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Basis of spinors expressed by differential forms and calculating its norm
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The basis of spinors in three-dimensional Euclidean space is expressed by differential forms. Its expression is found
from the spectral decomposition of the modified Hamiltonian describing Weyl semimetals where the wavenumber pa-
rameters are replaced by the differential forms. The generalization of the definitions of differential forms including not
only fractional powers but also any algebraic functions is justified by algebraic extension of the symmetric Fock space
isomorphic to multivariable polynomial ring. We furthermore define the inner product for these fractional-order differ-
ential forms written in two ways; the formal power series and the multiple integral. While the norms of the powers ds2ν

are reduced to the variant of Dyson’s integral and have the value 2ν + 1, possibly related to the dimension of irreducible
representation, the norm of two-component spinor is given by the integral

I =
2
π

∫
x2+y2≥1&0≤x≤1&0≤y≤1

xydxdy√
(1 − x)(1 − y)(x2 + y2 − 1)

=
4
√

2
π

∫ 1

0

(1 +
√

z)
(1 + z)3

[
2E(z) − (1 − z)K(z)

]
dz ≃ 1.774,

where K(z) and E(z) are the complete elliptic integrals of the first and second kind, respectively. The product can also
be generalized to include one parameter p analogous to those in Lp space, reducing to the original one when p = 2. The
norm with p = ∞ is considered as an example and the result for ν = − 1

2 is written by the Watson-Iwata integral. We also
discuss the ambiguity of the definition of the spinor under coordinate rotation originating from Berry’s phase, and point
out that if we heuristically set ds = 0, the ambiguity disappears, though its implication remains unclear.

KEYWORDS: spinors, Weyl semimetals, Berry’s phase, symmetric algebra, algebraic extension, Dyson’s integral,
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In traditional textbooks of the theory of relativity, the vec-
tors and tensors are defined by their linear transformation
rules under the coordinate transformation, which, in today’s
standard theory of manifold,1) are understood as an expansion
coefficient using the basis of the (co)tangent space naturally
associated with the choice of the coordinate. This knowledge
tells us a genuine mathematical identification of the vectors
which we write e⃗x, e⃗y, e⃗z in the undergraduate lecture of elec-
tromagnetism and accept intuitively as an “arrow” without
precise definition; that is, their actual nature is the differential
operators ∂x, ∂y, ∂z for the tangent space and the differential
forms dx, dy, dz for the cotangent space.

How about spinors? In fact, the representation theory of
SO(3) found in the textbooks of quantum mechanics also
gives the “basisless” expression of spinors, which is analo-
gous to the above-mentioned traditional treatment of vectors;
if one gets the two-dimensional representation of rotation ma-
trices, then the spin- 1

2 particle is defined by the transforma-
tion rule under the multiplication of these 2×2 representation
matrices. We thus reach the question that what is an actual
entity of this geometrical object possessing these two com-
ponents as expansion coefficients. One may expect that this
question will be soon solved if we know how spinors have
been formulated in curved spacetime. However, the vielbein
formalism1) avoids this problem in a tricky way, where one
temporarily prepares a local orthonormal system by diagonal-
izing the metric tensor point by point, and basisless spinors
formulated once in a flat space as they are are placed on it.
This method makes it possible to discuss physical phenomena
concerning spinors in curved space, but the problem of iden-
tification of spinor becomes obscured. One might even think

*takahashi@phys.chuo-u.ac.jp, daisuke.takahashi@keio.jp

that this basisless formulation is the essential nature of spinor
and considering such question is meaningless. However, we
in reality encounter the spinor whose basis is explicitly writ-
ten by the square root of the differential form in conformal
field theory,2) where, in the general coordinate transformation
x = x(z), the fermion field transforms like ψ(z) =

(
dx
dz

)1/2
ψ(x),

which may be formally written as ψ(z)(dz)1/2 = ψ(x)(dx)1/2,
indicating that it is a “rank- 1

2 covariant tensor”. It simply sug-
gests that the composite of two spin- 1

2 is a spin-1, i.e., a vector.
In one dimension, the dimensions of the (co)tangent space are
also 1, so there remains no degree of freedom in making the
“square root of a basis”. However, if dimension gets larger,
what kind of combination of basis dx1, dx2, . . . , dxn is a suit-
able definition becomes nontrivial. Here we provide a possi-
ble solution in three dimension.

