
 

 

 

 

The velocity center theorem of a spinning mobile object and its application to the vehicles 

Application to the automobiles 

 

Naoshi MATSUO*1  

 

 

Abstract 

In the previous report ”The velocity center theorem of a spinning mobile object and its application to the vehicles”

( DOI: https://doi.org/10.51094/jxiv.314  ) , described the application of the velocity center theorem to the mobility. 

In this report, consider the case of applying the velocity center theorem to the front wheel steering automobiles. 

When the automobile moves forward while changing its direction, the velocity center point CV is on the wheel axial 

intersection point, so CV is on the extension line of rear wheel axis., 

When the traveling direction of the representative point CS and the direction of the automobile’ center line do not match, and  

the point CS goes straight, the center line of the automobile gradually approaches the traveling direction of point CS. 

If the point CS goes curve line, the turning center CT of CS is on the straight line through CS and CV.  

And when point CV and point CT do not match, point CV gradually approaches point CT, so the whole of the automobile 

approaches to the turning motion centered on point CT. Also, when 𝑟𝐶𝑆 is defined as the turning radius of CS that is the 

distance from CS to CT, θ is the angle of automobile’s center line from the traveling direction of CS, L is the distance from 

rear wheel axis to point CS, and 𝛿 is defined as arcsin(L/𝑟𝐶𝑆), θ converges to –𝛿. (If CS goes straight, 𝛿 = 0) 

The wheel axial intersection point (CV) is often referred to as the center of turning motion, but it is not necessarily that the 

turning center point CT is on the extension lines of wheels axis. 

These show that the representative point CS is able to correct its posture in the proper direction while moving along the 

ideal trajectory. 

This method is useful for autonomous driving and posture control etc. 
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1. Introduction 

 

In the current theory of the automobile, it can't be found an explanation that corrects posture while moving the ideal 

orbit. In this report, the velocity center theorem of the previous report ”The velocity center theorem of a spinning 

mobile object and its application to the vehicles”( DOI: https://doi.org/10.51094/jxiv.314 ) is applied to the automobile, 

and if there is a GAP in the direction of automobile body against the ideal orbit, it shows a representative example that 

corrects posture while moving the ideal orbit. 
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2. The relationship between the velocity center theorem and the automobiles 

 

2.1  The velocity center theorem of a spinning mobile object and its application to the automobiles 

The velocity center theorem stated in the previous report is as follows, 

On the same plane,  

when the representative point CS on an object U moves velocity 𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗  with spinning angular velocity 𝛺𝑐𝑠, 

The point CV is the position of the distance |𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗ |/|𝛺𝑐𝑠| from point CS,  

And its direction is the direction from 𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗  to π/2 rad (When 𝛺𝑐𝑠  > 0) or -π/2 rad (When 𝛺𝑐𝑠 < 0). 

 

The absolute velocity 𝑉𝑁
⃗⃗ ⃗⃗  at any point N on the rigid object U is expressed as follows, 

𝑉𝑁
⃗⃗ ⃗⃗ = |𝛺𝑐𝑠| 𝑅𝑜𝑡 (

𝜋

2
− 𝛼)𝐶𝑉‐𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝛺𝑐𝑠 𝑅𝑜𝑡 (

𝜋

2
) 𝐶𝑉‐𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗   

At this time、𝛼、𝑅𝑜𝑡(θ) and other condition are as follows. 

・Point CS on the object U, mass point N, and velocity 𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗  of point CS are coplanar (on the same plane S). 

・𝑅𝑜𝑡(θ) is the rotation matrix that rotate θrad on the same plane S 

・α is a value that satisfies the following conditions. 

When 𝛺𝑐𝑠  > 0,  𝛼 = 0. 

When 𝛺𝑐𝑠 < 0, α = −𝜋.  

・The point CV is the position of the distance|𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗ |/|𝛺𝑐𝑠| from point CS,  

And the direction of 𝐶𝑆‐ 𝐶𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the direction from 𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗  to π/2+α rad  

・𝐶𝑉‐𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ is the vector from the point CV to the point N. 

Therefore, the speed |𝑉𝑁
⃗⃗ ⃗⃗ | is |𝛺𝑐𝑠||𝐶𝑉‐𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| , 

And the direction of 𝑉𝑁
⃗⃗ ⃗⃗  is the direction from 𝐶𝑉‐𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ to π/2 rad (When 𝛺𝑐𝑠  > 0) or -π/2 rad (When 𝛺𝑐𝑠 < 0). 

