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Abstract 

Harmony is a fundamental concept in Western music theory, and its number-theoretical 

structure has been studied since ancient Mesopotamia. The relationship between music and 

mathematics has become stronger in recent years, leading to two questions: What is the reason 

for this connection? How can the mathematics of Western music theory be applied to other 

musical traditions? This article approaches these problems using the recently developed theory 

based on the group-theoretic description of pitch perception, where the perceptual structure of 

acoustic signals, represented by tetrahedral homology, is produced under the survival strategy 

exploiting acoustic signals. Here the constraints of a single source and temporal coincidence in 

the pitch perception are relaxed, and essential elements of music such as scales, chords, and 

chord progressions are discussed within a unified framework of Sound Integration. Musical 

analysis of six pieces from different genres is used to test the idea. Through these considerations, 

it is shown that homology in group-theoretic structures helps to understand so-called 

'ambiguous tonality'. The theory presented here provides a useful basis for understanding the 

mathematical structure of harmony in music perception. 

 

Keywords: Pitch perception, Sound Localisation, Auditory Scene Analysis, 

Sound Integration, Homology  

  



Post-Lewinnian Analysis 

1. Introduction 

 

The modern theory of harmony, including consonance and dissonance, triads, octave 

equivalence, inversion of chords, major and minor, root note bass and harmonic 

progressions, and cadences, is said to have been created by Jean-Philippe Rameau in the 

early eighteenth century (Rameau 1722). According to Dahlhaus, tonality was invented 

by François-Joseph Fétis in the nineteenth century (Dahlhaus 1990). He discussed the 

historical development of harmony and defined tonality as the culturally produced 

simultaneous or successive relationship that exists between sounds (Fétis 1844). In 

Dahlhaus's book, three questions were raised. (1) Is a natural foundation of harmonic 

tonality possible? (2) Are only chordal relationships tonal, or should one also describe 

as tonal pitch relationships not based on chords? (3) Is the centering of relationships on 

a tonic pitch or triad an essential feature of tonality? At the end of the nineteenth 

century, Hugo Riemann produced the theory of functional harmony (Riemann 1875). 

While the theory of functional harmony gave a principal trend of subsequent music 

theory, the dualism of perception of overtones and undertones that he proposed to 

explain the major and minor modes received fierce opposition and he himself had to 

drop the idea of undertone perception (Riemann 1891, 1905). In the twentieth century, 

atonal music that intentionally eliminated Tonicity inherent in functional harmony 

emerged, such as serialism by Schoenberg. In the second half of the century, the pitch 

class set theory focusing on the set-theoretic structure of twelve-tone music was 

established by Milton Babitt, Allen Forte, and others (Babitt 1961, Forte 1973). The 

algebraic treatment revolutionised music theory since Pythagoras where sounds are 

treated numerically as frequency ratios. In the 1980s, David Lewin paid his attention to 

the perfect fifth and major third consonance relationships under octave equivalence. He 

redefined major and minor triads as geometric relationships on the Tonnetz and 
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succeeded in giving new mathematical meaning to dualism. His chord progression 

theory, which was redefined as group-theoretical mathematical operations, was called 

transformation theory and proved useful in analysing music using chords that could not 

be explained by functional harmonies, such as Romantic music (Lewin 1982, Cohn 

1998). However, the perception of undertones has not been formally accepted to date.  

 The simultaneous or successive relationships that exist between sounds have 

been summarised in elaborate mathematics. There is no doubt that the mathematical 

approach has played a significant role in understanding music. However, does the 

contemporary mathematics in music treat music adequately? Music itself is never a 

mathematical construct divorced from its source in the human mind (Wiggins 2012). 

For example, analysis of the microtonal music based on Western music theory resulted 

in non-harmonic reconstruction into the tuning system of Persian and Indian music, 

such as the introduction of mathematically defined quarter tones and equal temperament. 

Is mathematical sophistication, especially in the equal temperament, at odds with the 

subjective value of the sound of the just intonation (JI)? There would be a need for 

some physiological mechanism that links the rich achievements in music mathematics 

with cognitive processes. 

 In this article, we investigate the mathematical structure of harmony based on 

biophysical processes in the perception of acoustic signals. While vision captures the 

spatial distribution of light rays emitted from an object onto the two-dimensional 

receptive fields of the retina, acoustic signals can only be perceived as time-varying 

frequency information. How do we distinguish the sound emitted by an object from 

randomly superimposed acoustic signals? The process of forming an accurate mental 

representation in the brain of individual sounds is called Auditory Scene Analysis 

(ASA) (Bregman 1994). The operation of reconstructing the acoustic object on the map 
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in the brain by segregation and integration of the auditory elements is called Sound 

Localisation (SL). While there are various opinions on whether the origins of music are 

innate or cultural, it is natural to assume that the ASA as a survival strategy underlies 

music that is a structured acoustic signal perception (Trainor 2015). Recently, under the 

SL in ASA, a model was proposed in which pitch perception arises from reinforcement 

learning in the Neuronal system using perturbative nonlinearity in cochlear (Takahashi 

2023a). We reconsider the constraints of the pitch perception model to provide a 

neurobiological foundation for the abstracted mathematical structure of harmony and 

reinterpret Lewin’s idea of transformation which is called Neo-Riemannian theory 

(NRT). We exemplify musical analysis with the post-Lewinnian treatment of harmony 

in various genres of music. 

 

2. Pitch Perception Model  

 

In the first section, we summarise the model of the evolution of pitch perception 

discussed in the reference (Takahashi 2023a, 2023b). Consider the meaning of acoustic 

signal perception in the survival strategy of living organisms. Living organisms react to 

changes in physical or chemical quantities in the external environment and change their 

behaviour. Hearing is a perception that targets the elastic deformation of the atmosphere 

in the range of about 20 to 20 kHz. We use acoustic signals emitted from the object as a 

trigger signal to determine whether to escape from or approach the object. To do this, it 

is necessary to segregate the acoustic signal emitted from the sound source from the 

environmental sound, grasp the positional relationship between the sound source and us, 

and judge the meaning of the sound source. Vision has a two-dimensional detector, the 

retina, and spatial information is sent directly to the brain (strictly speaking, depth 
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information is reconstructed in the brain). Hearing has hair cells that are only linearly 

aligned sensors that detect intensity signals fluctuating in time on the frequency axis. 

Nevertheless, hearing provides a function of SL, localising acoustic objects on a virtual 

map in the brain, and providing received information of acoustic signals as triggers for 

action determination. Why are we able to segregate individual acoustic objects from 

complex environmental sounds? The simplest strategy is to focus on the musical tone 

structure, that is, the harmonic structure emitted by the acoustic object, and segregate 

and integrate the acoustic signal based on the temporal coincidence of the harmonics in 

the sound. Takahashi focused on the nonlinear characteristics of the cochlear amplifier 

associated with the amplification of small acoustic signals. The second and third 

harmonics, which are always synchronous with the fundamental, are used as teacher 

signals for reinforcement learning of coincidence detection. Because reinforcement 

learning is bidirectional for target signals and teacher signals, learning of 𝑓 − 2𝑓 and 

𝑓 − 3𝑓 coincidences is accompanied by the learning of 
1

2
𝑓 − 𝑓 and 

1

3
𝑓 − 𝑓 

coincidences. Therefore, even when teacher signals over 4th-order harmonics are not 

given, their chain enables learning of the coincidence of 𝑓 − 2𝑛𝑓 and 𝑓 − 3𝑚𝑓 (and 

𝑓 − 2𝑛3𝑚𝑓) for n,m=-∞ to ∞, which produces the power series harmonic template. At 

the same time, the third-order nonlinearity gives 2𝑓1 − 𝑓2 coupling and enables learning 

of 5𝑓, 7𝑓, 10𝑓, 14𝑓... harmonics coincidence with the fundamental by recursive use of 

elements in the power series harmonic template (table 1). On the other hand, the 

learning of the prime harmonics 11𝑓, 13𝑓, 17𝑓, 19𝑓... needs another recursive learning 

of 5𝑓 and 7𝑓 harmonics, which enhances the learning cost dramatically. As a result, the 

template has elements of all integers up to 10 and deficits at prime numbers over 11. 

This model can answer various problems in pitch perception such as missing 

fundamental, octave equivalence, undertone perception, pitch shift effect, etc. In 
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particular, the appearance of gaps in F0DT at the 10th order can be explained by the 

deficits of the harmonic template over the 11th order, strongly supporting the validity of 

this model, which is difficult to explain by the simple position or time models of pitch 

perception. 