The starting observation is that the covariant vector A =∑3
i=1 Aidxi can be expressed as a trace of the Pauli matrices:

Aidxi = 1
2 Tr

[
(Aiσ

i)(σ jdx j)
]
, (1)

where σi = σ
i are Pauli matrices and henceforth summation

symbols for repeated indices are sometimes omitted. We also
use the notation (dx1, dx2, dx3) = (dx, dy, dz) depending on
the situation. Let us now consider the column and row spinor
ψ =

(
ψ↑
ψ↓

)
and ϕ = ( ϕ↑ ϕ↓ ). Their product ψϕ is a 2 × 2 ma-

trix possessing the irreducible decomposition into spin-0 and
spin-1, and the latter, following Eq. (1), is given by

ϕ(σ jdx j)ψ = Tr
[
ψϕ(σ jdx j)

]
= (ϕ↑ψ↓ + ϕ↓ψ↑)dx

− i(ϕ↑ψ↓ − ϕ↓ψ↑)dy + (ϕ↑ψ↑ − ϕ↓ψ↓)dz. (2)

Our present aim is to find the basis of spinor written by dif-
ferential forms. Looking at Eq. (2) carefully, we expect that a
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desired thing will be obtained by “cutting” the form (σ jdx j)
into two parts. That is, writing the spectral decomposition

σ jdx j = ds
(
v0v†0 − v1v†1

)
, ds B

√
dx2 + dy2 + dz2, (3)

where the decomposition is performed by regarding dx j’s as
ordinary real numbers (this will be justified later), then Eq. (2)
is given by ϕ(σ jdx j)ψ = ds

[
ϕv0v†0ψ − ϕv1v†1ψ

]
, and the col-

umn and row spinors with basis expressed by differential
forms would be constructed as

√
ds v†jψ = ψ↑

√
ds v∗j,↑ + ψ↓

√
ds v∗j,↓, (4)

√
ds ϕv j = ϕ↑

√
ds v j,↑ + ϕ↓

√
ds v j,↓, (5)

where we write v j =
( v j,↑

v j,↓

)
. Thus, the ket vectors |↑⟩ and |↓⟩,

which we learned in quantum mechanics, would be identified
as — or at least proportional to — the above

√
ds v∗j,↑ and√

ds v∗j,↓.
Let us investigate the decomposition (3) in more detail. In

fact, if the form dx j are replaced by an ordinary number x j, it
reduces to the diagonalization of the Weyl Hamiltonian

H(x) =
3∑

i=1

xiσi =

(
x3 x1 − ix2

x1 + ix2 −x3

)
, (6)

which, if the parameter x = (x1, x2, x3) is interpreted as a
Bloch wavenumber k, is equivalent to the model of Weyl
semimetals.3) It is also a minimal model where the adiabatic
change of the system parameter yields a nonvanishing phase
factor for quantum states, i.e., Berry’s phase [Ref. 1, Chap.
10], thus exhibiting topological phenomena.

In order to justify the diagonalization of the Weyl Hamil-
tonian where differential forms are substituted H(dx) instead
of ordinary numbers, we must define algebraic operations for
dx j’s including divisions, fractional powers, etc. It is achieved
by considering the symmetric algebra, which is isomorphic to
multivariable polynomial ring [Ref. 4, Chap. V]. This alge-
bra is also equivalent to the Fock space of bosonic many-body
systems. Then, the division is easily defined by that of polyno-
mial, and moreover, making an algebraic extension by adding
zeros of polynomials, we obtain the algebraic-function field.
By this extension, we can use the square root of differential
forms unambiguously.