The image diagram is like Figure 2.1-1. 

 

 
 

When the velocity center theorem is applied to the front wheel steering car, for example, it looks like Figure2.1-2. 

・|𝐶𝑆‐ 𝐶𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| = |𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗ |/|𝛺𝐶𝑆| 

・|𝑉𝑁
⃗⃗ ⃗⃗ | = |𝛺𝐶𝑆||𝐶𝑉‐𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| 

      = |𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗ ||𝐶𝑉‐𝑁⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗|/|𝐶𝑆‐ 𝐶𝑉⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗| 

 

𝑉𝑁
⃗⃗ ⃗⃗  

𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗  

Speed contour lines 

Speed contour lines = |𝑉𝑁
⃗⃗ ⃗⃗ | 

Speed contour lines = |𝑉𝐶𝑆
⃗⃗⃗⃗ ⃗⃗ | 

Fig. 2.1-1 The relationships between CS, CV and N of the rotating mobile rigid object 

The rotating mobile rigid object U 



 

 

 

The point CV is on the rear wheel axis extension line. And if the point CS is not on the rear wheel axis and its relative 

position from the rear wheel axis does not change, CS can be set anywhere, whether inside or outside of the automobile, such 

as the center of gravity, driver's seat, outline or outside of the car body, etc. Where to set CS is determined by the situation. 

 

 

 

Let θ be the angle that the automobile center line from the reference line CS traveling direction. 

At this time, θ is equal to the angle of the rear wheel axis from the reference line CV-CS. 

Also in Fig.2.1-2,  θ is defined as positive when counterclockwise and negative when clockwise. 

If CS is at distance L from the rear wheel axis, and the direction from the rear wheel axis to the front is defined as positive 

The distance 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ from CS to CV is expressed as next. 

𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ = −
𝐿

𝑠𝑖𝑛𝜃
   

If facing the traveling direction from CS, 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ takes a positive value when CV is on the left side, and a negative value 

when on the right side. 

Also, from the velocity center theorem,  

𝑉𝐶𝑆 = 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ 𝛺𝐶𝑆, 

so 𝛺𝐶𝑆 is expressed as next. 

𝛺𝐶𝑆 = −
𝑠𝑖𝑛𝜃

𝐿
𝑉𝐶𝑆 

The speed of each wheel is equal to the multiplication of 𝛺𝑐𝑠 and the distance from CV to each wheel, 

And each wheel-steer-angle is equal to the angle of the straight line through CV and each wheel from the reference line rear 

wheel axis. 

In fact, there are restrictions on the wheel angle, so when the steering wheel is operated to the limit, the absolute value of 

distance 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ from CS to CV is the smallest. With that minimum value as  |𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅|𝑚𝑖𝑛, for 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ = −𝐿/𝑠𝑖𝑛𝜃,  

the range of controllable θ is the range that satisfies the following. 

|𝑠𝑖𝑛𝜃| ≤ |
𝐿

|𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅|𝑚𝑖𝑛

|        ( −
𝜋

2
≤ 𝜃 ≤  

𝜋

2
  ) 

So, the smaller L, the narrower the 𝜃 controllable range.  

If there is no wheel angle limit, there is no 𝜃 limit. 

 

 

 

 

Fig. 2.1-2 Relationships between CS,CV and a front wheel steering automobile 

 



 

 

 

2.2 Posture correction of linear motion 

In this chapter, describes the case that CS moves on a straight line. As with previous chapter, set θ like Fig.2.2-1(A), and set 

CV, the direction and speed of wheel to satisfy the velocity center theorem. So, the absolute value of θ changes as it 

approaches 0 like (B), and finally, approaches the position of (C). 

 

If this movement is considered in the velocity center theorem’s formula, it is as follows. 

This paper uses the right-hand coordinate system - the x axis points to the right, the y axis points up, and the 

counterclockwise direction is positive(the z axis points out of this paper), as seen in the above Fig.2.2-1. 

When the velocity center theorem is represented by coordinates, it is as follows. 

𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗ = 𝛺𝐶𝑆 𝑅𝑜𝑡 (

𝜋

2
) 𝐶𝑉‐ 𝐶𝑆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ 

(
𝑉𝐶𝑆

0
) =

𝑑𝜃

𝑑𝑡
 𝑅𝑜𝑡 (

𝜋

2
)(

0
𝐿

𝑠𝑖𝑛𝜃

)   =
𝑑𝜃

𝑑𝑡
(
0 −1
1 0

) (
0
𝐿

𝑠𝑖𝑛𝜃

) =
𝑑𝜃

𝑑𝑡
 (

−𝐿

𝑠𝑖𝑛𝜃
0

) 

Therefore, the next equation will hold. 

𝑉𝐶𝑆 = −
𝐿

𝑠𝑖𝑛𝜃
  
𝑑𝜃

𝑑𝑡
 

So, it can be transformed as follows. 

∫
𝑉𝐶𝑆

𝐿
dt = − ∫

𝑑𝜃

𝑠𝑖𝑛𝜃
   

𝑐𝑜𝑠𝜃 = 1 −
2

𝑒2𝛽𝑒2∫
𝑉𝐶𝑆
𝐿

𝑑𝑡 + 1
 

Here, 𝑒2𝛽 (>0) is a constant value that determined by the initial value. 

When L is a constant value, and defines 𝑈(= ∫𝑉𝐶𝑆𝑑𝑡) as the distance that CS goes, 

And define dimensionless quantity 𝑞 = 𝑈/𝐿, above equation is expressed as the following equation. 

𝑐𝑜𝑠𝜃 = 1 −
2

𝑒2(𝑞+𝛽) + 1
 (※1) 

Fig.2.2-2 is a graph of next equation ※2. 

𝑐𝑜𝑠𝜃 = 1 −
2

𝑒2𝑞 + 1
 (※2) 

 

Fig.2.2-1 Image of automobile's movement when point CS goes straight 

 

(A) (C) (B) 



 

 

 

 

 

The graph of equation ※1 is a graph with only moved –β in the q-axis direction from the graph of equation ※2. 

In this reason, if 𝑞 at the time of 𝜃1, 𝜃2, are 𝑞1, 𝑞2 respectively, 

the amount of change Δ𝑞 =  𝑞2 − 𝑞1 that required to become 𝜃1 to 𝜃2 is a value that is not affected byβ. 

The q in Fig.2.2-2 can be replaced by the distance axis U (=qL) and by the time axis T (=qL/Vcs ) when Vcs is constant. 

The smaller L is, the shorter U and T required to converge to the target, but there is also the contradictory disadvantage of 

narrowing the range of controllable 𝜃 as shown in Chapter 2.1. 

It is needed to choose the right L according to the situation. 

Also, Erase θ from 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ = −𝐿/𝑠𝑖𝑛𝜃 and the equation ※2, and define a dimensionless quantity 𝑝 = 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅/𝐿,  

a relationship between p and q can be represented simple as follows. 

𝑝 = ±
1

2
(𝑒𝑞 + 𝑒−𝑞)     ( L > 0, and when θ < 0, 𝑝 is "+" , and when θ > 0, " − "  ) 

 

The specific examples so far are shown next. For example, In the formula ※2, 

If θ changes fromπ/6 rad (30°) toπ/1800 rad(0.1°), 

 𝑞𝜋/6 ≒ 1.317 when θ＝π/6 rad , and  𝑞𝜋/1800 ≒ 7.044 when θ=π/1800 rad,  

So, the amount of change 𝑞 required to become θ＝π/6 rad to θ=π/1800 rad is represented as next, 

∆𝑞 =  𝑞𝜋/1800 − 𝑞𝜋/6 = 5.727 

For example, if L = 2m, Vcs =10m/s,  

The distance required to reach the target is ∆𝑈 = ∆𝑞 𝐿 = 11.454m, the time is ∆𝑇 = ∆U/𝑉𝐶𝑆 = 1.1454sec. 

However, the automobile satisfies |𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅|𝑚𝑖𝑛 ≤ 2/0.5 = 4𝑚 ≤ |𝐿/𝑠𝑖𝑛𝜃| is necessary. 

If it is not satisfy the conditions , 𝐿 and 𝑉𝐶𝑆 must be adjusted to meet the conditions. 

