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Abstract
We investigate the effects of gravity on the electron anomalous magnetic moment, ae = (g − 2)/2,
within the framework of Quantum Electrodynamics (QED). The application of the Dirac-based
gravitational theory reveals significant electromagnetic-gravitational interactions, leading to second-
order relativistic effects on ae estimated at 0.7× 10−9 in Earth-based experiments. This estimation
falls within the observable range, indicating the necessity to consider gravitational effects in high-
precision measurements and suggesting novel experimental avenues in gravitational theory.
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INTRODUCTION

The consideration of gravitational effects on the
electron anomalous magnetic moment ae = (g − 2)/2
remains an underexplored area of research. In 1947,
the anomaly of the electron magnetic moment was dis-
covered by Kusch et al. at a value of g = 2.00119 ±
0.00005, contrary to the strict prediction of the elec-
tron’s g-factor as 2 according to the Dirac equation [1].
In 2008, the Harvard group achieved a measurement
of ae with 12 digits of precision, and later enhanced
this measurement’s precision by a factor of 2.2, setting
the most accurate determination of ae to date [2, 3].

ae = 0.00115965218059(13)[0.18 ppt] (1)

While these experimental achievements, the theo-
retical investigation of ae has primarily been explained
through QED perturbative calculations, notably pio-
neered by Schwinger in the past and further refined by
Kinoshita et al [4, 5]. However, the effects of gravity
on the electron magnetic moment have not been con-
sidered, possibly due to reasons such as its minimal
impact or the challenges associated with establishing
a coupling between gravitational and electromagnetic
fields within conventional gravitational theories [6–8].

On the other hand, recent advancements in de-
scribing gravity prompt a reconsideration of gravita-
tional influences. In particular, the Dirac-based grav-
itational theory by Fujita is fundamentally basic yet
novel one [9]. This theory originates from the funda-
mental concept of including gravitational interactions
into the Dirac equation, as represented by the follow-

ing equation:[
α · p+

(
m− GmM

r

)
β

]
= Eψ (2)

When the theory is expressed within the QED La-
grangian density framework, it takes the following
form:

L = iψγµ∂µψ − eAµψγµψ −m(1 + gG)ψψ

− 1

4
FµνFµν +

1

2
∂µG∂µG

(3)

This formulation ensures the preservation of the local
gauge symmetry, while also describing gravitational
interactions in a manner that should include conven-
tional gravitational potential V (r) = −GmM

r . Addi-
tionally, it has demonstrated consistency in several no-
table experiments, including the equivalence between
inertial and gravitational masses together with the
leap second problem [10–12].

When considering the relativistic effects of the La-
grangian density (3), both the gravitational field G
and the electromagnetic field A can interact with each
other. This is because, while A represents a vec-
tor field, G is characterized as a scalar field including
β. In fact, we have performed calculations for non-
relativistic approximation based on (3). Specifically,
utilizing the Hamiltonian derived from this expression
and implementing the Foldy-Wouthuysen transforma-
tion [13], we have obtained the following term as one
of the second-order relativistic effects:

H ′
GE =

1

mc2

(
G0Mm

R

)(
e~
2m

σ ·B
)

(4)
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Eq.(4) implies that the gravitational field influences
the g-factor in the Zeeman effect. Furthermore, we
should note that these effects should amount to g-2
measurements at an order of 10−9, when evaluating
the effects of electrons on Earth.

1

c2

(
G0M

R

)
= 0.7× 10−9 (5)

Considering the existing experimental precision of the
electron magnetic moment to be 10−12, this effect is
within a sufficiently observable range[3].

In summary, this paper presents an investigation
into the introduction of the gravitational field within
the framework of QED. Specifically, we reveal the
emergence of a second-order relativistic effect repre-
senting the interaction between the electromagnetic
and gravitational fields. Importantly, our findings
demonstrate that this interaction significantly influ-
ences the electron anomalous magnetic moment ae at
an observable range.