Next, we define the inner product for this space. For
a while, we consider an abstract d-dimensional vector
space spanned by a basis e1, . . . , ed. We also write the ba-
sis of its dual space f1, . . . , fd satisfying ⟨ei, f j⟩ = δi j.
Then, the inner product between rank-r tensors is given
by ⟨ei1 ⊗ · · · ⊗ eir , f j1 ⊗ · · · ⊗ f jr ⟩ = δi1 j1 . . . δir jr . The cor-
respondence between polynomials and symmetric tensors
is as follows.4) Regarding e1, . . . , ed as indeterminates, the
monomial en1

1 en2
2 . . . end

d , n1, n2, . . . , nd ∈ Z≥0, corresponds to
en1

1 en2
2 . . . end

d = S(e⊗n1
1 ⊗e⊗n2

2 ⊗· · ·⊗e⊗nd
d ), where we write e⊗n B

e ⊗ · · · ⊗ e (n times) and S represents a projection operator to
the symmetric tensor space, satisfying S2 = S and acting as
S(ei1 ⊗ · · · ⊗ eir ) =

1
r!

∑
σ∈Sr

eiσ(1) ⊗ · · · ⊗ eiσ(r) . The same cor-
respondence also holds for f m1

1 f m2
2 . . . f md

d , m1,m2, . . . ,md ∈
Z≥0. The inner product of these two is then calculated as

⟨en1
1 . . . end

d , f m1
1 . . . f md

d ⟩ = δn1m1 . . . δndmd

( ∑d
i=1 ni

n1, . . . , nd

)−1

, (7)

where
(∑d

i=1 ni
n1,...,nd

)
=

(
∑d

i=1 ni)!
n1!...nd! is a multinomial coefficient.

Henceforth we only consider d = 3 though keeping
general d is not hard. Let A(e1, e2, e3) and B( f1, f2, f3) be
n-th order homogeneous functions, i.e., the functions s.t.
en

3A( e1
e3
, e2

e3
, 1) = A(e1, e2, e3) and f n

3 B( f1
f3
, f2

f3
, 1) = B( f1, f2, f3).

First let us assume n ∈ Z≥0 and A and B are polynomial
functions. Then, writing ξi = ei/e3, ηi = fi/ f3, i = 1, 2,
they have expansion A = en

3
∑

n1,n2∈Z≥0
an1,n2ξ

n1
1 ξ

n2
2 and B =

f n
3
∑

m1,m2∈Z≥0
bm1,m2η

m1
1 ηm2

2 and the inner product is given by

⟨A, B⟩ =
∑

n1,n2∈Z≥0

an1,n2 bn1,n2

(
n

n1, n2, n − n1 − n2

)−1

. (8)

If A and B are polynomials the range of this summation is
finite:

∑
0≤n1+n2≤n. On the other hand, when n < Z≥0 and/or A

and B include rational and/or fractional-power functions, their
Taylor series generally becomes infinite. Even in this case,
the inner product defined by Eq. (8) makes sense. However, if
we actually calculate this formal power series, the result often
diverges. So, we want another definition equivalent to this one
but has a larger convergence region. We can achieve it if we
find a linear operator giving the mapping

en1
1 en2

2 en3
3 f m1

1 f m2
2 f m3

3 → δn1m1δn2m2δn3m3

(
n

n1, n2, n3

)−1

. (9)

It is indeed realized by setting ei =
√
ρieiui , fi =

√
ρie−iui

and applying the integral operator 1
n!

∏3
i=1

∫ ∞
0 dρie−ρi

∫ 2π
0

dui
2π .

Thus, the integral expression of the inner product is given by

⟨A, B⟩ = 1
n!

