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THE LINDELÖF AND RIEMANN HYPOTHESES

TAKASHI NAKAMURA

Abstract. Let q ≥ 2 be an integer, ζ(s) be the Riemann zeta function, and put Tq(s) :=
(s + 1)(1 − s)−1(qs+2 − 1)ζ(s + 2) − 4π2s−1(1 − s)−1(q3−s − 1)ζ(s − 2). In the present
paper, we show that the function Tq(s) has Riemann’s functional equation and its zeros
only at the negative even integers and satisfies the Lindelöf and Riemann hypotheses.
In addition, we give functions satisfy Riemann’s functional equation and an analogue of
the Lindelöf hypothesis but do not fulfill an analogue of the Riemann hypothesis.

1. Introduction and Main results

1.1. Introduction. Let q > 2 be an integer, and χ(n) be a Dirichlet character (mod q).
Then, for ℜ(s) := σ > 1, the Riemann zeta function ζ(s) and the Dirichlet L-function
L(s, χ) are defined by the ordinary Dirichlet series

ζ(s) :=
∞∑
n=1

1

ns
, L(s, χ) :=

∞∑
n=1

χ(n)

ns
,

respectively. The Riemann zeta function ζ(s) is continued meromorphically and has a sim-
ple pole at s = 1 with residue 1. The Dirichlet L-function L(s, χ) can be analytically con-
tinued to the whole complex plane to a holomorphic function if B0(χ) :=

∑q−1
r=0 χ(r)/q = 0,

otherwise to a meromorphic function with a simple pole, at s = 1, with residue B0(χ). It
is widely known that ζ(s) satisfies Riemann’s functional equation

ζ(1− s) = Γcos(s)ζ(s), Γcos(s) :=
2Γ(s)

(2π)s
cos
(πs
2

)
(1.1)

(e.g., [15, (2.1.8)]). The first converse theorem on the Riemann zeta function ζ(s) is
proved by Hamburger [3, Satz 1] (see also [15, Chapter 2.13]) who characterized ζ(s) by
Riemann’s functional equation above.

The distribution of zeros of the Riemann zeta function is one of the central problems in
mathematics. By the Euler product of ζ(s), the Riemann zeta function does not vanish
when σ > 1. In addition, ζ(s) ̸= 0 for ℜ(s) < 0 except for s = −2n, where n ∈ N by the
fact above and the functional equation (1.1). The Riemann hypothesis (RH, in short) is
concerned with the locations of nontrivial (non-real) zeros, and states that:

RH The real part of every nontrivial zero of ζ(s) is 1/2.

The following estimation of the order of the Riemann zeta function is widely known (e.g.
[15, Chapter 5]):

|t|1/2−σ ≪ ζ(σ + it) ≪ |t|1/2−σ, |t| ≥ 1, σ < 0. (1.2)
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For each σ ∈ R, we define µ(σ) as the lower bound of the numbers ξ such that

ζ(σ + it) = O
(
|t|ξ
)
, |t| ≥ 1.

The Lindelöf hypothesis (LH, in short) is that the graph of µ(σ) is written by

LH µ(σ) =

{
1/2− σ σ ≤ 1/2,

0 σ > 1/2.
(1.3)

The following fact is well-known

the Lindelöf hypothesis is implied by the Riemann hypothesis.

Let N(T, ζ) denote the numbers of zeros of ζ(s) in the region 0 ≤ ℜ(s) ≤ 1 and 0 <
ℑ(s) < T . Then the following Riemann-von Mangoldt formula is well-known (e.g., [15,
Theorem 9.4]). As T → ∞,

N(T, ζ) =
T

2π
log T − 1 + log 2π

2π
T +O(log T ).

Similar asymptotic formula holds for Dirichlet L-functions (e.g., [5, Theorem 5.8]). As
an analogue of the Riemann hypothesis, the generalized Riemann hypothesis (GRH, in
short) asserts that, for every Dirichlet character χ and every complex number s ̸∈ R<0

with L(s, χ) = 0, then the real part of s ∈ C is 1/2.
Clearly, the Riemann hypothesis implies that the number of zeros of ζ(s) on the line

segment from 1/2 to 1/2 + iT coincides with N(T, ζ). Related to this fact, Bombieri and
Hejhal gave functions whose almost all non-real zeros are located only on ℜ(s) = 1/2 but
do not satisfy an analogue of the Riemann hypothesis. More precisely, they showed that

j∑
h=1

bhL(s, χh), j > 1, bh ∈ R \ {0}, (1.4)

where χh ranges over distinct primitive even characters to some fixed modulus q (similarly
if χh ranges over odd characters), has 100 percent of zeros on the line σ = 1/2 under the
GRH and assumptions on well-spacing of zeros for Dirichlet L-functions (see [2, Theorem

A]). Note that the function
∑j

h=1 bhL(s, χh) has infinitely many non-real zeros in the strip
1/2 < ℜ(s) < 1 by [6, Theorem 7.3] or [13, Theorem].

