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Abstract 

Genomic data are inherently multidimensional and complex, therefore, presenting 

researcher with significant challenges in analysis and interpretation. Data visualization 

of genomic datasets can unravel the complexity and provide meaningful insights for 

effective communication. Here, we discuss that, in data-driven genomic studies, effective 

storytelling of formulated hypotheses can be significantly enhanced by using suitable 

data visualization tools. Further, with the ongoing advancement of technology, we argue 

that, the integration of these tools with artificial intelligence or machine learning concepts 

could potentially revolutionize the visualization trends within the field of genomic 

research. 
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Unfolding the genomic data complexity 

Genomic data, considered as blueprints of life, are more complex and mysterious in the 

way they hold information. The vast and intricate datasets generated within the domain 

of genomics, through various high-throughput technologies, are overwhelming for 

researchers (Tanjo et al., 2021; K. C. Wong, 2019). The complexity of genomic data 

comprises multidimensional layers such as sequencing, variations, epigenetic 

modifications, spatial and temporal data, and therefore, the correct method of analysis 

and interpretation is critical and remains a challenge for researchers (Auton et al., 2015; 

W. Li et al., 2012; Wojcik et al., 2019). Data visualization (DataViz) emerges as one of the 

essential tools to unravel the complexity of genetic and genomic data and convey 

meaningful insights through various graphical representations (Brehmer & Munzner, 

2013; Durant et al., 2022a; Munzner T., 2014; Nielsen et al., 2010; Nusrat et al., 2019; 

O’Donoghue, 2021). In data-driven studies, including in the field of genomics, the 

primary goal remains the effective communication of research hypothesis, and therefore, 

a clear interpretation is necessary when extracting meaningful insights from complex 

datasets (Nielsen et al., 2010; B. Wong, 2012; K. C. Wong, 2019). Transiting the intricate 

nature of genomic datasets through relevant visualization enhances the visibility of 

research (Meyer et al., 2012; Munzner, 2014; Nielsen et al., 2010). Furthermore, we 

emphasize that, genomic studies are interdisciplinary in nature and involve active 

participation from other fields, including molecular biology, biochemistry, statistics, and 

computer sciences, and therefore, associating with DataViz professionals would bring a 

community effort towards better learning and understanding of genomic research. In this 
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article, we strive to highlight the significance of data visualization tools in elucidating the 

complexity of genomic datasets. We further emphasize the use of AI-powered integration 

in these DataViz tools for enhanced and better representation of complexity contained 

within the genomic research. 

 

Use of data visualization tools 

Massive data from studies, such as Next-Generation Sequencing (NGS) (Abbasi & 

Masoumi, 2020), Genome-wide Association Studies (GWAS) (Uffelmann et al., 2021), and 

Comparative and Single-Cell Genomics (Genereux et al., 2020), significantly generate 

millions of genetic variations from interpretation. Genomic data and visualization 

interests overlap and actively engage in elucidating and simplifying complex data 

structures (Durant et al., 2022b; Nusrat et al., 2019). Some significant examples include 

the Human Genome Project (Nurk et al., 2022), and sequencing of the human Y 

chromosome (Rhie et al., 2023). High-dimensional genomic studies are generally 

challenging to understand through textual representations. Therefore, selecting an 

appropriate visualization method becomes a significant characteristic when 

communicating findings to the research community and other engaged audiences, such 

as science journalists and communicators (Nusrat et al., 2019; Parsons, 2022). 

Visualization tools are critical to stay on course, and play a substantial role in observing 

correlations, patterns, trends, or any hidden messages in massive datasets, and serve as 

an effective means of communication. For example, identifying genes of interest through 
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visualizing tools is also effective and can further assist in associating their functions in 

physiological and pathological conditions (Qu et al., 2019). 

Some of the currently available major and popular visualization tools for genetics and 

genomic studies, which have been mostly used by the genomic researchers for decades 

(Goodstadt & Marti-Renom, 2017; Krzywinski et al., 2009; Pearce et al., 2019; Y. Wang et 

al., 2018; Yokoyama & Kasahara, 2020). However, we highlight some of the recently 

developed data visualization tools or software applications and their appropriate use for 

genomic datasets. In this list, CoolBox for multi-omics data (Xu et al., 2021), Gosling for 

interactive visualization (L’Yi et al., 2022), plotsr helps to visualize various structural 

similarities and rearrangements across multiple genome databases (Goel & Schneeberger, 

2022), ggmsa explores multiple sequence alignment data visualization (Zhou et al., 2022), 

GenoVi can be used in bacterial and archaeal genome (Cumsille et al., 2023), and VAG 

(Visualizing read alignments in graph genomes) (F. Li et al., 2023), are some of the 

examples. 