3∏
i=1

∫ ∞

0
dρie−ρi

∫ π

−π

dui

2π

A(
√
ρ1eiu1,

√
ρ2eiu2,

√
ρ3eiu3 )B(

√
ρ1e−iu1,

√
ρ2e−iu2,

√
ρ3e−iu3 ), (10)

which often gives a finite value even when the series (8)
diverges. Replacing the quantum inner product by a classi-
cal multiple integral reminds us of path integral. The two
of the six-fold integral in Eq. (10) can be soon performed;
first, by shifting u1 → u1 + u3 and u2 → u2 + u3, the inte-
grand becomes u3-independent, and next, introducing the po-
lar coordinate (ρ1, ρ2, ρ3) = γ2(n̂2

1, n̂
2
2, n̂

2
3) with (n̂1, n̂2, n̂3) =

(sin β cosα, sin β sinα, cos β), the integration w.r.t. γ reduces
to Γ function. Therefore, the integral which we must actually
calculate is four-fold. We also note that if the integrand in
Eq. (10) only contains the even powers of e±iui ’s, the replace-
ment e±iui → e±iui/2 does not change the result and simplifies
the integrand. The examples considered below all belong to
this case and this replacement is made unless otherwise noted.

Note that this algebra can be equipped with another in-
ner product. Let p > 0 be a rational number. If the above-
described algebraic extension starts from the vector space
spanned by ep/2

1 , . . . , ep/2
d instead of e1, . . . , ed, the final alge-

braic field contains the same elements but the product (7) is
modified by

〈
en1

1 . . . end
d , f n1

1 . . . f nd
d

〉
p
B

( 2
p
∑d

i=1 ni

2
p n1, . . . ,

2
p nd

)−1

. (11)

The original one (7) corresponds to p = 2. The product itself
can be defined even for irrational p. In particular, the limit

2
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p→ ∞ is 〈
en1

1 . . . end
d , f n1

1 . . . f nd
d

〉
∞
= 1, (12)

and the integral expression realizing this inner product is

⟨A, B⟩∞=
3∏

i=1

∫ π

−π

dui

2π
A(eiu1, eiu2, eiu3 )B(e−iu1, e−iu2, e−iu3 ). (13)

The product ⟨·, ·⟩p is invariant under the orthogonal transfor-
mation (e′i)

p/2 = Ri je
p/2
j , ( f ′i )p/2 = Ri j f p/2

j with R an orthog-
onal matrix, which is partially similar to those in Lp space.
Hence, the product with p = 2 has prime importance in phys-
ical application.

Let us finish abstract algebra and go back to differential
forms. Replacing ei → dxi and fi → ∂

∂xi , the expressions
shown above can be used. As a basic example, let us con-
sider the norm of ds2ν = (dx2 + dy2 + dz2)ν. The dual element
is given by ∇2ν = (∂2

x + ∂
2
y + ∂

2
z )ν. One can prove

⟨ds2ν,∇2ν⟩ = 2ν + 1, (ν > − 3
2 ). (14)

The derivation of Eq. (14), expanding the integrand, reduces
to the formula

3∏
i=1

∫ π

−π

dui

2π
sin2l1 u2−u3

2 sin2l2 u3−u1
2 sin2l3 u1−u2

2 =
(l1+l2+l3)!(l1− 1

2 )!(l2− 1
2 )!(l3− 1

2 )!
π3/2(l1+l2)!(l2+l3)!(l3+l1)!

,

(15)

which is a variant of Dyson’s integral5) but eludes the proof
by Good6) (see also Ref. 7, §8.8); to calculate Eq. (15) we
need the constant term of

∏
j,l(1 −

z j

zl
)a j,l with a j,l = al, j but

their theorem only treats the case a j,l = a j.
The ∞-norm ⟨ds2ν,∇2ν⟩∞ has finite value when ν > −1. In

particular, the case ν = − 1
2 can be explicitly evaluated as

⟨ 1√
ds2
, 1√
∇2
⟩
∞
= 2

√
3

π2 K(sin2 π
12 )2 = 1

6π2 B( 1
2 ,

1
6 )2 ≃ 0.896, (16)

where K(z) is the complete elliptic integral of the first kind
and B(x, y) is the beta function. This integral reduces to those
studied by Watson and Iwata.8–10) The power series given be-
low suggests that all integrals with other half-odd integers
ν ≥ − 1