 It is noted that the harmonic template enables the perception of not only 

harmonics but also subharmonics. The perception of the subharmonics is nothing other 

than the perception of the undertones that Riemann aspired to (Rieman 1875). The 

subharmonics are hard to be generated by the perturbative nonlinearity. However, they 

are perceived because of information processing in the brain. The perception of the 

undertone is allowed as a psycho-phenomenon rather than a physico-phenomenon. As a 

result, pitch perception can be represented by a group generated from four prime 

numbers, 2,3,5, and 7. The elements are written by 2𝑛3𝑚5𝑝7𝑞𝑓0, where 𝑓0 is the 

fundamental frequency and n,m,p, and q are integers from -∞ to ∞. Here, the pitch has 

two meanings the absolute frequency and chroma relative to a note with the 

fundamental frequency 𝑓0. Hereinafter, the pitch is used in the latter meaning, and 

unless otherwise specified, 𝑓0 is omitted and the pitch is expressed as a ratio to it. 

Although the pitch group has the order of ∞, only a small set of elements in the group is 

available for perception due to the limitations of the finite cochlear filter bandwidth and 

the finite frequency resolution. A small set here means a set of elements with small 

absolute values of nmpq among the elements 2𝑛3𝑚5𝑝7𝑞 of the group generated from 

{2,3,5,7}. This group corresponds to 7-limit JI. Generator seven had not been very 

common in Western classical music. However, as will be discussed below, the 

ambiguous tonality generalised since the nineteenth century is represented as an 

approximation of 7-limit JI by 5-limit JI. The blue notes in jazz, which are said to have 

originated in African music, have been noted to have frequencies of 7/4, 7/5, and 7/6 
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relative to the root note (Kubik 2008, Cutting 2018). The 22 Shruti in Indian classical 

music was shown to be well approximated by 7-limit JI (Takahashi 2023b). It will be 

reasonable to assume that 7-limit JI is present in the basic structure of human acoustic 

perception. The pitch is calculated from the coincidence of harmonics emitted from a 

single acoustic object. Acoustic signals are simple elastic waves, so sound integration is 

possible even if there are multiple sound sources if they have a common fundamental 

frequency. If there is a common divisor between the pitches of musical tones with 

different pitches, all the tones are integrated under their common fundamental 

frequency. The group integration of two tones is the consonance, while the group 

integration of three or more tones is the chord. Unless otherwise specified, we will not 

distinguish the term consonance from the chord. 

 

3. Representation of tone group 

 

 We introduce the following expressions for the tone group (p1, p2, p3…), where 

pi's are frequency ratios with respect to the fundamental frequency. When the elements 

of the pitch group {2, 3, 5, 7} are expressed as 2𝑛3𝑚5𝑝7𝑞 under a certain reference 

frequency (tonic note), it is named as the canonical form and its powers n, m, p, and q 

as the canonical index. Sound integration based on a strong correlation between pitches 

when the frequency ratio is a power of 2 is known as octave equivalence. Also, when 

the frequency ratio is a power of 3, we perceive strong consonance. This is known as 

the perfect fifth consonance. Folding into an octave corresponds to considering the 

factor group of modulo 2. When m, p, and q are given for the element of the factor 

group, n the power of 2 is uniquely determined under the octave equivalence. From now 

on, we treat the pitch group as a factor group of modulo 2. When pi's are rational 
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numbers, we call them a rational form (table 2). Since we discuss consonance relations 

under the tone group, we assume that a rational form is a canonical form. We reduce 

them to a common denominator or numerator. When all the numerators or denominators 

are 1, we call them a normal form. Unless otherwise specified, the number used for the 

reduction is not shown. If necessary, the number is written outside the bracket. As has 

been noted already, we allow the subharmonics perception. We attribute it to a minor 

mode. When pi's are written in decimal, we call them a decimal form. When the decimal 

form is approximated by the nearest integers or the nearest inverse of integers, we call 

them a proximate normal form. The decimal form varies with the tuning system. The 

proximate normal form is stable against the error associated with the tuning but need 

not necessarily be unique. What values are perceived may depend on the perception 

mode analytic or holistic, whether the error is tolerated, the integrated pitch is perceived, 

a partial consonance relationship is perceived, or no consonance relationship is 

recognised, and it is perceived as noise. The group of three notes (4,5,6) and 

(1/4,1/5,1/6) are the major and minor triads that have highly consonant combinations of 

musical tones. A minor triad (1/4,1/5,1/6) is written as a decimal form (4,4.8,6), which 

is written also as a proximate normal form (4,5,6). In the proximate normal form, the 

minor triad can be considered a frustrated major triad also. When all the powers of 2 in 

the normal form are reduced to 0, we call them a prime form. If the term 1 appears in 

the prime form, a number 2 would be written to indicate that we consider a modulo 

system of 2. Here, the term prime form is also used in pitch class set theory. The prime 

in it is derived from the primary. Our prime is named after the algebra of prime numbers. 

Remember that each 'prime' represents essentially the same irreducible representation of 

a tone group, but with a term specific to each expression. 
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In the chromatic scale with twelve tones, the graphical representation of the 

notes belonging to the scale, Tonnetz, is introduced by drawing attention to the 

remarkable cooperative relationship between the perfect fifth-degree and the major 

third-degree consonances. Tonnetz allows triads to be represented by triangles 

consisting of three adjacent vertices, and a chord progression to be represented by a 

transformation between the triangles. Placing the tones belonging to the subgroup 

{2,3,5} of the {2,3,5,7} sound structure on two-dimensional coordinates under modulo 

2 with the powers of 3 and 5 as coordinate values yields Tonnetz (Euler's Tonnetz). It 

gives a map of a rational form of the 5-limit JI. In fig. 1, the y-axis is tilted to match the 

usual hexagonal grid representation. In the following, sound structure in harmonic space 

is discussed based on Tonnetz. 

 

4. Harmony 

 

In Western music theory, the frequency ratios (1:3/2) and (1:4/3) between two notes are 

called perfect consonant intervals of the perfect fifth-degree and perfect fourth-degree 

consonant interval. The ratios (1:5/4) and (1:5/3) are called major third degree and 

major sixth degree, (1:6/5) and (1:8/5) are called minor third degree and minor sixth 

degree. These four intervals are called imperfect consonance. Other combinations are 

classified as dissonant. When displayed on the Tonnetz, perfect consonances correspond 

to adjacent grid points on the 3-axis, and imperfect consonances correspond to adjacent 

grid points on the 5-axis or 5/3-axis. We define the degree of consonance (DoC) 

between two tones as (m1-m2, p1-p2), where mi and pi are the canonical indexes of tones 

on the 3- and 5-axis on the Tonnetz. For example, the perfect consonance of perfect 

fifth and perfect fourth degrees is (1,0), the imperfect consonance of major third and 
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minor sixth degrees is (0,1), the imperfect consonance of major sixth and minor third 

degrees is (1,1) and the tritone is written as a consonance interval expressed as (2,1) 

rather than dissonance. The asymmetry of the perception of acoustic signals between the 

3- and 5-axis, and their direction would produce an ordered structure of sounds based on 

DoC under ASA (Takahashi 2023b). For example, the Pythagorean scale, made up of 

subgroup {2,3} of the pitch group, has an ordered structure known as the circle of the 

perfect fifth. The distance between tones is expressed as the number of steps on the 

circle between two tones. DoC is the cognitive tone distance through signal processing 

in the brain. The tone distance derived from the consonance relation is called the 

harmonic distance. On the other hand, in the auditory tract, tonotopies are transferred at 

all levels from the inner ear to the cortical auditory cortex, and physiologically the 

magnitude of the frequency gives the order structure of the sound, allowing the 

perception of tone distance by the ratio of frequencies. We name this tonotopical 

distance. In the brain, the perception of distance between tones would have a dual 

structure, physical (tonotopical) distance and cognitive (harmonic) distance. 

 The consonance relationship of three or more notes is called a chord. In 5-limit 

JI, triads are represented by triangles on Tonnetz. major triads with the normal form 

(4,5,6) and minor triads with the normal form (1/4,1/5,1/6) are translated to the prime 

form (2,3,5) and (1/2,1/3,1/5) by folding under octave equivalence. respectively. The 

major triads are upward triangles, and the minor triads are downward triangles which 

are inverted around the vertex 4 of the triangles each other on the Tonnetz. For tunings 

other than 5-limit JI, it is not always possible to place triads on the Tonnetz. Even in this 

case, the finite bandwidth of the frequency filter in hearing allows for a translation to 5-

limit JI via the proximate normal form, thus enabling placement on the Tonnetz grid. 