 

 

 

 

 

 

 

 

 

Fig.2.2-2 Relationships between q and θ, when the point CS goes straight  

 

 q  

 

π 

π/2 

θ(rad) 

 

-π 

-π/2 



 

 

 

2.3  Posture correction of turning motion on the arc orbital line 

In this chapter, like Fig.2.3-1, describes the case that CS makes a turning motion on the arc orbit of radius 

𝑟𝐶𝑆(curvature 𝜌𝐶𝑆 = 1/𝑟𝐶𝑆) centered on point CT. Additionally as in the previous chapter, set θ, CV, L etc., those satisfy 

the velocity center theorem. 

And define 𝛿𝑉𝑐𝑠  ( −
𝜋

2
≤ 𝛿𝑉𝑐𝑠  ≤  

𝜋

2
  ) that satisfies 𝑠𝑖𝑛𝛿𝑉𝑐𝑠 = 𝜌𝐶𝑆𝐿 =

𝐿

𝑟𝐶𝑆
  . 

𝛿𝑉𝑐𝑠 is a positive value when CS goes counterclockwise direction and a negative value when clockwise 

When CT and CV do not match, like Fig.2.3-1(A) and if CS goes on an arc orbital line while satisfying the velocity center 

theorem, 𝜃 goes closer to −𝛿𝑉𝑐𝑠, and CV goes closer to CT. Then, gradually approach the state of Fig.2.3-1(B), like the 

whole car body is in a state of turning arc motion centered on the point CT(=CV). 

 

 

A typical graph of θ and q of this turning motion corresponding to Fig.2.2-1 is expressed like next Fig.2.3-2. 

 

 q  

 

π 

π/2 

-π 

-π/2 

-3π/2 

Fig. 2.3-1 The image of a car's turning motion when CS moves on an arc orbit centered on CT 

(A) 

In the case that the turning center CT and  

the wheel axis intersection point CV don't match 

 

 

(B) 

In the case that the turning center CT and 

the wheel axis intersection point CV match 

 

 

3π/2 θ(rad) 

 

Fig.2.3₋2 Relationships between q and θ, when CS moves on the arc orbit centered on CT 

 



 

 

 

𝜃 = −𝛿𝑉𝑐𝑠 as the boundary, the curve of Fig.2.3-2 is divided into the case of −𝜋 + 𝛿𝑉𝑐𝑠 ≤ 𝜃 < −𝛿𝑉𝑐𝑠 and the case of 

−𝛿𝑉𝑐𝑠 < 𝜃 ≤ π + 𝛿𝑉𝑐𝑠, and both curves, as q increases, 𝜃 converges to −𝛿𝑉𝑐𝑠. 

When there is curvature in the orbit, the rate of convergence differs on the positive side and negative side of the convergence 

value 𝜃 = −𝛿𝑉𝑐𝑠. 

This shows that the rate of change in C to correct the posture differs from the inside and the outside of the orbit. 

When 𝛿𝑉𝑐𝑠 = 0 (straight line), like the chapter 2.2, the curve becomes line-symmetrical against the q-axis. 

 

Fig.2.3-2 shows an example of the case of 𝛿𝑉𝑐𝑠 > 0 and when ( q , θ ) = ( 0 , ± π / 2 ). 

When expressed in the formula, it is as follows. 

 

When (𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠)𝑠𝑖𝑛𝛿𝑉𝑐𝑠 > 0 and  𝛿𝑉𝑐𝑠 > 0 , 

−𝛿𝑉𝑐𝑠 < 𝜃 < 𝜋 + 𝛿𝑉𝑐𝑠 

   𝜃 = 2 tan−1 {
1

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)
{
1 + 𝑒𝑥𝑝[−(𝑞 − 𝑏)𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)]

1 − 𝑒𝑥𝑝[−(𝑞 − 𝑏)𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)]
 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠) − 1}} 

                 𝑏 =
1

𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
𝑙𝑛 |

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠) + 1 − 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠) + 1 + 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
|   (when q = 0,   θ =

π

2
)    

When (𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠)𝑠𝑖𝑛𝛿𝑉𝑐𝑠 < 0 and  𝛿𝑉𝑐𝑠 > 0 ,  

−𝜋 + 𝛿𝑉𝑐𝑠 < 𝜃 < −𝛿𝑉𝑐𝑠 

      𝜃 = 2 tan−1 {
1

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)
{
1 − 𝑒𝑥𝑝[−(𝑞 − 𝑏)𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)]

1 + 𝑒𝑥𝑝[−(𝑞 − 𝑏)𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)]
 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠) − 1}} 

                 𝑏 =
1

𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
𝑙𝑛 |

−𝑠𝑖𝑛(𝛿𝑉𝑐𝑠) + 1 − 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)

−𝑠𝑖𝑛(𝛿𝑉𝑐𝑠) + 1 + 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
|   (when q = 0,   θ = −

π

2
) 

 

The figure of case of 𝛿𝑉𝑐𝑠 < 0, it becomes like a shape that Fig.2.3-2 is reversed up and down against the q axis. 