2 reduce to elliptic integrals.
It is worth observing what happens if the formal power se-

ries (8) is used. We consider general p-norm so we replace
the multinomial coefficient by (11) or (12). By binomial ex-
pansion ds2ν = dz2ν ∑∞

l=0

(
ν
l

)∑l
r=0

(
l
r

)
ξ2r

1 ξ
2l−2r
2 , the power series

of the norm is obtained but diverges. So, we temporarily in-
troduce an auxiliary variable xl in the summand, yielding

⟨ds2ν,∇2ν⟩p “=”
∞∑

l=0

l∑
r=0

(
ν
l

)2(l
r

)2( 4
p ν

4
p (ν−l), 4

p (l−r), 4
p r

)−1
xl, (17)

where “=” means that the limit x→ 1 is taken at the last stage.
This summation can be carried out for p = 2 and∞:

⟨ds2ν,∇2ν⟩ “=” F2
1

( 1,−ν
1
2−ν

; x
)
, (18)

⟨ds2ν,∇2ν⟩∞ “=” F3
2

( 1
2 ,−ν,−ν

1,1
; 4x

)
, (19)

where F p
q

( a1,...,ap
b1,...,bq

; z
)
B

∑∞
l=0

(a1)l...(ap)l

(1)l(b1)l...(bq)l
zl is the generalized

hypergeometric function. If ν ∈ Z≥0, both (18) and (19)
return a correct answer since they reduce to a polynomial.

The expansion of Eq. (18),
√
πΓ( 1

2−ν)
Γ(−ν)

1√
1−x
+(2ν+1)+O(

√
1 − x),

reproduces Eq. (14) if the first divergent term is excluded.

Equation (19) substituted x = 1 has a complex value,
which is inconsistent with the integral (13) whose result
is real and positive, implying something wrong in analytic
continuation. More concrete information can be obtained
for half-odd integer ν’s; using Clausen’s formula and the
contiguous relations [Ref. 11, Chap. IV], Eq. (19) reduces
to the elliptic integral. Furthermore, we can check that
its real part coincides with the integral (13) numerically.

Indeed, Eq. (19)ν=−1/2 = F3
2

( 1
2 ,

1
2 ,

1
2

1,1
; 4x

)
= 4

π2 K
(

1−
√

1−4x
2

)2
,

with x = 1 and Landen’s transformation, reduces to
4
π2 K(e−iπ/3)2 = 4

π2 K(sin2 π
12 )e−iπ/6, whose real part is (16).

Now we again consider writing the basis of
spinors by differential forms. Introducing the
spherical-coordinate-like parametrization (dx, dy, dz) =√

ds2(sin θ cosφ, sin θ sinφ, cos θ), which is now unam-
biguously defined by algebraic extension with θ, φ being
not ordinary numbers, the diagonalization of Eq. (6) with
differential forms substituted is performed in the same way
as that of ordinary numbers:

H(dx) =
√

ds2V(dx)σ3V(dx)†, (20)

V(dx) B e
−i
2 φσ3 e

−i
2 θσ2 . (21)

Using the column and row spinors ψ and ϕ, we can make
an SU(2)-invariant ϕH(dx)ψ = dsϕV(dx)σ3V(dx)†ψ. From
this expression, we introduce the covariant column spinor
(ds2)

1
4 V(dx)†ψ and the covariant row spinor (ds2)

1
4 ϕV(dx)

as a spinor whose basis is written by differential forms. We
also simply call them the covariant ket and bra. If we write
V = (v0, v1), we easily find v j(θ ± π) = ±(−1) jv1− j(θ). The
above definition includes an array of two possible bases v0 or
v1; either of two can be used, but we should carefully con-
sider Berry’s phase discussed later. In the spherical coordi-
nate (r, θ, φ) of normal numbers, if we formally allow nega-
tive r, the parametrization has the redundancy of replacement
(r, θ, φ) → (−r, θ + π, φ), reflecting the 1:2 correspondence of
SO(3) and SU(2). By this replacement the exchange of the
eigenvalues and eigenvectors r ↔ −r and v0 ↔ v1 occurs.
Since we normally restrict the range of θ to [0, π], if v0 is the
“nearside” basis, v1 is the “farside” one.