Neither the RH nor GRH are proved. However, there are some functions whose all
non-real zeros are located only on the critical line ℜ(s) = 1/2. For example, Taylor [14]
showed that ζ∗(s + 1/2) − ζ∗(s − 1/2), where ζ∗(s) := π−s/2Γ(s/2)ζ(s), has all its zeros
on the critical line σ = 1/2 (see also [9, Exercise 10.2.1.7]). His theorem, which can be
proved by Proposition 2.2, is generalized by many mathematicians, for example, Lagarias
and Suzuki [7]. Furthermore, the author [12] showed the following. Let χ3 and χ4 be
the non-principal Dirichlet characters mod 3 and 4, respectively and define the functions
R1(s) and R2(s) by

R1(s) := s3s+1L(s+ 1, χ3) + 2π
√
3L(s− 1, χ3),

R2(s) := s4s+1L(s+ 1, χ4) + 4πL(s− 1, χ4).

Then R1(s) and R2(s) satisfy both Riemann’s functional equation and the Riemann hy-
pothesis. More precisely, the functions fulfill

R1(1− s) = Γcos(s)R1(s), R2(1− s) = Γcos(s)R2(s).
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In addition, all non-real zeros of R1(s) and R2(s) are on the critical line σ = 1/2, and
analogues of Riemann-von Mangoldt formulas hold for R1(s) and R2(s).

On the contrary, there are no examples which satisfy an analogue of (1.2) and the
Lindelöf hypothesis (see Sections 3.1).

1.2. Main results. In the present paper, we generalize the functions R1(s) and R2(s)
above. Let χ be a primitive real Dirichlet character mod q and put

R(l)(s, χ) := (s)lq
s+lL(s+ l, χ) + (2π)lψ(l)

√
qL(s− l, χ),

where l ∈ N, (s)l and ψ(l) are defined as

(s)l := s(s+ 1) · · · (s+ l − 1), ψ(l) :=

{
1 l ≡ 0, 1 mod 4,

−1 l ≡ 2, 3 mod 4.

Then we have the following.

Theorem 1.1. Let l be an odd natural number and χ be odd. Then, R(l)(s, χ) satisfies
Riemann’s functional equation

R(l)(1− s, χ) = Γcos(s)R
(l)(s, χ) (1.5)

with R(l)(1/2, χ) > 0, has its zeros only at the non-positive even integers and non-real
numbers with real part 1/2. Moreover, when l is an even natural number and χ is an even
Dirichlet character, the function R(l)(s, χ) has the same property.

For principal Dirichlet characters, we have the following.

Theorem 1.2. Let q be a natural number greater than 1 and put

ζ(2k)q (s) := (s)2k
(
qs+2k − 1

)
ζ(s+ 2k) + (−1)k(2π)2k

(
q1−s+2k − 1

)
ζ(s− 2k).

Then, the function ζ
(2k)
q (s) has Riemann’s functional equation ζ

(2k)
q (1−s) = Γcos(s)ζ

(2k)
q (s)

with ζ
(2k)
q (1/2) > 0, and its zeros only at the non-positive even integers and non-real

numbers with real part 1/2.

By theorems above, we have the following main result. It should be emphasised that
the pole and real zeros of the functions U(s, χ) and Tq(s) below are located only on s = 1
and s/2 ∈ Z≤−1 just like the Riemann zeta function. Furthermore, the functions U(s, χ)
and Tq(s) satisfy an analogue of (1.2) and the Lindelöf hypothesis for ζ(s).

Theorem 1.3. Let χ be a primitive real even Dirichlet character mod q, where q is a
natural number greater than 1. We put

U(s, χ) :=
R(2)(s, χ)

s(1− s)
, Tq(s) :=

ζ
(2)
q (s)

s(1− s)
.