The sound group mapped to the Tonnetz grid will be integrated into the pitch and 
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acquire a sense of consonance. Note that chords should be considered as an integrated 

musical tone rather than a combination of distinct tones. From the perspective of pitch 

perception, a chord is a tone group integration, providing the perception of a 

fundamental frequency (pitch) and a spectrum consisting of harmonics (timbre). Viewed 

differently, a chord can be regarded as a timbre decoration by controlling the spectral 

structure of a tone group characterised by pitch. The separation of pitch and timbre from 

the perceptual structure of sound would provide a bridge between Western classical 

music and spectral music, which includes not only contemporary music but also 

microtonal music in the non-Western world (Fineberg 2000, Chahin 2017).  

The major triad chord (4, 5, 6) is a sequence of three consecutive overtones, 

which is integrated into a pitch by harmonic template matching. The value returned as 

the pitch is 1 corresponds to the root note of the major triad, which has the same chroma 

but two octaves lower. On the other hand, the integration of a series of undertones 

inevitably gives rise to an upper pitch root note. The minor triad (1/4, 1/5, 1/6) is 

integrated through subharmonic matching. The resulting pitch having 1 corresponds to 

the same chroma of the highest fifth note of the minor triad chord but is two octaves 

higher than it. We name the former the lower pitch root note and the latter the upper 

pitch root note of the triads. Hereinafter, chord names are written in bold italics to 

distinguish them from pitch root tones. 

 Krumhansl used the probe method to estimate the distances between the triads of 

a diatonic scale and mapped the chord distances to two-dimensional coordinates 

(Krumhansl,1983,1998). His assessment placed the I tonic, V dominant, and IV 

subdominant close together, with III, VI, and II far away from I and VII apart in a 

different direction. These positionings would be comfortable for musicians. However, 

why are III and VI tonic and II subdominant, yet III and II are placed in symmetrical 
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positions far apart across VI? When representing triads on Tonnetz, the six triads from I 

to VI occupy six adjacent triangles. Focusing on the integrated pitch, in the C major 

scale, I, IV, and V are major triads, and the pitch root notes are C, F, and G respectively, 

while II, III, and VI are minor triads and the pitch root notes are A, B, and E. We have 

introduced DoC instead of binary consonance and dissonance to evaluate the 

consonance relationship. On the Tonnetz, the DoC of F and G are (±1,0) and one step 

on the 3-axis relative to the tonic C of the scale (fig.2a). The DoC of E is (0,1) and is 

one step on the 5-axis relative to C. The DoC of A and B is (±1,1) and is one step on the 

3-axis relative to E. The perceived distance per step on the 5-axis would be greater than 

the distance on the 3-axis. As the per-unit distances on the 3- and 5-axis are 

significantly different, then, C, F, G, and E, A, D would have been perceived as 

independent groups, while the F-C-G positional relationship would have been 

perturbatively added under the distance on the 5-axis to give a leveraged A-E-D 

positional relationship around E (fig 2b). The VII has an integrated pitch at F from the 

overtone series and another integrated pitch at B from the undertone series in the 

proximate normal form. The pitches are shifted out of the pitch group element due to a 

pitch-shift effect. This effect is a detuning and must be treated as a perceptual quantity 

separate from the distance between the consonance. This will be discussed again later.

 Now consider the case where a major triad and a minor triad share vertices of a 

triangle on the Tonnetz corresponding to 3 and 5. The pitch classes of the pitches into 

which they are integrated have a semitone difference, but are four octaves apart, making 

sufficient separation difficult, and they will be perceived as if they were in unison 

(fig.3). We name it Triad Root Equivalence. When these two triads are played 

simultaneously, they form a major-seventh chord. It is a special tone having a certain 

pitch and a timbre of superposition of both an overtone sequence and an undertone 
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sequence. Milne et al. examined the distances between chromatic triads (Milne & 

Holland, 2016). As they showed, the distance between chromatic chords cannot always 

be explained by pitch root note distance alone (table 3). However, if limited to between 

major triads and between minor triads, the DoC is in the order (0,0)<(1,0)<(0,1)<(1,-

1)<(2,0)<(1,1)<(2,1), which can be explained by the competition between the 

accumulation of 3 and 5. Here, the (1,-1) position assumes an offset on the 3- and 5-axis. 

On the other hand, the distance between the major triad and minor triad has a more 

complicated ordering, which strongly suggests that secondary integration is involved in 

addition to the distance between the root notes in the analytic perception of chords. We 

consider the specific proximity of Cm-Eb to be strong evidence that four-tone 

integration is more stable than the perception of two three-tone integrations separately, 

and another proximity of C-Em to be strong evidence that it is perceived as the unison of 

the two pitch root tones due to Triad Root Equivalence. On the other hand, C-Fm is 

further away than Cm-Eb or even C-Em, despite sharing a pitch root note. We name it 

Common Root Discrepancy. One possibility of these origins is the octave enlargement 

effect, where the physical octave becomes slightly larger than the subjective octave (=2) 

for a variety of tones (Ogushi 1983). He reported an enlargement of 0.4 ~ 2.6% per 

octave on average. Even though the data were strongly dependent on the listeners and 

scattering, it is consistent well in order with the Triad Root Equivalence. Bypassing the 

chord progression by such secondary integration makes the chord progression 

ambiguous and complicated, but at the same time creates rich diversity. The diverse 

progression paths would be reorganised under the holistic perception and form the 

backbone of the non-standard progressions in the transformation theory, as discussed 

below. 
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 In the diatonic scale, there are seven types of triads: three major triads, three 

minor triads, and one diminished triad. Major and minor triads are represented by the 

common prime form (2,3,5) and (1/2,1/3,1/5) in 5-limit JI, respectively. The diminished 

triad is represented by the rational form (1,6/5,36/25) and the normal form (25,30,36). It 

has no simple prime form and cannot be embedded in a triangle on Tonnetz. However, 

because (1,6/5, 25/36) =6*(1/6,1/5,1/4.1666) =6/25*(4.1666,5,6), it is represented by 

the proximate normal form (1/6,1/5,1/4) and (4,5,6). The approximation error to 1/4 and 

4 respectively is 4.2%. Note that it is approximately the midpoint of the neighbouring 

semitones. We consider the diminished triad as a superposition of slightly out-of-tune 

major and minor triads flanking three notes of the diminished triad arranged on the 5/3-

axis (fig.4a). Similarly, the augmented triad is represented by the rational form 

(1,5/4,25/16) and the normal form (16,20,25), which cannot be embedded in a triangle 

on Tonnetz, but written as (1,5/4,25/16)=25/4*(1/6.25,1/5,1/4)=1/4*(4,5,6.25), so each 

is represented by the proximate normal form (1/6,1/5,1/4) and (4,5,6). The 

approximation error to 1/6 and 6 respectively is 4.2%. It also is represented by a pair of 

major and minor triads flanking three notes of the augmented triad arranged on the 5-

axis (fig.4b). Note that the approximation of augmented or diminished chords to major 

and minor triads by the replacement of a tone with the nearest tone is equivalent to the 

parsimonious transformation in the Cube Dance (Doothett & Steinbach 1998, Doothett 

2008). 

 When tones are placed at the vertices of a tetrahedron with vertices 2, 3, 5, and 7, 

the tetrahedron represents a tone group that is integrated at a pitch in 7-limit JI. The 

tetrahedra arranged in three-dimensional space by tone translation corresponds to the 

3D-Tonnetz discussed by Gollin and Tymoczko (Gollin 1998, Tymoczko 2010). Gollin 

invented 3D-Tonnetz to extend the transformation theory from triads to tetrads. His 
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focus was on the relationship between dominant and half-diminished chords in the 

seventh chords. He noted that the notation of both in the neo-Hauptmann system was an 

extension of the major-minor relationship in the triad. Whereas the triad has intervals of 

four semitones (major third) and seven semitones (perfect fifth), the tetrad has a further 

ten semitone intervals. Corresponding to the Tonnetz axes given for the intervals of the 

triad, Gollin gave the tetrad a further ten-semitone unit axis, which gave the 3D-Tonnetz, 

and discussed the transformation theory under the geometric representation of the 

tetrahedron. Tymoczko also considered 3D Tonnetz like Gollin by extending the triad in 

2D Tonnetz to a tetrad. He too focused on the relationship between the dominant chord 

and the half-diminished chord. In his case, he noted that both share a diminished triad 

and are in a symmetrical position, leading to 3D Tonnetz as a space that embeds tetrad 

through a topological deformation of 2D Tonnetz. Gollin's approach focuses on the 

geometrical symmetry of the pitch class set arrangement on the 2D Tonnetz, while 

Tymoczko's approach would have been homotopic, focusing on the continuous 

deformation from a 2D figure to a 3D figure. Our approach focuses on the purely 

algebraic relationship between number-ratio relations in the group-theoretic model of 

pitch perception, which assumes the existence of undertones. The overtone sequence of 

four consecutive integers (4, 5, 6, 7), like in the triads, is represented by a tetrahedron 

with vertices of 2,3,5,7. We attribute it to a proper major tetrad. The undertone sequence 

of four consecutive subharmonics (1/4, 1/5, 1/6, 1/7) is represented by a tetrahedron 

inverted from the tetrahedron of the proper major tetrad around the vertex 4. We 

attribute it to a proper minor tetrad. Whereas the major and minor triads were 

represented in 2D Tonnetz by upward and downward triangles, the major and minor 

tetrads are represented in 3D Tonnetz by tetrahedra with vertices opposite each other 

with respect to the plane containing 4, 5, and 6. Each is integrated into a pitch under 
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template matching. As with triads, the pitch root is two octaves below the note 

corresponding to the vertex 4 for proper major tetrad and two octaves above the note 

corresponding to the vertex 1/4 for proper minor tetrad, defining the pitch of the tetrads. 