The contravariant ket and bra are also introduced in the
same way: (∇2)1/4V(∇)†ψ and (∇2)1/4ϕV(∇). The norm den-
sity is then obtained by the product of contravariant bra
and covariant ket ψ†

〈
(∇2)

1
4 V(∇),V(dx)†(ds2)

1
4

〉
ψ. If we write〈

(∇2)
1
4 V(∇), V(dx)†(ds2)

1
4

〉
= I012 +

∑3
i=1 Iiσi, we can check

that I1, I2, I3 all vanish because the power series only includes
the oscillating terms.

√
ds v0 and

√
ds v1 are orthogonal in this

sense. The only non-vanishing integral I0 is

I0 =
1

( 1
2 )!

3∏
i=1

∫ ∞

0
dρie−ρi

∫ π

−π

dui

2π

√
N3

(
1
2 +

ρ3+N2
2N3

) (
1
2 +

ρ1+ρ2
2N2

)
,

(22)

where N3 =
∣∣∣ρ1eiu1 + ρ2eiu2 + ρ3eiu3

∣∣∣ , N2 =
∣∣∣ρ1eiu1 + ρ2eiu2

∣∣∣.
A little calculation reveals the following expressions:

I0 =
2
π

∫
D

xydxdy√
(1 − x)(1 − y)(x2 + y2 − 1)

(23)

=
4
√

2
π

∫ 1

0

(1 +
√

z)
(1 + z)3

[
2E(z) − (1 − z)K(z)

]
dz ≃ 1.774, (24)
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where D is x2 + y2 ≥ 1&0 ≤ x ≤ 1&0 ≤ y ≤ 1, and K(z) and
E(z) are the complete elliptic integral of the first and second
kind. The closed form of this integral is unknown.

Finally, we discuss the ambiguity originating from Berry’s
phase under coordinate rotation. This problem is more seri-
ous than the same problem for the ordinary number (6); in
the latter, we only observe the hysteresis as an actual phys-
ical phenomenon under actual change of parameters, but in
the former, what we do is nothing but a change of frame, so
the physical output must be unchanged. Let L1, L2, and L3 be
generators of rotation with respect to x, y, and z axis in three
dimension, e.g., L3 = σ2 ⊕ 0, and write the element of SO(3)
by the Euler angle R = e−iL3αe−iL2βe−iL3γ. The corresponding
element in SU(2) is U = e−i σ3

2 αe−i σ2
2 βe−i σ3

2 γ. By the coordi-
nate rotation x′ = Rx, the corresponding differential form also
changes as dx′ = Rdx. We can soon check

H(Rdx) = UH(dx)U†. (25)

On the other hand, if the diagonalization is performed from
the beginning in the x′-coordinate, we get

H(Rdx) =
√

ds2V(Rdx)σ3V(Rdx)†. (26)

Since Eq. (25) with (20) must be equal to (26), and since the
eigenvector with nondegenerate eigenvalue is unique up to an
overall factor, there exists a diagonal matrix D such that

V(Rdx)D = UV(dx). (27)

Let θ′ and φ′ be angle parameters for the x′-coordinate. Then,
if we write D = eiξσ3 , the expression for Berry’s phase ξ is
found as

e2iξ =
cos θ cos(φ + γ) sin β + cos β sin θ − i sin β sin(φ + γ)

sin θ′
.

(28)

Since cos θ′ = cos β cos θ−cos(φ+γ) sin β sin θ, this is indeed
a unit complex number (|eiξ | = 1), but not identically 1. How-
ever, if we rewrite this expression using cos θ = dz

ds , e±iφ =
dx±idy√
ds2−dz2 , and heuristically set ds→ 0, we obtain

e2iξ=

sin β( (cos γdx−sin γdy)dz−idyds√
ds2−dz2

) + cos β
√

ds2 − dz2√
ds2 − (cos βdz − cos γ sin βdx + sin γ sin βdy)2

ds→0
−→ 1.

