination of region of interest (ROI) and top-level function (TLF).
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Step 3. HCD creation.

Step 3-1. Enumerating candidate component diagram.

Step 3-2. Rejecting diagram that are inconsistent with scientific knowledge.

You can see more details about these steps in (Yamakawa, 2021). As the computational model verification of this
diagram is not within the scope of the BRA data paper, a detailed explanation is provided in the paper (Taniguchi
et al., 2022).

Figure 1 shows the ROI and BIF of this study. It illustrates the connection relationships of the HF circuit,
which includes the hippocampus, subiculum (Sb), presubiculum (PreSb), para-subiculum (ParaSb), and entorhinal
cortex. The hippocampus is composed of dentate gyrus (DG), cornu ammonis-1 and -3 (CA1 and CA3). The
entorhinal cortex is divided into medial and lateral entorhinal cortex (MEC and LEC). CA1 and Sb are further
divided into distal and proximal parts (Knierim, Neunuebel, & Deshmukh, 2014).

In the PGM, a computational model is created, so the nodes of the graphical model are approximately assigned
to each region. Gray nodes represent observed variables, while white nodes represent unobserved latent variables.
Black arrows indicate the generative process, and dotted arrows indicate the inference process. The arrow with
∆t indicates the generation of the variable in the next time step. Nodes surrounded by gray circles are assumed
to be functionally similar and may be treated as the same variable.
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Figure 1: The hypothetical component diagram (HCD) of the BRA data (Taniguchi et al., 2022)

Figure 2 shows the FGR of this study. The hippocampal formation, which is the ROI, is responsible for
realizing spatial cognition, thus the TLF of the ROI is set as “spatial cognition”. Inputs and outputs to and
from the hippocampus are mainly conducted via the LEC and MEC, where different types of information are
processed and integrated in the hippocampus. Early research indicated that MEC was responsible for spatial
information and LEC for non-spatial information (Hargreaves, Rao, Lee, & Knierim, 2005). Subsequent studies,
however, showed that MEC processes self-motion (path integration) information and LEC processes external
observational information (Deshmukh & Knierim, 2011). According to Wang et al., MEC processes allocentric
information, whereas LEC processes egocentric information (Wang, Chen, & Knierim, 2020). The MEC processes
information related to the state and position of the self in space and their changes, while the LEC handles
contextual-independent external observations. Therefore, the TLF is decomposed into two sub-functions: “place
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categorization” and “self-location”. The sub-functions of “place categorization” are mainly supported by the
processing and prediction of egocentric visual information and the formation of categories from this information,
On the other hand, “self-location is supported by the metrics of self-location, orientation, and distribution.
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Figure 2: The function realization graph (FRG) of the BRA data.

3 Dataset Description

Repository location BRA Editorial System (BRAES) https://sites.google.com/wba-initiative.org/
braes/data

Object name and versions Please refer to the “Project” sheet in the BRA data for the more detail of data
summary.

Table 1: BRA DATA SUMMARY
BRA Data
Object Name Template Including Content(s)

BIF HCD/FRG

TN24HippocampalFormation.bra version 2.0
√ √

Table 2: BRA IMAGE SUMMARY
Graphic Files: BIF Image, HCD Image, FRG Image
File Type Object Name

BIF Image TN24HippocampalFormationBIF.xml
HCD Image TN24HippocampalFormationHCD.xml
FRG Image TN24HippocampalFormationFRG.xml

Creation dates The start and end dates of when the data was created (2024-04-01 to 2024-06-30).

Language English.

License The open license under which the data has been deposited (CC-BY 4.0).

Publication date The date in which the dataset was published in the repository (2024-07-16).

4 Caveats for Data Usage

It should be noted that the current BRA data focuses on spatial cognition functions and proposes hypothetical
FRG and HCD. The hippocampus is also considered to play an important role in higher cognitive functions such
as episodic memory.
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