As in the case of triads, both are tonal decorations of the pitch tone by means of an 

overtone or undertone sequence. 

 Consider the tetrad in 5-limit JI. As the number of tones increases from three to 

four, matching from the harmonic template is averaged out, which is likely to allow for 

better pitch integration even when the detuning in individual tones is large. Table 4 

shows the normal form, decimal form, proximate normal form, and pitch root tones of 

various tetrads. Here, the tonic is taken at C (1/1). 

• C7 and Cm7b5 are approximated by a proper major tetrad and a proper minor 

tetrad with the template (4,5,6,7) and (1/4,1/5,1/6,1/7), the root notes of which 

are C and Bb, respectively. The errors are 3% at 7.2 for 7. Each chord may be 

written in another decimal form of a proper minor tetrad or a proper major tetrad. 

However, those representations have greater errors in template matching than 

the original, so they are discarded. 

• Cmaj7#5 and Cm(maj7) also are approximated by the proper major and minor tetrads 

with the root notes C and B, respectively. The maximal errors are 4% at 4.8 for 5, 

and 3.84 for 4. 

• Cmaj7 is written by the obvious decomposition of a superposition of the major 

triad 1/4*(4,5,6) and the minor triad 15/2*(1/4,1/5,1/6) as the approximation to 

four-tone integration results too large error. As already mentioned, each triad is 

integrated into a note with the same chroma of its root note but two octaves 

below and a note with the same chroma of its highest fifth note but two octaves 
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above, respectively. The pitch classes of the two are almost in unison, as they 

differ in pitch class by a semitone but four octaves in pitch. 

• Cm7 is also a superposition of the major triad and minor triad. However, it has an 

approximation of a consecutive four integers with errors of 4% error at 4.8 for 5 

and 3% at 7.2 for 7. It has two proximate normal forms 1/4*(4,5,6,7) and 

36/5*(1/4,1/5,1/6,1/7). Four-tone integration will take precedence over double 

three-tone integration in harmonic template matching as shown in table 4. It 

should be noted that the distance between the two pitch root notes is small even 

though their interval is a whole tone as that of Cm-Eb in table 3.  

• Cdim7 has a variety of approximations to the proper tetrad (table 5). It is noted 

that all four notes have the potential to be the root note even though the error 

reaches up to 7.4% at 5.556 for 6 in the second group and 8% at 4.32 for 4 in the 

first group, whereas those in other groups are within 5%, which would be 

acceptable barely because more tones are available for matching than in a triad. 

The composer may choose the root note from any four notes in the chord as far 

as they allow the out-of-tuning. Which is the root will depend on the 

interrelation with the adjacent phrases rather than the chord itself. 

• C7sus4 has approximations to (4,5,6,7) and (1/4,1/5,1/6,1/7) (table 6). The 

relatively large errors of 6.7% at 5.333 for 5 and 1/5.333 for 1/5 would be 

acceptable barely because more tones are available for matching than in a triad.  

 

4. Chord Progression 

 

Pitch perception is a sound group integration based on number-theoretic correlations 

and temporal coincidence in sound groups emitted from a single source. Relaxation of 
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the single source constraint gives rise to chords. Instead, it is possible also to relax the 

constraint of temporal coincidence, which gives rise to scales, chord progression, and 

voice-leading as the relaxation time of acoustic perception is finite. From its perspective, 

a chord is redefined as a pitch decorated with a timbre and a chord progression is a pitch 

progression accompanied by a timbre having a well-defined and variable spectral 

structure. We can understand a piece played by a piano, a violin, and a humming as the 

same music, not because we perceive the piano piece, the violin piece, and the humming 

piece separately and integrate them as the same music. We perceive the pitch 

progression and the timbre separately. Otherwise, we would not be able to perceive that 

they are the same piece of music when we use new instruments whose timbre we do not 

know. 

Transformation theory has made a significant contribution to analysing the 

‘ambiguous’ tonalities of Romantic music of the nineteenth century, which could not be 

explained by the functional harmony theory. However, it has not necessarily succeeded 

in clarifying the meaning of the tetrads, which is the central issue of the ‘ambiguous’ 

tonality. Extensions of transformation theory to tetrad have been made by introducing 

3D Tonnetz (Gollin 1998, Tymoczko 2010), and extending parsimony to four-tone sets 

(Douthett & Steinbach 1998). In both methods, however, transformations between 

tetrads could be defined in an analogous way as between triads, nevertheless, these 

methods did not guarantee path consistency in transformations between triads and 

tetrads, as Hook pointed out (Hook 2007). Instead of transformations in pitch space, 

Hook considered cross-type transformation in the Generalised Interval System (GIS) 

space. Popoff et al. considered another approach of the category-theoretic PK network 

theory loosening the definition of transformation between triads and tetrads (Popoff 

et.al. 2018).  
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Here, one question is presented. The concept of parsimony has been used 

effectively in Transformation theory. Parsimony is given the meaning of nearest-

neighbour transformation at a harmonic distance by a minimal procedure in three-tone 

pairs, but it must be assumed that the three tones are perceived independently. The 

superposition of three consonant tones is only a harmonic series with a common 

fundamental frequency from the view of acoustic perception. Why can one tone be 

easily separated from the others? The pitch perception model derived from ASA's SL 

separates chords into pitches and tones and maps chords onto the pitch space. The pitch 

space has a dual structure of harmonic and tonotopic space, with perceptual distances in 

each space. At the same time, timbres provide exceptional proximity, such as maj7 and 

min7. We reconsider and extend Lewin’s transformation theory by means of the pitch 

perception model. 

The NRT has three basic transformations of P, R, and L. In our model, we have 

a transformation class that acts on pitch and a transformation class that acts on timbre. 

The former is a translation on Tonnetz, with a 3-axis translation T and a 5-axis 

translation F, where T12 and F3 are regarded as the identity under octave circularity. Our 

model accepts the undertone perception, and it has the interchange I between overtones 

and undertones and the cardinality transformation Cij representing the transformation 

from cardinality i to cardinality j. In NRT theory, the transformations act directly on the 

triads and are written as P=TI or T-1I, R=FI or F-1I, L=FTI or (FT)-1I. The chord 

progression is given by the chain of transformations between neighbouring chords on 

Tonnetz. In our model, the perception of harmony implies finding tones that can be 

integrated into a pitch under the group structure of {2,3,5,7}. For a tone group with 

temporally fluctuating combinations, matching of major or minor chords and triads or 

tetrads is performed under template matching, and the successfully matched tones are 
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integrated into pitches and mapped onto Tonnetz. This operation is represented by I, C31, 

and C41. Integrated pitches can be recursively integrated with other pitches. The strength 

of integration decreases as the cardinality decreases, with integration between two tones 

being the weakest. Under the weak link between pitches, the pitches can take an 

excursion from pitch to pitch on the Tonnetz by translations F and T. In tonotopic space. 

On the other hand, the intervals between adjacent notes in the diatonic and chromatic 

scales are whole or semitone, where one-step translation on Tonnetz is impossible. We 

extend the translational transformation by continuous paths on Tonnetz to allow second-

order transformations (whole tone=T2 or T-2, semitone=FT or (FT)-1) and a third-order 

transformation (T2F) for the tritone. This extension may seem opportunistic, but the 

order corresponds to a reduction in consonance and is significant as an extension. The 

tone progression in the tone space is described by a continuous path with timbre 

alteration between pitches that has up to a third-order jump on Tonnetz. This path 

corresponds to a generalisation of the chain of PRL transformations on Tonnetz in NRT. 