As we understand, the massive datasets demand a more convincing organizational 

approach, making further analysis more straightforward to navigate in the ocean of 

unorganized datasets, and these tools facilitate such conditions. DataViz platforms are 

now essential for minimizing efforts and facilitating meaningful interpretation. As 

mentioned, these tools are helpful to understand and visually represent data in various 

contexts and create visualizations (Goodstadt & Marti-Renom, 2017; Pearce et al., 2019). 

However, it is certainly debatable whether a certain level of software skills, in terms of 

programming language knowledge, coding efficiency, and basic statistical competency 
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are required to visualize biological data, including genomic data. Although several newly 

developed tools offer some relief in coding, or understanding file formats and are 

accessible through a pre-build user interface to minimize effort and maximize 

productivity (Langer et al., 2023; Tumescheit et al., 2022), however, they may limit the 

options for researchers in terms of potential outcomes. It is notable that, as the technology 

progresses, these tools may offer integrated more user-friendly interfaces and layouts for 

analyzing genomic data (Langer et al., 2023). Indeed, genomic data, with its 

interpretation, are quite complex and dynamic to comprehend, and therefore, automated 

visuals can facilitate a better understanding. Communicating research findings in a 

cognizable manner is also a significant component of DataViz to enhance the knowledge 

of complex research by the common audience. Furthermore, we stress that, integrating 

AI-based concepts into such tools could revolutionize the visualizing efforts and trends, 

as would demand minimum efforts and yield maximum outcomes in data-driven 

genomic research  (X. Wang et al., 2023). 

 

Integration of AI-powered concepts in data visualization tools 

One recent advancement is artificial intelligence (AI), which makes most performative 

tasks easier, manageable, comprehensible, and accessible in research data analysis. AI-

based applications aid in conducting influential and significant analyses of gene-based 

databases. In structural biology, AlphaFold, which is based on AI, is considered a 

breakthrough for predicting protein’s structure in 3-dimensional space, and has gained 

significant attention from researchers (Jumper et al., 2021). In genomic studies for clinical 
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researchers, such kind of similar tools may be still in progress, however, an adopted 

version called AlphaMissense can predict the pathological conditions linked to genetic 

alterations (Cheng et al., 2023). Here, we mentioned some of visualization tools or 

software for genomic data integrated with the power of AI technology to enhance 

performance and capabilities. Among the others, DeepGene for identifying disease-

causing genetic variants (Yuan et al., 2016), DeepChrome for predicting genetic 

modifications (Singh et al., 2016), and DeepTorrent predict DNA N4-methylcytosine sites 

(Liu et al., 2021), are based on the deep learning concept. These AI-featured tools or 

software may not entirely be dedicated to visualization standalone but combined to 

extract the complex phenomenon of genomic datasets. We signify the use of AI-driven 

DataViz tools, as it reduces the major burden among researchers those are not familiar 

with traditional visualizing tools (X. Wang et al., 2023). These AI-adopted tools are not 

only convenient for skilled researchers, but also for beginner-level and enthusiastic 

researchers who aim to convey their ideas convincingly through visualization. 

Nonetheless, researchers are benefiting from AI-based applications for identifying, 

characterizing, and analyzing genetic and genomic data. In this regard, AI-driven 

DataViz tools tailored to genomic data may find acceptance among researchers more in 

the future. Furthermore, the prediction of new targets for drug delivery and other 

therapeutics developments would represent a new interplay between AI technology and 

genomic data analysis (Guo et al., 2023). 
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Conclusion 

In conclusion, the visualization of gene-associated data has emerged as a more effective, 

communicative, and better method of storytelling for the audience. DataViz in genetics 

and genomics enhances clarity by transforming complexity into an understandable 

knowledge of the field. The integration and handling of massive and intricate genetic 

data necessitates the development of more compelling visualization tools that are yet to 

reach their full potential. A clear and concise approach to addressing the research 

question would facilitate a better comprehension of DataViz. The incorporation of AI-

based and machine-learning techniques can effectively handle the complex and 

enormous amount of datasets that are being generated on a daily basis, and with 

convenience of researcher’s learnings (Malinda, 2023). In conjunction with other practical 

tools for communicating research findings in genetics and genomics, DataViz would 

constitute a significant addition to the toolkit for effectively conveying information to the 

research community. 
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