Then, the function U(s, χ) has Riemann’s functional equation U(1−s, χ) = Γcos(s)U(s, χ)
with U(1/2, χ) > 0, a pole at s = 1 and its zeros only at the negative even integers and
non-real numbers with real part 1/2. Furthermore, one has

|t|1/2−σ ≪ U(σ + it, χ) ≪ |t|1/2−σ, |t| ≥ 1, σ < 0. (1.6)

Moreover, the number µ(σ) defined as the lower bound of the numbers ξ such that U(σ +
it, χ) ≪σ,q |t|ξ is given by (1.3). In addition, the function Tq(s) has the same property.
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As an analogue of (1.4), we consider the following function. Let bh ∈ C \ {0} and χh

be a real Dirichlet character mod q and put

R(l)(s,χ, b) :=

j∑
h=1

bhR
(l)(s, χh). (1.7)

Then we have the following. Note that when j = 1, we can take l0 = 1 in the statement
below by Theorem 1.1.

Proposition 1.4. Suppose b1, . . . , bj > 0 and all Dirichlet characters χ1, . . . , χj are odd.
Then the function R(2l−1)(s,χ, b) satisfies Riemann’s functional equation

R(2l−1)(1− s,χ, b) = Γcos(s)R
(2l−1)(s,χ, b). (1.8)

Furthermore, there exist l0 ∈ N such that for any l ≥ l0, the function R(2l−1)(s,χ, b) has
its zeros only at the non-positive even integers and complex numbers with real part 1/2.
When all χ1, . . . , χj are even, the same statement holds if 2l − 1 is replaced by 2l.

The theorem above should be compared with the fact that
∑j

h=1 bhL(s, χh) does not
satisfy analogues of the GRH (see Section 1.1). In addition, we have the following which
gives functions satisfy an analogue of the Lindelöf hypothesis but do not fulfill an analogue
of the Riemann hypothesis.

Theorem 1.5. Let χ1, . . . , χj be primitive real even distinct Dirichlet characters, assume

that there exists m ∈ N such that
∑j

h=1 bhχh(m) ̸= 0, where bh ∈ C \ {0}, and put

U(s,χ, b) :=
R(2)(s,χ, b)

s(1− s)
.

Then, the function U(s,χ, b) has a pole at s = 1 and Riemann’s functional equation
U(1 − s,χ, b) = Γcos(s)U(s,χ, b). Furthermore, the number µ(σ) defined as the lower
bound of the numbers ξ such that U(σ + it,χ, b) ≪σ,q |t|ξ is given by (1.3). However,
there exist j ∈ N and b1, . . . , bj ∈ C \ {0} such that U(s,χ, b) has a zero for ℜ(s) > 1/2.

In addition, we have the Riemann von Mangoldt formula holds for R(l)(s,χ, b).

Proposition 1.6. Let χ be a real Dirichlet character mod q. Then we have

N
(
T,R(l)(s,χ, b)

)
=

T

2π
log T +

log(q2/2π)− 1

2π
T +O(log T ). (1.9)

The contents of the paper are as follows. In Section 2, we give proofs of results in
this subsection. In Section 3, we give some remarks on the Lindelöf hypothesis, infinite
product representations, Hardy’s Z-functions and numerical calculations for T2(s) and
U(s, χ5), where χ5 is the non-primitive real Dirichlet character mod 5.

2. Proof

2.1. Preliminaries. For 0 < a ≤ 1, we define the Hurwitz zeta function ζ(s, a) and the
periodic zeta function F (s, a) by

ζ(s, a) :=
∞∑
n=0

1

(n+ a)s
, F (s, a) :=

∞∑
n=1

e2πina

ns
, σ > 1,
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respectively. The both infinite series of ζ(s, a) and F (s, a) converge absolutely in the
region σ > 1 and uniformly in each compact subset of this half-plane. The Hurwitz zeta
function ζ(s, a) can be analytically continued for all s ∈ C except s = 1, where there
is a simple pole with residue 1 (e.g., [1, Section 12]). If 0 < a < 1, the Dirichlet series
of F (s, a) converges uniformly in each compact subset of the half-plane σ > 0 (e.g., [8,
p. 20]) and F (s, a) is continuable to the whole complex plane (e.g., [8, Section 2.2]).

Next, for 0 < a ≤ 1/2, define functions Z(s, a), P (s, a), Y (s, a) and O(s, a) by

Z(s, a) := ζ(s, a) + ζ(s, 1− a), P (s, a) := F (s, a) + F (s, 1− a)

Y (s, a) := ζ(s, a)− ζ(s, 1− a), O(s, a) := −i
(
F (s, a)− F (s, 1− a)

)
.