It should be noted that the one-step transformation in the 5/3-axis direction is a second-

order transformation for F and T. According to Fig. 4, the distance is smaller than 

DoC=(2,0) or (1,1) and then closest to a first-order transformation, making it 

meaningful to draw Tonnetz in oblique hexagonal coordinates rather than Cartesian 

quadratic coordinates. At the same time, since bass arpeggiation in Schenker theory 

corresponds to the Cn1 operation and linear progression is a continuous path between 

pitches including quadratic transformations, the continuous path between pitches in our 

model can be considered a generalisation of the urlinie in Schenker theory. In the 

following chapter, we present examples of musical analysis of our model. 
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5. Examples of Analysis 

 

5.1 Beethoven’s Ninth Symphony, mm 143-176  

It is a typical example of LR chains (Cohn 1997, Mason 2013). We consider the 

underlying dynamics behind the chain progressions from the view of the pitch 

perception model. Its chord progression is the following (fig.5). 

C-Am-F-Dm-Bb-Gm-Eb-Cm-Ab-Fm-Db-Bbm-F#-Ebm-B-Abm-E-Dbm-A 

It progresses in the negative direction on the 3-axis, alternating between major and 

minor triads. Each triad is rewritten to the pitch root note.  

C-e-F-a-Bb-d-Eb-g-Ab-c-Db-f-F#-bb-B-eb-E-ab-A 

The uppercase letters are the pitch roots of the major triad, and the lowercase letters are 

those of the minor triad. Consider the following grouping of notes. 

(C-e)-(F-a)-(Bb-d)-(Eb-g)-(Ab-c)-(Db-f)-(F#-bb)-(B-eb)-(E-ab)-A 

Each motion in the brackets is a one-step shift in the upward direction on the 5-axis. At 

the same time, the motion between brackets does not change the pitch class due to the 

Triad Root Equivalence. Therefore, the motion is monotonous upward tone motion on 

the 5-axis, alternating timbre mode. On the other hand, when L is applied to a minor 

triad, the root note of the minor triad moves from the upper right vertex to the lower left 

vertex of the parallelogram consisting of the major and minor triads. At this time, the 

pitch class can be regarded as unchanged due to Triad Root Equivalence. Equation of 

the tone progression can therefore be written as follows with changing the brackets. 

C-(f'-F)-(bb'-Bb)-(eb'-Eb)-(ab'-Ab)-(db'-Db)-(f#'-F#)-(b'-B)-(e'-E)-(a'-A) 

Here, ' indicates rewrite by Triad Root Equivalence. The motion is monotonous 

negative motion on the 3-axis, alternating timbre mode. The LR chain is a mixture of 

these two motions. 
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5.2 Brahms’ Concerto for Violin and Cello, Op. 102. In mm 270-178  

It is a typical example of LP chains (Cohn 1997, Mason 2013). Its chord progression is 

the following (fig.6). 

Ab-Abm-E-Em-C-Cm-Ab-Abm-E 

Each triad is rewritten to the pitch root note as the following. 

Ab-eb-E-b-C-g-Ab-eb-E 

It is written in two forms under Triad Root Equivalence. 

(Ab-eb)-(E-b)-(C-g)-(Ab-eb)-E 

Ab-(e'-E)-(c'-C)-(ab'-Ab)-(e'-E) 

The former is the monotonous positive motion on the 3-axis, where the motion within 

the brackets is the stepwise motion on the 3-axis with alternating the timbre mode and 

the motion between brackets does not change the pitch class due to the Triad Root 

Equivalence. The latter is the monotonous downward motion on the 5-axis, alternating 

the timbre mode. The LP chain is a mixture of these two motions. 

 

5.3 Liszt’s Grande Fantaisie Symphonique für Klavier and Orchester, mm. 185-199 

It is a typical example of SL chains, including the secondary transformation of 

S=RPL=LPR (Mason 2013). Its chord progression is the following (fig.7). 

Bbm-A-Dbm-C-Em-Eb-Gm-F#-Bbm-A-Dbm 

Each triad is rewritten to the pitch root note as the following. 

f-A-ab-C-b-Eb-d-F#-f-A-ab 

It is written in two forms under Triad Root Equivalence. 

(f-A)-(ab-C)-(b-Eb)-(d-F#)-(f-A)-ab 

f-(Ab'-ab)-(B'-b)-(D'-d)-(F'-f)-(Ab'-ab) 
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The former is the monotonous upward motion on the 5-axis, where the motion in the 

brackets is the stepwise motion on the 5-axis with alternating the timbre mode and the 

motion between brackets does not change the pitch class due to the Triad Root 

Equivalence. The latter is the monotonous downward motion on the 3/5-axis, alternating 

the timbre mode. The SL chain is a mixture of these two motions. The readers will see 

other examples of chained PRL transformations in the reference (Mason 2013). 

 

5.4 Take A Bow from Muse  

It is an example of the non-standard transformation of chord progression having 

augmented triads (Popoff et.al. 2018). Its chord progression is the following (fig.8). 

D-Daug-Gm-G-Baug-Cm-C-Caug-Fm-F-Faug-Bbm 

This chord progression cannot be treated by PRL transformation. Popoff et.al. analysed 

it by extending the PRL network structure and introducing new transformations UPL. 

Here, we discuss the same passage by the duality of the augmented chord under the 

pitch perception model.  

 The underlying duality of the augmented triad creates a new progression form 

that switches progressively via a mixed state. For example, Abaug contains a pair of 

minor and major triads (Am, Ab). When Abaug is inserted between Am and Ab, the abrupt 

change from minor to major tones can be mitigated via a mixed state of major and 

minor tones. In addition, since the inverted forms of Abaug, Caug, and Eaug, contain the 

pairs (Am, Ab), (Dbm, C), and (Fm, E), Abaug functions as a buffer in the progression 

from either Fm, Am, or Dbm to E, Ab or C. This function is nothing other than Doothett's 

Cube Dance (Doothett & Steinbach 1998, Doothett 2008). Remember that parsimony 

and proximity are equivalent, so it is trivial that they become the same operation, but 

parsimony links each triad with OR, a selection of one of them, whereas proximity links 
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it with AND, a mixed state of them. Decomposing the augmented chord in the chord 

progression yields the following equation. 

D-[D/Ebm]-Gm-G-[G/Abm]-Cm-C-[C/Dbm]-Fm-F-[F/F#m]-Bbm 

Here [*/*] indicates that two triads coexist, and Baug is inverted to Gaug. Rewriting each 

triad as root notes yields the following equation. 

D-[D/bb]-d-G-[G/eb]-g-C-[C/ab]-c-F-[F/db]-f 

This is a superposition of the following two progressions. 

(D-D-d)-(G-G-g)-(C-C-c)-(F-F-f) 

(D-bb-d)-(G-eb-g)-(C-ab-c)-(F-db-f) 

The former is a negative motion on the 3-axis of a single note with alternating timbre 

mode. The latter is a negative motion on the 3-axis together with the former while 

reciprocating on the 5-axis. If one separates it as the following, it is shown that the 

progression is not only a translation on the 3-axis of the three-tone units but also that the 

inter-measure progression is promoted via a minor triad cycle. 

D-(bb-d-G)-(eb-g-C)-(ab-c-F)-(db-f) 

 

5.5 Coltrane's Giant Steps 

We take Giant Steps of Coltrane, which is known as a culmination of multi-tonic 

systems. Giant Steps has a very logically constructed chord progression. As Capuzzo 

discussed Martino's theory (Capuzzo 2006), there are numerous connections between 

Giant Steps and NRT, but it is not always easy to explain by means of transformation 

theory. McClimon used the representation of the transformation graph to give an elegant 

account of the transformational structure of II7-V7-I, which plays a significant role not 

only in Giant Steps but also in Jazz in general. However, his argument imposed the 
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strong restriction of restricting tetrads to the pitch classes having three tones, at the 

expense of generality (McClimon 2017). 

We discuss the transformational structure in Giant Steps using the sound 

integration model in pitch perception theory. The chord progression is the following.  