Like the chapter2.2, the q in Fig.2.3-2 can be replaced by the distance axis U (=qL) and by the time axis T (=qL/Vcs ) when 

Vcs is constant. Since it is 𝜑 = 𝑞𝐿/𝑟𝐶𝑆, it can also be a function of φ.  

As using 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ = −𝐿/𝑠𝑖𝑛𝜃 to erase θ, the relationship between 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ and 𝑞 can be lead. 

When CS goes on any curve, by the curvature 𝜌𝐶𝑆, the target line 𝜃 = −𝛿𝑉𝑐𝑠 changes. 

 

Such a motion, when expressed in mathematical formulas, is derived as follows. 

When the representative point CS moves on the arc orbit of radius 𝑟𝐶𝑆 centered on CT, 

the coordinate of CS is expressed as follows. 

(
𝑋𝐶𝑆

𝑌𝐶𝑆
) = 𝑟𝐶𝑆 (

𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜑) + (

𝑋𝐶𝑇

𝑌𝐶𝑇
) 

When CT is a constant point and 𝑟𝐶𝑆 is also a constant, the velocity vector of CS is expressed as follows. 

𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗ =  

𝑑

𝑑𝑡
(
𝑋𝐶𝑆

𝑌𝐶𝑆
) = 𝑟𝐶𝑆

𝑑𝜑

𝑑𝑡
(
−𝑠𝑖𝑛𝜑
𝑐𝑜𝑠𝜑

) 

If L, θ, 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ are set like the chapter2.1, then the vector from CV to CS is represented as follows. 

 𝐶𝑉‐ 𝐶𝑆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗ = 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ (
𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜑) 

The angular velocity of automobile 𝛺𝐶𝑆 is the sum of the rate of change over time of 𝜑 and 𝜃. 

 𝛺𝐶𝑆 = 
𝑑𝜃

𝑑𝑡
+

𝑑𝜑

𝑑𝑡
 



 

 

 

When these formulas are applied to the velocity center theorem 𝑉𝐶𝑆
⃗⃗⃗⃗⃗⃗ = 𝛺𝐶𝑆 𝑅𝑜𝑡 (

𝜋

2
)𝐶𝑉‐ 𝐶𝑆⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  ⃗, it is as follows. 

𝑟𝐶𝑆

𝑑𝜑

𝑑𝑡
(
−𝑠𝑖𝑛𝜑
𝑐𝑜𝑠𝜑

) = (
𝑑𝜃

𝑑𝑡
+

𝑑𝜑

𝑑𝑡
)𝑅𝑜𝑡 (

𝜋

2
) (

𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅𝑐𝑜𝑠𝜑
𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅𝑠𝑖𝑛𝜑)   

                       = 𝑠𝑐𝑠‐𝑐𝑣̅̅ ̅̅ ̅̅ ̅ (
𝑑𝜃

𝑑𝑡
+

𝑑𝜑

𝑑𝑡
) (

0 −1
1 0

) (
𝑐𝑜𝑠𝜑
𝑠𝑖𝑛𝜑) 

                               = −
𝐿

𝑠𝑖𝑛𝜃
(
𝑑𝜃

𝑑𝑡
+

𝑑𝜑

𝑑𝑡
) (

−𝑠𝑖𝑛𝜑
𝑐𝑜𝑠𝜑

) 

Therefore, the following formula is established. 

𝑟𝐶𝑆

𝑑𝜑

𝑑𝑡
= −

𝐿

𝑠𝑖𝑛𝜃
(
𝑑𝜃

𝑑𝑡
+

𝑑𝜑

𝑑𝑡
) 

The above equation can be modified as follows. 