We can easily see that P (s, a), Y (s, a) and O(s, a) are entire functions when 0 < a < 1/2.
However, the function Z(s, a) has a simple pole at s = 1. In addition, for 0 < a ≤ 1/2,
define the quadrilateral zeta function Q(s, a) by

2Q(s, a) := ζ(s, a) + ζ(s, 1− a) + F (s, a) + F (s, 1− a).

Clearly, we have 2Q(s, a) = Z(s, a) + P (s, a). The function Q(s, a) can be continued
analytically to the whole complex plane except s = 1. In [11, Theorem 1.1], the author
prove the functional equation

Q(1− s, a) = Γcos(s)Q(s, a). (2.1)

We remark that the gamma factor in (2.1) completely coincides with that of the functional
equation for ζ(s) appearing in (1.1). Moreover, it should be emphasised that Riemann’s
functional equation for Q(s, a) does not contradict to Hamburger’s theorem since Q(s, a)
can not be expressed as any ordinary Dirichlet series.

In [10, Proposition 2.2], the following is proved. Let χ be a primitive Dirichlet character,
G(χ) be the Gauss sum associated to χ, and 0 < r < q be relatively prime integers. If
χ(−1) = 1, we have

L(s, χ) =
1

2qs

q∑
r=1

χ(r)Z(s, r/q) =
1

2G(χ)

q∑
r=1

χ(r)P (s, r/q). (2.2)

When χ(−1) = −1, one has

L(s, χ) =
1

2qs

q∑
r=1

χ(r)Y (s, r/q) =
i

2G(χ)

q∑
r=1

χ(r)O(s, r/q). (2.3)

Let χ be a real primitive character modulo q, where q > 1 and 2κ(χ) := 1 − χ(−1).
Then, it is widely known (e.g., [5, Chapter 4.6]) that

ξ(s, χ) = ξ(1− s, χ), ξ(s, χ) =

(
q

π

)(s+1)/2

Γ

(
s+ κ(χ)

2

)
L(s, χ). (2.4)

From [5, Theorem 5.6], we can see that ξ(s, χ) is an entire function of genus one when
χ is primitive. According to Phragmèn-Lindelöf convexity principal and the functional
equation above, we have the following (see [15, Chapter 5.1]).

Lemma 2.1. Let ε > 0. Then we have

ζ(s), L(s, χ) ≪q,σ |t|gε(σ), gε(σ) :=


1/2− σ σ < 0,

(1− σ)/2 + ε 0 ≤ σ ≤ 1,

0 σ > 1.
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Taylor’s theorem mentioned in Section 1.1 can be proved by the following shown by
Lagarias and Suzuki [7]. It should be noted that their theorem is a key for the proof of

the Riemann hypothesis for R(l)(s, χ) and ζ
(2k)
q (s).

Lemma 2.2 ([7, Theorem 4]). Let F (s) be an entire function of genus zero or one, be
real on the real axis, and satisfy F (s) = ±F (1 − s) for some choice of sign, and there
exists α > 0 such that all zeros of F (s) lie in the vertical strip |ℜ(s)− 1/2| < α.
Then for any real γ ≥ α,∣∣∣∣F (s+ γ)

F (s− γ)

∣∣∣∣ > 1 if ℜ(s) > 1

2
,

∣∣∣∣F (s+ γ)

F (s− γ)

∣∣∣∣ < 1 if ℜ(s) < 1

2
.

The next proposition is easily proved by the lemma in [15, Section 9.4].

Lemma 2.3. Let σ1 > 1 and 0 ≤ α ≤ β < σ1. Let f(s) be an analytic function, real for
real s, regular for σ ≥ α; let |ℜ(f(σ1 + it))| ≥ m > 0 and∣∣f(σ′ + it′)

∣∣ < Mσ,t, σ′ ≥ σ, 1 ≤ t′ ≤ t.

Then if T is not the ordinate of a zero of f(s),∣∣arg f(σ + iT )
∣∣ < π

log((σ1 − α)/(σ1 − β))

(
logMα,T+2 − logm

)
+

3π

2
, σ ≥ β.

2.2. Proof of Theorem 1.1. Roughly speaking, we prove the functional equation and
Riemann hypothesis for R(l)(s, χ) by the equality (2.1) and Lemma 2.2, respectively.