Bmaj7-D7-Gmaj7-Bb7-Ebmaj7-Am7-D7-Gmaj7-Bb7-Ebmaj7-F#7-Bmaj7-Fm7-Bb7 

-Ebmaj7-Am7-D7-Gmaj7-Dbm7-F#7-Bmaj7-Fm7-Bb7-Ebmaj7 Dbm7-F#7 

After descending the major third cycle of the maj7-7 repetition from Bmaj7 to Ebmaj7, the 

cycle is passed to the next descending cycle from Gmaj7 to Bmaj7 via II7-V7 progression 

of Am7-D7. Thereafter, the ascending major third cycle of the II7-V7-I motion goes from 

Fm7 to Fm7, before reaching the II7-V7 of Dbm7–F#m7. The frequency ratio of the maj7 

chord is 1/1:5/4:3/2:15/8. As already mentioned, it is represented as a superposition of 

two chords, the major triad 1/4*(4,5,6) and the minor triad 15/2* (1/6,1/5,1/4) with two 

pitch root notes equivalent to the root and seventh note (fig. 9). The m7 chord, which is 

II7 of the II7-V7 chord, has two approximate representations of the major and minor 

tetrads under the frequency structure 1/1:6/5:3/2:9/5 = 4:4.8:6:7.2 = 1/7.2:1/6:1/4.8:1/4, 

as already mentioned (fig. 9). As a result, the II7-V7 chord provides a pathway with the 

two pitch root tones of II7 as the entry points and the pitch root tone of V7 as the exit 

point via the perfect fifth and perfect fourth degrees from the II7. We call this the Dual 

Entry Dominant System (fig.10). The chord progression of Giant Steps is described by 

the two pitch root note progressions shown in fig. 11. The first progression consists of a 

linear progression on the 5-axis in the first half. It progresses one major third step at a 

time upwards on the 5-axis starting at bb with a timbre alternation of minor three-tone 

integration and major four-tone integration, and cycles through the octaves three times 

before reaching 11th chord units, where the second cycle involves I-V-I (d-A*-D*) in 

II7-V7. It should be pointed out that the step-by-step pitch root progression ascends on 
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the 5-axis in the harmonic space whereas the chord descends on the 5-axis. The second 

half ascends one major third step upwards on the 5-axis, repeating I-V-I under the 

timbre alternation of minor three-tone integration, major four-tone integration, and 

major four-tone integration, starting from bb, returning to bb, and ending by cycling the 

minor triad, Bm. The second progression consists of descending major third cycles with 

a repetition of the (5,3) and (3,2) consonance in the first half, starting at B, reaching Eb, 

then going backward one step on the 5-axis via the root note g* of II7, crossing the 

octave a total of two times repeating the (5,3) and (3,2) consonance again from G and 

reaching B. In the second half, the I-V-I ascends one major third step upwards on the 5-

axis, repeating the timbre alternation of the minor four-tone integration, major four-tone 

integration, and major three-tone integration, starting from d, returning to d, and ending 

by cycling the major triad, B. In each case, if we focus on the pitch root notes, they are 

connected by a continuous path connecting the grid points on Tonnetz step-by-step. 

This shows that, under the pitch perception theory based on Sound Integration, Giant 

Steps is written definitely by chains of transformations of chords, each chord of which 

is represented by a pitch accompanied by a timbre. 

 

6. Geometry in Harmony 

 

6.1 Simplicial Complex 

We have shown that the post-Lewinnian treatment (step-by-step transformation of 

chord) under the concept of sound group integration of pitch perception of the 

progression in NRT is successful in describing the progression of not only triads but 

also tetrads in a unified way. 
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 Let us now summarise our mathematical framework. Consider a basic 

tetrahedron H0 with 2,3,5,7 as vertices with the canonical index as the coordinate axis. 

The elements 2𝑛3𝑚5𝑝7𝑞 of the pitch group {2,3,5,7} can be assigned to the grid points 

of the lattice given by the translation of H0. Mapping a pitch class to each lattice point 

gives the 3D-Tonnetz given by Gollin and Tymoczko. From this tetrahedron, a chain of 

simplicial complexes is created to form a homology group (Bigo et.al. 2014). In fig. 12, 

the homology of consonance relationships with a tonic C generated from the pitch group 

{2,3,5,7} is shown. C3 is the tetrahedron made of the four-tone integration, and C2, C1, 

and C0 denote the figures created by 3, 2, and 1 vertex, respectively. ∂Cn is the 

boundary operator and gives a homomorphism from Cn to Cn-1. C2 contains the 

subgroups {2,3,5}, {2,3,7}, {2,5,7}, and {3,5,7} of the pitch group. C1 does {2,3}, 

{3,5}, and so on. Not all the elements of the subgroups but only a small set of each can 

be perceived under the limitation of acoustic physiology. The small set generated from 

{2,3} in C1 yields the Pythagorean scale, and the small set generated from {2,3,5} in C2 

yields the 5-limit JI. We note that {2,5} yields a whole-tone scale and {2,7} may 

provide the simplest prototype of the Slendro scale, often cited as an example of the 

five-note equal temperament (Polansky 1985) (table 7). The result of the cluster analysis 

of the musical tones in the Shruti system of traditional Indian music played by 

professional players could be well represented by {2,3,5,7} (Datta 2011, Takahashi 

2023b). {3,5,7} yields a tridecatonic scale having a tritave (1:3) circularity, which is 

known Bohlen-Pierce scale (Müller 2020). {3,5} gives its Pythagorean version, with the 

sequence of intervals 3:5 wrapping into tritave. {5,7} may yield a pentatonic scale 

having nearly two and a half octave (1:5) circularity (“pentave equivalence”). 

 All simplicial complexes can be oriented. The oriented tetrahedra represents the 

proper major and minor tetrads, and the oriented triangles in {2,3,5} represent the major 
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and minor triads. Orientations can be introduced in the same way for other simplicial 

complexes. These naturally introduced orientations will give a generalised major-minor 

tonality in the consonance relationship. Each simplicial complex has a homomorphism 

to a pitch through sound integration by harmonic template matching. Homology class 

classified by pitch gives a timbre. As a result, the tonsystem is represented by a fibre 

bundle with the group of simplicial complexes as the base space and the timbre as the 

fibre. One could consider formally JIs containing 11 or more primes and chain to C4 or 

higher, but in terms of acoustic physiology, the generators are closed at four (Takahashi 

2023a). Thus, ninth and larger chords will be perceived via morphisms to tetrad, triad, 

and dyad by the proximity under the pitch perception model. Under the homology 

picture, C7 and Cm7b5 are represented by the embedment of the proper tetrads into the 

group generated by {2,3,5}. We write it C3→C2{2,3,5}. It is a connection between 

different simplicial complexes via proximity. Similarly, Cmaj7#5 and Cm(maj7) give other 

embedments of C3→C2{2,3,5} (table. 4). In the C3→C2{2,3,5} embedding in 

diminished seventh chords, the root note and major/minor mode are degenerate in the 

pre-image (table 5).  

 The finite frequency resolution in hearing generates proximity between 

independent simplicial complexes, and the group acting on Cn allows transformation 

between different simplicial complexes under proximity. The proximity enables new 

chord progressions as if the space were connected by a wormhole, making possible a 

warp. We point out that homotopy would be necessary to be introduced to describe the 

embedding of such local structures into the global structure. The discussion of the 

homotopy structure of harmonies is a future task. Western classical music consisting of 

major triads is represented by C2, while music containing a seventh chord is represented 

by the direct product of C2 and C3. Do kinds of music expressed in C1 and C0 exist, 
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then? 

 

6.2 Non-Harmonic Integration  

Koizumi proposed the tetrachord theory of the sound structure of Japanese traditional 

music (Koizumi 1958). Japanese traditional music possesses all notes corresponding to 

pitch classes other than the minor fifth for the twelve-tone scale. Nevertheless, there, the 

sound combinations are limited and broken down into independent pentatonic scales for 

performance. We consider his tetrachord would be a typical example of the sound 

structure in C1.  

 Koizumi's tetrachord is not a series of four notes, but a set of three tones, with 

the two tones separated by fourth degree (frequency ratio 3:4) as the nuclear tones and 

the intermediate tones between them. The position of the intermediate tones 

corresponds approximately to the twelve equal temperament or 5-limit JI, so there are 

four tetrachords (fig.13a). The scales consist of conjunctions and disjunctions of the two 

tetrachords (conjunct scale is not popular). Koizumi's tetrachord theory successfully 

explained why Japanese traditional music has four pentatonic scales. Example 1 is the 

score of the lullaby of Itsuki village. It is a piece of example of Koizumi's tetrachord 

theory, where the tetrachords are the fundamental units for musical integration. The 

tetrachords of this piece are pairs of nuclear tones (A, D) and (E, A). Each tetrachord 

has F and Bb as intermediate tones, forming the Miyakobushi scale A, Bb, D, E, F, and 

A. The intermediate tones in this piece appear in pairs (F A), (Bb A), and (Bb D), where 

they act as decorated nuclear tones. The intermediate tones are classified as 

nonharmonic tones in Western music theory. The position of the tetrachord triads on the 

Tonnetz shows that the intermediate tones are not only tonotopical midpoints to the 

nuclear tones but also the nearest points in harmonic distance to the two neighbouring 
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nuclear tones, avoiding perfect fifths and major third consonance (fig.13b). They act as 

decorations, not by controlling the spectral structure of the tone integration through 

template matching, but through a non-harmonic fluctuation of the tone in frequency. 