QED LAGRANGIAN DENSITY WITH
GRAVITY

The Dirac-based gravitational theory, formulated
by Fujita, is built upon the experimentally reliable
Dirac theory [9]. Its primary aim is to replicate
the experimentally observed gravitational potential
V (r) = −GmM

r . Notably, this theory characterizes
the gravitational field while respecting the local gauge
invariance, a requirement typically satisfied by QED.
Specifically, the terms concerning gravitational inter-
action are represented as follows:

Lg = −mgGψψ +
1

2
∂µG∂µG (6)

Here, g represents the gravitational constant, while
G denotes a gravitational scalar field. The gravita-
tional terms are determined to fulfill the sole guid-
ing principle of reproducing the characteristic fea-
tures of gravity, ensuring consistency with two condi-
tions: the reproduction of the gravitational potential
V (r) = −GmM

r and the equivalence of gravitational
and inertial masses. The first condition necessitates
the description of the gravitational field as a scalar
field. If it were described as a vector field with direc-
tional properties like the gauge field, it would invari-
ably fail to satisfy the gravitational condition of being
an attractive force. Indeed, we can verify that G can
reproduce the conventional gravitational potential by
solving the Euler-Lagrange equation derived from (6),

while taking into account G = g2

4π .

mgG = −GmM
r

(7)

Eq.(7) indicates that the equivalence of inertial mass
mi and gravitational mass mg must hold true.

In the scenario described by (6), higher-order rela-
tivistic effects allow for interactions between the elec-
tromagnetic and gravitational fields. To investigate
relativistic effects, it is necessary to reformulate eq.(6)
into the form of the Hamiltonian using the energy-
momentum tensor, which can be expressed as follows:

H = α · (p− eA) +

(
m− GmM

r

)
β − Ze2

r
(8)

From a non-relativistic approximation of this Hamil-
tonian, we can obtain a coupling effect between the
electromagnetic and gravitational fields.

FOLDY-WOUTHUYSEN TRANSFORMATION

the outline of Foldy-Wouthuysen transformation

Foldy-Wouthuysen transformation(Foldy transfor-
mation) is a unitary transformation which decouples
the Dirac equation into two two-component equa-
tions: one reduces to the Pauli description in the
non-relativistic limit; the other describes the negative-
energy states [13].

Specifically, first decompose the Dirac Hamiltonian
into two components: the odd term O = α · p and
the remaining terms, even term E , which includes po-
tential interactions such as gravitational or Coulomb
potentials.

H = βm+O + E (9)

The aim is to eliminate the odd terms through a uni-
tary transformation ψ′ = eiSψ, where S is expanded
in powers of 1

m , yielding:

H ′ = βm+ E +
1

m
A+

1

m2
B + · · · (10)

In concrete, when this unitary transformation is ap-
plied, the Hamiltonian can be explicitly expressed in
the following form:

H ′ =H + i[S,H] +
i2

2!
[S, [S,H]] +

i3

3!
[S, [S, [S,H]]]

− Ṡ − i[S, Ṡ] +
1

2
[S, [S, Ṡ]] + · · ·

(11)
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Choosing S = − iβO
2m , we construct terms to eliminate

O in i[S,H], yielding the following expression for H ′:

H ′ = β

(
m+

O2

2m
− O4

8m

)
+ E − 1

8m2
[O, [O, E ]]

− i

4m2
[O, Ȯ] +

β

2m
[O, E ]− O3

3m2
+
iβȮ
2m

(12)
Here, we utilize the relationship βO = −Oβ and the
expansion is carried out to the order of 1

mc3 and 1
m2c2 .

By iterating this procedure, the off-diagonal elements
naturally vanish, leading to a non-relativistic approx-
imation. While the intricate calculations are omitted
here, the result utilized in this study is the third-order
Foldy transformation, specified as below [13]:

H ′′′ =β

(
m+

O2

2m
− O4

8m

)
+ E

− 1

8m2
[O, [O, E ]]− i

4m2
[O, Ȯ]

(13)

A coupling between the gravitational and electromag-
netic fields can be derived by applying eq.(13) to the
Hamiltonian described as (8).

The Foldy transformation of the QED Lagrangian
density including the gravitational field

When focusing on deriving the term that couples
the electromagnetic potential A with the gravitational
field G, it suffices to consider the Foldy transformation
in the cases where:

O = α · (p− eA) E = −GmM
r

β (14)

Substituting eq.(14) into eq.(13) yields the non-
relativistic approximation of the total Hamiltonian up
to the second relativistic order. Notably, the coupling
between A and G originates specifically from the term
1

8m2 [O, [O, E ]], yielding the following result:

1

8m2
[O, [O, E ]] = 1

8m2
[−GmMδ3(r)− 4

GmM

r
p2

− 4e2
GmM

r
A2 + 8e

GmM

r
(A · p)− 4ei

GmM

r3
(A · r)

+ 2i
GmM

r3
(r · p) + 4ie

GmM

r
σ · (p×A)

+ 4ie
GmM

r
σ · (A× p)− 2i

GmM

r3
σ · (r × p)]

(15)
Here, we make use of the relations (σ · a)(σ · b) =
a·b+iσ·(a×b), along with the properties βO = −Oβ.