(29)

Thus, if we would have some justification for this replace-
ment, non-uniqueness caused by Berry’s phase would be
eliminated.

The above heuristic replacement also works for vectors
obtained by the composition of two spinors. The compo-
sition of ket and bra (

√
dsv†i ψ)(

√
dsϕv j) with i, j = 0, 1

can be treated by matrix V†ψϕVds all at once; intro-
ducing the notation ψϕ = 1

2 (n12 +
∑3

i=1Ψiσi), we ob-

tain V†ψϕVds = 1
2 n

(
ds

ds

)
+ 1

2Ψ3

(
dz −

√
ds2−dz2

−
√

ds2−dz2 −dz

)
+

1
2Ψ1

 dx dxdz+idsdy√
ds2−dz2

dxdz−idsdy√
ds2−dz2

−dx

 + 1
2Ψ2

 dy dydz−idsdx√
ds2−dz2

dydz+idsdx√
ds2−dz2

−dy

 . While the di-

agonal components, which are the gauge-invariant com-
bination v†j and v j and Berry’s phase cancels out, suc-
cessfully yield the spin-0 and spin-1 components, the off-
diagonal components, the composition of v†j and v1− j, de-
pend on Berry’s phase and do not provide an ordinary
scalar and vector. However, if we set ds → 0, we get

V†ψϕVds → 1
2
∑3

j=1Ψ jdx j
(

1
i

)
( 1 i ), thus all four compo-

nents present vectors. The composition of two kets can also
be considered. Let ψ, χ be both column spinors. The com-
position of the gauge-invariant combination v†0 and v†1 suc-
cessfully generates the scalar and vector: (

√
dsv†0ψ)(

√
dsv†1χ) =

1√
2

(
Φ1,1

−(dx+i dy)√
2
+ Φ1,0dz + Φ1,−1

dx−idy√
2
+ Φ0,0ds

)
, where

(Φ1,1,Φ1,0,Φ1,−1,Φ0,0) = (ψ↑χ↑,
ψ↑χ↓+ψ↓χ↑√

2
, ψ↓χ↓,

ψ↑χ↓−ψ↓χ↑√
2

)
is the spin-triplet and singlet components. On the other
hand, the composition of the gauge-dependent pair, two
v†j ’s, yields (

√
dsv†jψ)(

√
dsv†jχ) = 1√

2

[
(dx+idy)(ds+(−1) jdz)√

2
√

ds2−dz2 Φ1,1 +

(−1) j √ds2−dz2Φ1,0 +
(dx−idy)(ds−(−1) jdz)√

2
√

ds2−dz2 Φ1,−1

]
, which does not re-

duce to the covariant vector, but if we set ds → 0, we obtain
a vector i(−1) j

√
2

(Φ1,1
−(dx+i dy)√

2
+ Φ1,0dz + Φ1,−1

dx−idy√
2

).
A concluding remark is on the implication of the matrix

σ jdx j in Eq. (3). In physics, vectors and matrices appear as
an equivalent representation of bases of geometrical objects.
However, σ jdx j already includes the basis in its matrix com-
ponents. Therefore, these Pauli matrices are not an array of
expansion coefficients of physical quantities but a purely al-
gebraic notion expressing symmetry and structure of physi-
cal systems. In fact, in tensor networks and matrix product
states,12) matrices are already heavily used in this way, where
they consider matrices whose component itself is a ket vector;
for example, the ground state of the AKLT model is known to
reduce the matrix product state. Thus the spinor decomposi-
tion presented in this manuscript might provide a novel dis-
section tool of quantum states in these fields.

The detailed calculations of the integrals will be submitted
elsewhere. Several closely related concepts would be found in
other fields including, e.g., spin geometry and twistor theory,
and identifying these connections is left for future work.
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