The tetrachord progression becomes a motion between the three nuclear tones A, E, and 

D, which would correspond to I-IV-V in Western music. In NRT, the major triad and 

minor triad are the basic elements of sound structure. The triads are pairs of three tones 

with a frequency ratio of 4:5:6 or their inversion form, which undergo sound integration 

at C2 in the pitch perception model. On the other hand, as Koizumi's tetrachord is 

represented on Tonnetz, the pairs of nuclear tones are adjacent to each other on the 3-

axis. The intermediate tones are adjacent to the nuclear tones but do not form a triad. By 

using the tetrachord as the basic element of the sound structure instead of the triad, the 

three-tone integration at C2 is avoided and the sound group integration is limited to the 

two-tone integration between the nuclear tones at C1. The disjunction of two tetrachords 

forms a pentatonic scale covering an octave. Focusing on the tonic notes in the octave, 

the frequencies of the nuclear tones of the two tetrachords are 1/3mod2 and 3mod2 with 

respect to the tonic, respectively. As already mentioned, the perception of harmonics 

corresponds to the generalised major mode and the perception of subharmonics 

corresponds to the generalised minor mode, so the scale produced by the disjunction of 

the Koizumi’s tetrachords is tonally degenerate. 

 Why is the tetrachord given such a structure so that it avoids the tone group 

integration at C2 (and the integration is closed at C1)? We propose the following two 

hypotheses. Our first hypothesis is that the tone group integration at C2 should be 

avoided to keep the purity of the individual tones in the perception of consonance 

relationships because it would result in the perception of new tones different from what 

is heard (missing fundamental). Such a phantom sound would be an unnecessary artifact 
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in ASA. It is shown that the attitude of avoiding the chordal harmony exemplified here 

is observed in Chinese traditional music, where recognition of the “apposite” 

comparativism between Western and non-Western music is discussed in the context of 

decolonialism (Zhuqing 2021). On the other hand, the progression would be boring with 

only nuclear tones. Our second hypothesis is that the placement of intermediate tones is 

a timbre decoration other than the harmonic structure control in the sound integration, 

which is independent of the progression of the nuclear tones. The dual structure of 

intertone distance is used to place tones with a low DoC and a small tonotopical 

distance from the nuclear tones to add fluctuations in the sound. This tone decoration 

creates a change of sonority in the progression between the tetrachords, which are 

restricted to the perfect first degree and the perfect fifth degree. Japanese traditional 

music is often played in the melisma style. The style preference may also come from a 

preference for tonal modification in tonotopical measure rather than harmonic measure. 

 Now, is there music represented by C0? Percussion music without pitch is it, 

maybe. We would like to list rap music and Taiko performances separately. Historically 

speaking, it was not until the mid-twentieth century that they became established as an 

independent genre of music. We point out that it was after the establishment of the 

atonal music, which neutralised the tonality. We suspect that they are descendants of 

tonal music derived from the atonal music rather than a mere return to the rhythmic 

music. 

 In summary, we have shown that all number-ratio harmonic structures that 

constitute music, such as scales, chords, and chord progression can be described by 

mathematical structures using tetrahedral homology. The dynamics of music are 

governed by the dual structure of acoustic perception with physical (tonotopical) and 

cognitive (harmonic) measures, both of which we can consider biological origins. If we 
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call the simultaneous or successive relationship that exists between sounds a tonality, 

we would be able to consider that it was created by a survival strategy rather than 

culture, even if the choice of structure is determined by culture. 

 

7. Conclusion 

 

This paper considered harmony and harmonic progression in tonal music based on a 

tetrahedral homology model, which is based on the pitch perception model derived from 

the reinforcement learning in the Neuronal system using perturbative nonlinearity in the 

cochlear amplifier, where sounds are segregated and integrated using the harmonic 

structure of sounds as cues for SL in ASA. Acoustic signal perception is processed by 

tone group integration with harmonic template matching generated from the pitch group 

with four prime numbers (2, 3, 5, and 7) as the generators, and as a result of the 

processing, chords are decomposed into the product of pitch and timbre. This model 

provides the mathematical and neurobiological basis for the embedding of triads and 

tetrads into Tonnetz. By separating timbre from chords, it is possible to consider chord 

progressions independently of cardinality. Several pieces from Romantic music, jazz, 

and Japanese traditional music were chosen and their transformation-theoretic 

progressions of harmony were analysed. Our answers to Dahlhaus' three questions about 

tonality are (1) Is a natural foundation of harmonic tonality possible? YES. In our model, 

harmonic tonality is not a product of acoustic perception but a survival strategy of SL in 

ASA. (2) Are only chordal relationships tonal, or should one also describe as tonal pitch 

relationships not based on chords? CHORD IS NOT ESSENTIAL. Tonality is the entire 

system that integrates the pitch group and is the availability of template matching by 

harmonics (including subharmonics) and the cognitive costs associated with it. (3) Is the 
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centering of relationships on a tonic pitch or triad an essential feature of tonality? NO. 

Tonality is a system of two structures: a static structure (harmony, consonance) 

described by biophysically generated tetrahedral homology, and a dynamic structure 

(tonicity or its centricity) that binds it all together. In this sense, the atonal music of the 

twenteenth century, developed under the well-defined structure of the twelve equal 

temperament, was rather a neutralisation of major and minor tonality in tonal music, as 

well as of the number zero found for positive and negative numbers, and should be 

regarded as the discovery of an approximation of the zeroth tonality within the tonal 

category. It is the perception of sounds that have no number-ratio relationship, such as 

rain, wind, thunder, etc., that should be called atonal music. 
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Tables and Figures 

 

Table 1. Origin of the harmonics in the harmonic template: The harmonics N of the 

template are produced from the recursive matching of second and third signals with 

respect to the fundamental, where the numbers of their recursion are shown in the 

second and third columns. The third-order nonlinearity enables another matching via 

2𝑓1 − 𝑓2 process. The fourth column shows the combination of harmonics used for the 

2𝑓1 − 𝑓2 matching. (Takahashi 2023a) 
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Table 2. Rational form, Normal form, Decimal form, Prime form, and Proximate normal 

form of major triad, minor triad, and diminished triads as examples. 

 

 

 

Rational 1/1 5/4 3/2 1/1 6/5 3/2 1/1 6/5 5/3

Normal 4 5 6 10 12 15 15 18 25

Prime (2) 5 3 5 3 3x5 3x5 32 52

Decimal 4 4.8 6 x1/4 5 6 8.33 x1/5

Proximate 

Normal
4 5 6 5 6 4

Normal 1/6 1/5 1/4 1/30 1/25 1/18

Prime 1/3 1/5 (1/2) 1/(3x5) 1/52 1/32

Decimal 1/5 1/4.17 1/3 x5

Proximate 

Normal
1/5 1/4 1/6

Major triad Minor triad Diminished triad
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Table 3. Perceptual distance between chromatic triad chords: Bold italics are the chord 

names. The pairs are aligned according to Milne,2016. Their pitch root notes are written 

in uppercase letters. The DoC orders of major-major and minor-minor distances are the 

same and consistent with the assumption of the competition between 3 and 5 

accumulations, whereas those of major-minor and minor-major distances are not 

obvious. The exceptional proximity of Cm-Eb and C-Em would be strong evidence of 

four-tone integration and Triad Root Equivalence. 
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Table 4. Rational, Decimal, and Proximate normal form of tetrads: The pitch root notes 

are in boldface. 

 

 

Chord name

dom7 1/1 5/4 3/2 9/5 4 5 6 7.2 4 5 6 7

1/7.2 1/4.8 1/5.76 1/4

m7b5 1/1 6/5 36/25 9/5 1/7.2 1/6 1/5 1/4 1/7 1/6 1/5 1/4

4 4.8 5.76 7.2

maj7#5 1/1 5/4 25/16 15/8 3.84 4.8 6 7.2 4 5 6 7

m(maj7) 1/1 6/5 3/2 15/8 1/7.2 1/6 1/4.8 1/3.84 1/7 1/6 1/5 1/4

maj7 1/1 5/4 3/2 15/8 4 5 6 7.5 4 5 6 -

1/7.5 1/6 1/5 1/4 - 1/6 1/5 1/4

min7 1/1 6/5 3/2 9/5 4 4.8 6 7.2 4 5 6 7

1/7.2 1/6 1/4.8 1/4 1/7 1/6 1/5 1/4

Proximate normal formRational form Decimal form
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Table 5. Variations of four-tone integration of a diminished seventh chord: The pitch 

root notes are in boldface. 