While there are several terms that couple A with
G in eq.(15), the seventh term specifically contributes
to the electron magnetic moment:

H ′
GE =

1

8m2
4ie

GmM

r
σ · (p×A) (16)

Replacing p × A with −iB in natural units simpli-
fies the expression, making the interpretation more
straightforward:

H ′
GE =

1

mc2

(
GMm

r

)(
e~
2m

σ ·B
)

(17)

Recalling µB = e~
2m , we understand that this term

affects the value of the electron magnetic moment.
While equation (14) generates coupling terms be-

tween A and G, it is not always guaranteed that terms
originating from O and E necessarily emerge from the
expression 1

8m2 [O, [O, E ]]. For instance, in the case of
the Coulomb field described by E = −Ze2

r , there is
no coupling between the electromagnetic potential A
and the Coulomb field itself. This distinction arises
from whether the Dirac matrix β is included. In case
of the gravitational field, β is necessary to satisfy the
gravitational conditions outlined in eq.(7), and it re-
sults in a reversal of signs when commutating the term
α ·A within O. However, the Coulomb field does not
include β, resulting in no reversal of signs and thus
no coupling between A and G. The difference leads
to the emergence of terms significantly affecting the
magnetic moment or not.

EVALUATION OF
GRAVITY-ELECTROMAGNETIC COUPLING

TERM

When evaluating the effect of the electron’s g-factor,
as deduced from eq.(17), we need to pay attention to
the specific term identified as C, outlined as follows:

C =
1

c2

(
G0M

R

)
(18)

Here, G0 represents the universal gravitational con-
stant and R denotes the relative distance between the
interacting bodies.

At first, consider the simplest but most important
case of this effect on Earth. Utilizing Earth’s param-
eters—where the Earth’s mass is denoted as M , the
electron’s mass as m, and the polar radius of Earth as
R—we evaluate eq.(18). This yields:

C =
1

c2

(
G0M

R

)
= 0.7× 10−9 (19)
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Here, the Earth’s radius is taken as R = 6356.752 km
[14]. Considering the precision of the electron anoma-
lous magnetic moment ae, which has been observed
with an accuracy exceeding 12 digits, it can be conclu-
sively stated that the effects are within an observable
range [3].

Additionally, for theoretical comparison with obser-
vations on Earth, measurements performed within ar-
tificial satellites could be considered. For instance, in
the case of geostationary satellites such as Himawari,
which orbit the Earth once every day, we can estimate
the orbit radius to be approximately R = 42000 km
from the Newton’s equation. If measurements were
performed in this environment, C would take the fol-
lowing value:

C =
1

c2

(
G0M

R

)
= 0.1× 10−9 (20)

This indicates that measurements in satellite en-
vironments could yield differences approximately 7
times smaller than those on Earth’s surface, offering
a unique perspective for assessing the gravitational-
electromagnetic coupling effect.

In summary, the evaluated values for the
gravitational-electromagnetic coupling term C are
within the precision of 12 decimal places, signifying
their observability and their impact on the anomalous
electron magnetic moment.

CONCLUSIONS

In this paper, we investigated the gravitational ef-
fects within the framework of Quantum Electrody-
namics (QED), with a specific focus on the interac-
tion between gravitational and electromagnetic field.
We initiated with a QED Lagrangian density that in-
cludes gravitational interactions while ensuring gauge
invariance and the conditions that gravity must sat-
isfy.

Through the application of the Foldy transforma-
tion, we revealed the emergence of coupling terms be-
tween the gravitational and electromagnetic fields as
the second-order relativistic effects. Notably, a sig-
nificant discovery within our findings is a term that
impacts the electron magnetic moment, specifically
denoted as (17).

Moreover, we evaluated the effect of the coupling
term on the g-factor, revealing effects ranging from

10−9 to 10−10 in Earth-based or static satellite-based
experiments. This indicates that it influences the
anomalous electron magnetic moment ae within an ob-
servable range. Furthermore, gravity-electromagnetic
coupling term is independent of the mass of the parti-
cle, indicating that the effect is not limited to electron
magnetic moments but also extends to other particles
like muons.

In conclusion, the emergence of gravity-
electromagnetic coupling encourages a reconsid-
eration of anomalous magnetic moments from both
theoretical and experimental perspectives. Moreover,
it may opening up new avenues for theoretical and
experimental investigations in gravitational theory.
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