𝑑𝜃

𝑑𝑡
= −

𝑑𝜑

𝑑𝑡
(1 + 𝑟𝐶𝑆

𝑠𝑖𝑛𝜃

𝐿
)   (= −𝛺𝑉𝐶𝑆

+ 𝛺𝐶𝑆)  

                  (When 𝑉𝐶𝑆 = 𝑟𝐶𝑆

𝑑𝜑

𝑑𝑡
、

𝑑𝜑

𝑑𝑡
→ 0、𝑟𝐶𝑆 → +∞  、 

                                         the above equation is expressed as the equation of chapter2.2 
𝑑𝜃

𝑑𝑡
= −𝑉𝐶𝑆

𝑠𝑖𝑛𝜃

𝐿
.） 

Therefore, the following formula is established. 

𝑑𝜃

𝑑𝜑
= −1 − 𝑟𝐶𝑆

𝑠𝑖𝑛𝜃

𝐿
 

 

Furthermore, like the chapter2.2, U is the distance that CS goes, and the dimensionless quantity q as U/L, 

The following relationships will be established. 

𝑑𝑞 =
𝑑𝑈

𝐿
=

𝑟𝐶𝑆𝑑𝜑

𝐿
=

𝑑𝜑

𝑠𝑖𝑛𝛿𝑉𝑐𝑠

 

Therefore, 

𝑑𝜃

𝑑𝑞
=

𝑑𝜃

𝑑𝜑
𝑠𝑖𝑛𝛿𝑉𝑐𝑠 = −(1 + 𝑟𝐶𝑆

𝑠𝑖𝑛𝜃

𝐿
) 𝑠𝑖𝑛𝛿𝑉𝑐𝑠 = −𝑠𝑖𝑛𝛿𝑉𝑐𝑠 − 𝑠𝑖𝑛𝜃 

When 𝛿𝑉𝑐𝑠 = 0, it is a formula in the case of going straight ahead, as in the previous chapter.、 

When 𝛿𝑉𝑐𝑠 ≠ 0, the solution of the above formula is as follows.  

−𝑞 + 𝑏 =
1

𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
𝑙𝑛 |

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)𝑡𝑎𝑛 (
𝜃
2
) + 1 − 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)𝑡𝑎𝑛 (
𝜃
2
) + 1 + 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)

|                   ※3  

              =
1

𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
𝑙𝑛 |

𝑠𝑖𝑛 (
𝜃 + 𝛿𝑉𝑐𝑠

2
)

𝑐𝑜𝑠 (
𝜃 − 𝛿𝑉𝑐𝑠

2
)
𝑡𝑎𝑛 (

𝛿𝑉𝑐𝑠

2
)| 

“b” is a constant value that determined by the initial value. 

 

The ± of 
𝑠𝑖𝑛(

𝜃+𝛿𝑉𝑐𝑠
2

)

𝑐𝑜𝑠(
𝜃−𝛿𝑉𝑐𝑠

2
)
𝑡𝑎𝑛 (

𝛿𝑉𝑐𝑠

2
) is equal to the ± of (𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠)𝑠𝑖𝑛𝛿𝑉𝑐𝑠. 

When the relationship between 𝜃 、 𝛿𝑉𝑐𝑠 and (𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠)𝑠𝑖𝑛𝛿𝑉𝑐𝑠 is shown in the table,  

it looks like the following Fig.2.3-2. 

 



 

 

 

 

 

From Fig.2.3-2, the formula ※3 is divided as follows. 

When (𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠)𝑠𝑖𝑛𝛿𝑉𝑐𝑠 > 0, 

  − 𝑞 + 𝑏 =
1

𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
𝑙𝑛 (

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)𝑡𝑎𝑛 (
𝜃
2
) + 1 − 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)𝑡𝑎𝑛 (
𝜃
2
) + 1 + 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)

) 

If 𝜃 is expressed as a function of 𝑞, then, 

   𝜃 = 2 tan−1 {
1

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)
{
1 + 𝑒𝑥𝑝[−(𝑞 − 𝑏)𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)]

1 − 𝑒𝑥𝑝[−(𝑞 − 𝑏)𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)]
 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠) − 1}} 

 

When (𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠)𝑠𝑖𝑛𝛿𝑉𝑐𝑠 < 0, 

  − 𝑞 + 𝑏 =
1

𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
𝑙𝑛 (−

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)𝑡𝑎𝑛 (
𝜃
2
) + 1 − 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)𝑡𝑎𝑛 (
𝜃
2
) + 1 + 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)

) 

If 𝜃 is expressed as a function of 𝑞, then, 

  𝜃 = 2 tan−1 {
1

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)
{
1 − 𝑒𝑥𝑝[−(𝑞 − 𝑏)𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)]

1 + 𝑒𝑥𝑝[−(𝑞 − 𝑏)𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)]
 𝑐𝑜𝑠(𝛿𝑉𝑐𝑠) − 1}} 

Fig2.3-2 is an example of the following case with the above formula. 