 

   

  

dim7 1/1 6/5 36/25 5/3

C Eb F# A

x1/3 6/2 7.2/2 4.32 5

x6 1/6 1/5 1/4.17 2/7.2

x1/4 4 4.8 5.76 6.67

x4 1/4 2/6.67 2/5.56 2/4.8

x1/5 5 6 7.2 2x4.17

x5 1/5 1/4.17 2/6.94 2/6

x1/7 7 2x4.2 2x5.04 2x5.83

x7 1/7 1/5.83 1/4.86 1/4.2
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Table 6. Rational and Decimal form of a seventh suspended four chord.  

 

 

  

7sus4 1/1 4/3 3/2 16/9

C F G Bb

x1/4 4 5.33 6 7.11

x16/3 1/5.33 1/4 2/7.11 2/6
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Table 7. Relative pitches and intervals (in cents) of the Slendro scale, assigned by 

Polansky (1985) and modelled by the present work.  

 

 

  

Tuning I II III V VI I'

Polansky Tone 1 8/7 21/16 512/343 12/7 2

Interval 231.2 239.6 222.7 239.6 266.9

{2,7} Tone 1 8/7 343/256 49/32 7/4 2

Interval 231.2 275.3 231.2 231.2 231.2
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Figure 1. 12 tones of a chromatic scale and their numerical representation on Tonnetz: 

(a) Tonnetz and 12 chromatic tones. Various groupings are possible according to tuning 

(e.g. dotted area). (b) coordinate system in Rational form with C as the reference point. 

Lattice points are represented by relative frequencies 3n5m that are folded within an 

octave by the power of 2. (n, m) denotes indices for the powers of 3 and 5. 

 

  

(a) (b) 
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Figure 2. Positions of major triads on Tonnetz and the relative distance of their roots in 

perception: (a) positions and DoC of chords on Tonnetz. (b) chord distance map 

(Krumhansl,1983; 1998) rotated according to the 3- and 5-axis. The distance measured 

on the 3-axis is leveraged for the shift on the 5-axis. 

 

  

(a) (b) 
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Figure 3. Triad Root Equivalence of the pair of major and minor triads: A major triad 

with a frequency ratio of 4:5:6 and a minor triad with 1/4:1/5:1/6 are integrated into 

pitches of missing fundamental=1, with a difference of semitone chroma and four 

octaves, making them difficult to separate perceptually, resulting in perception as if in 

unison. Solid and broken circles are the pitch root notes of the major and minor triads. 
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Figure 4. Approximation of diminished (a) and augmented (b) triads to major and minor 

triads on Tonnetz: Both chords have major and minor triads in the proximate normal 

form, which are represented by a fold of the endpoints of the straight line. 

 

  

(a) (b) 
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Figure 5. Pitch root motion of Beethoven's Ninth Symphony, mm 143-176: Chord 

progression is C-Am-F-Dm-Bb-Gm-Eb-Cm-Ab-Fm-Db-Bbm-F#-Ebm-B-Abm-E-Dbm-A, 

which is written as a superposition of two series under Triad Root Equivalence (oval), 

(C-e)-(F-a)-(Bb-d)-(Eb-g)-(Ab-c)-(Db-f)-(F#-bb)-(B-eb)-(E-ab)-A and C-(f'-F)-(bb'-

Bb)-(eb'-Eb)-(ab'-Ab)-(db'-Db)-(f#'-F#)-(b'-B)-(e'-E)-(a'-A). The former is a 

monotonous upward motion on the 5-axis with alternating timbre mode due to Triad 

Root Equivalence, and the latter is a monotonous negative motion on the 3-axis with 

alternating timbre mode. 
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Figure 6. Pitch root motion of Brahms’ Concerto for Violin and Cello, Op. 102, mm 

270-178: Chord progression is Ab-Abm-E-Em-C-Cm-Ab-Abm-E, which is written as a 

superposition of two series under Triad Root Equivalence (oval), (Ab-eb)-(E-b)-(C-g)-

(Ab-eb)-E and Ab-(e'-E)-(c'-C)-(ab'-Ab)-(e'-E). The former is a monotonous positive 

motion on the 3-axis with alternating timbre mode due to Triad Root Equivalence, and 

the latter is a monotonous downward motion on the 5-axis with alternating timbre mode. 
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Figure 7. Pitch root motion of Liszt’s Grande Fantaisie Symphonique für Klavier and 

Orchester, mm 185-199: Chord progression is Bbm-A-Dbm-C-Em-Eb-Gm-F#-Bbm-A-

Dbm, which is written as a superposition of two series under Triad Root Equivalence 

(oval), (f-A)-(ab-C)-(b-Eb)-(d-F#)-(f-A)-ab and f-(Ab'-ab)-(B'-b)-(D'-d)-(F'-f)-(Ab'-ab). 

The former is a monotonous upward motion on the 5-axis with alternating timbre mode 

due to Triad Root Equivalence, and the latter is a monotonous downward motion on the 

3/5-axis with alternating timbre mode. 
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Figure 8. Pitch root motion of the opening of Take a Bow from Muse: Chord 

progression is D-Daug-Gm-G-Baug-Cm-C-Caug-Fm-F-Faug-Bbm. The augmented chord is 

written as a superposition of the major and minor triads. The pitch root tone progression 

is written as a superposition of two series, (D-f#-d)-(G-b-g)-(C-e-c)-(F-a-f) and D-(Bb-

d-G)-(Eb-g-C)-(Ab-c-F)-(Db-f-bb). The former is a monotonous negative motion of 

three-tone groups on the 3-axis with a side trip on the 5-axis, and the latter is a 

monotonous negative motion of the cycles within minor triads on the 3-axis. 
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Figure 9. Equivalence of major-seventh and minor-seventh chords with proper triads 

and proper tetrads: The major-seventh chord is a superposition of major and minor 

triads, where the four-tone integration has a too large error, the pitch root tones of which 

are in unison under Triad Root Equivalence. The minor-seventh chord is approximated 

better by a major and a minor tetrad under four-tone integration. 
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Figure10. Dual Entry Dominant System of II7-V7 chord: The min7 chord has two pitch 

root notes at the root and seventh. The following dominant chord has the pitch root note 

that is connected with those of the min7 chord by perfect fifth and perfect fourth, which 

provides dominant and subdominant progression paths. 
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Figure 11. Dual pitch root note progression of Giant Steps implying the 

transformational structure: Each chord is broken into pitch root notes that can be 

connected by two continuous step-by-step paths on Tonnetz. The upper-case and lower-

case letters represent major- (overtone) and minor-mode (undertone) timbre. Those with 

and without * represent the timbre of the four-tone and three-tone integration. The paths 

represent the chain of transformation of chords. 

 

 

  

No. 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Chord Bmaj7 D7 Gmaj7 Bb7 Ebmaj7 Am7 d7 Gmaj7 Bb7 Ebmaj7 F#7 Bmaj7 Fm7 Bb7

Pitch root 1 bb D* f# Bb* d A* D* f# Bb* d F#* bb F* Bb*

Pitch root 2 B D* G Bb* Eb g* D* G Bb* Eb F#* B eb* Bb*

15 16 17 18 19 20 21 22 23 24 25 26

Ebmaj7 Am7 D7 Gmaj7 C#m7 F#7 Bmaj7 Fm7 Bb7 Ebmaj7 C#m7 F#7

d A* D* f# C#* F#* bb F* Bb* d b* F#*

Eb g* D* G b* F#* B eb* Bb* Eb b* F#*
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Figure 12. Homology of consonance relationships with a tonic C generated from the 

pitch group {2,3,5,7}: Each simplicial complex is integrated into a pitch. Numbers in 

the brackets adjacent to notes represent rational form. (p1, p2,…)N and (p1, p2,…)p 

represent the normal form and prime form. The notes Eb and Bb here are borrowed 

from the nearest tone in the 5-limit JI. They are known as blue notes. 
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Figure 13. Koizumi's tetrachord units and their representation on Tonnetz: (a) Four 

Koizumi's tetrachord units consisting of common two nuclear tones separated by perfect 

fourth, C and F, and an intermediate tone between them with C as the reference note. 

The disjunction of tetrachords forms pentatonic scales. (b) Tone position of the 

tetrachord triads on Tonnetz. Shaded and broken tones represent the tetrachord disjunct 

to the original one. The intermediate tones are adjacent to one of the nuclear tones but 

are in a position where they do not undergo three-tone integration with the two nuclear 

tones.  

 

  

(a) (b) 
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Example 1. Score of Lullaby of Itsuki village with grouping of Koizumi’s tetrachords: 

Koizumi's tetrachords are (A, Bb, D) with nuclear tones A and D, and an intermediate 

tone Bb. Its disjunct tetrachord is (E, F, A) with nuclear tones E, F, and an intermediate 

tone F. The intermediate tones act as a decoration of the nuclear tones and the root note 

progression becomes I-IV-V motion among A, D, and E. 

 