𝛿𝑉𝑐𝑠 > 0 and when q = 0, θ = ± π / 2,  

When q = 0 and θ = ＋π/2,  𝑏 =
1

𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
𝑙𝑛 |

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)+1−𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)

𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)+1+𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
|   

When q = 0 and θ = －π/2, 𝑏 =
1

𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
𝑙𝑛 |

−𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)+1−𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)

−𝑠𝑖𝑛(𝛿𝑉𝑐𝑠)+1+𝑐𝑜𝑠(𝛿𝑉𝑐𝑠)
| 

 

−𝜋 + 𝛿𝑉𝑐𝑠 < 𝜃 < −𝛿𝑉𝑐𝑠 
( (𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠) < 0 ) 

 

0 < 𝛿𝑉𝑐𝑠 <
𝜋

2
 

(𝑠𝑖𝑛𝛿𝑉𝑐𝑠 > 0) 

𝐅𝐢𝐠. 𝟐. 𝟑‐ 𝟐  𝐓𝐡𝐞 𝐫𝐞𝐥𝐚𝐭𝐢𝐨𝐧𝐬𝐡𝐢𝐩 𝐛𝐞𝐭𝐰𝐞𝐞𝐧   𝜽 、 𝜹𝑽𝒄𝒔 𝐚𝐧𝐝   (𝒔𝒊𝒏𝜽 + 𝒔𝒊𝒏𝜹𝑽𝒄𝒔)𝒔𝒊𝒏𝜹𝑽𝒄𝒔  

−𝛿𝑉𝑐𝑠 < 𝜃 < 𝜋 + 𝛿𝑉𝑐𝑠 
( (𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠) > 0 ) 

 

−
𝜋

2
  < 𝛿𝑉𝑐𝑠 < 0 

(𝑠𝑖𝑛𝛿𝑉𝑐𝑠 < 0) 

(𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠)𝑠𝑖𝑛𝛿𝑉𝑐𝑠 < 0 (𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠)𝑠𝑖𝑛𝛿𝑉𝑐𝑠 > 0 

(𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠)𝑠𝑖𝑛𝛿𝑉𝑐𝑠 < 0 (𝑠𝑖𝑛𝜃 + 𝑠𝑖𝑛𝛿𝑉𝑐𝑠)𝑠𝑖𝑛𝛿𝑉𝑐𝑠 > 0 

−𝛿𝑉𝑐𝑠 

−𝛿𝑉𝑐𝑠 

−𝛿𝑉𝑐𝑠 

−𝛿𝑉𝑐𝑠 

−𝜋 + 𝛿𝑉𝑐𝑠 

−𝜋 + 𝛿𝑉𝑐𝑠 

𝜋 + 𝛿𝑉𝑐𝑠 

𝜋 + 𝛿𝑉𝑐𝑠 



 

 

 

The specific examples so far are shown next.   

 

The amount of change 𝑞 required to become θ = 0 to -299π/1800 rad (-29.9°) is represented as next, 

𝛥𝑞+ = 𝑞−299𝜋/1800 − 𝑞0 ≒  7.9682 − 1.5207 = 6.4475 

Similarly, the amount of change 𝑞 required to become θ = -π/3 rad (-60°) to -301π/1800 rad (-30.1°) is represented as next, 

𝛥𝑞− = 𝑞−301π/1800 − 𝑞−𝜋/3 ≒ 7.9670 −  1.1605 = 6.8065 

In the case of an orbit with curvature, it can be seen the amount of change 𝑞 differs depending on whether θ is corrected 

from inside or outside. 

 

3. Results 

By using the velocity center theorem appropriately, it was shown that the automobile's posture can be corrected while the 

representative point CS goes on an ideal trajectory. By taking the appropriate representative point CS according to the 

situation, it can be applied to autonomous driving and posture correction when slipping etc. 
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