Proof of Riemann’s functional equation for R(l)(s, χ). For l ∈ N, we have

S(l)(1− s, a) = Γcos(s)S
(l)(s, a), S(l)(s, a) := 2

∂l

∂la
Q(s, a) (2.5)

by differentiating both side of (2.1) with respect to 0 < a ≤ 1/2. For σ > 3, it holds that

∂

∂a
Z(s, a) =

∞∑
n=0

∂

∂a

(
1

(n+ a)s
+

1

(n+ 1− a)s

)
= −sY (s+ 1, a),

∂

∂a
P (s, a) =

∞∑
n=0

∂

∂a

cos(2πna)

ns
= −2π

∞∑
n=0

sin(2πna)

ns−1
= −2πO(s− 1, a).

Moreover, one has

∂2

∂2a
Z(s, a) = −s ∂

∂a
Y (s+ 1, a) = s(s+ 1)Z(s+ 2, a),

∂2

∂2a
P (s, a) = −2π

∂

∂a
O(s− 1, a) = −(2π)2P (s− 2, a).

Thus, for l = 2k − 1, we have

Z(2k−1)(s, a) :=
∂2k−1

∂2k−1a
Z(s, a) = (−1)2k−1(s)2k−1Y (s+ 2k − 1, a),

P (2k−1)(s, a) :=
∂2k−1

∂2k−1a
P (s, a) = (−1)k(2π)2k−1O(s− 2k + 1, a),

(2.6)



L-FUNCTIONS WITH THE LINDELÖF AND RIEMANN HYPOTHESES 7

if ℜ(s) > 0 is sufficiently large. When l = 2k, it holds that

Z(2k)(s, a) :=
∂2k

∂2ka
Z(s, a) = (−1)2k(s)2kZ(s+ 2k, a),

P (2k)(s, a) :=
∂2k

∂2ka
P (s, a) = (−1)k(2π)2kP (s− 2k, a),

(2.7)

for sufficiently large ℜ(s) > 0. Recall that Z(s, a), Y (s, a), P (s, a) and O(s, a) are contin-
ued meromorphically. By this fact, equations in (2.6) and (2.7) holds for all s ∈ C except
for singularities.

We have iG(χ) =
√
q by [5, Theorem 3.3] if χ is odd and real. Hence, we obtain

q−1∑
r=1

χ(r)S(2k−1)(s, r/q) =

q−1∑
r=1

χ(r)Z(2k−1)(s, r/q) +

q−1∑
r=1

χ(r)P (2k−1)(s, r/q)

= (−1)2k−1(s)2k−1

q−1∑
r=1

χ(r)Y (s+ 2k − 1, r/q) + (−1)k(2π)2k−1

q−1∑
r=1

χ(r)O(s− 2k + 1, r/q)

= (−1)2k−1(s)2k−1q
s+2k−1L(s+ 2k − 1, χ) + (−1)k(2π)2k−1√qL(s− 2k − 1, χ)

from (2.3) and (2.6). On the other hand, one has G(χ) =
√
q by [5, Theorem 3.3] when

χ is even and real. Thus, by (2.2) and (2.7), we have

q−1∑
r=1

χ(r)S(2k)(s, r/q) =

q−1∑
r=1

χ(r)Z(2k)(s, r/q) +

q−1∑
r=1

χ(r)P (2k)(s, r/q)

= (−1)2k(s)2k

q−1∑
r=1

χ(r)Z(s+ 2k, r/q) + (−1)k(2π)2k
q−1∑
r=1

χ(r)P (s− 2k, r/q)

= (s)2kq
s+2kL(s+ 2k, χ) + (−1)k(2π)2k

√
qL(s− 2k, χ).

Clearly, we have

q−1∑
r=1

χ(r)S(l)(1− s, r/q) = Γcos(s)

q−1∑
r=1

χ(r)S(l)(s, r/q)

from (2.5). In addition, one has

(−1)2k−1R(2k−1)(s, χ) =

q−1∑
r=1

χ(r)S(2k−1)(s, r/q), R(2k)(s, χ) =

q−1∑
r=1

χ(r)S(2k)(s, r/q).

Therefore, we obtain Riemann’s functional equation for R(l)(s, χ). □
Proof of the Riemann hypothesis for R(2k−1)(s, χ). Assume l = 2k−1 and χ is odd. Define
the function Γ♭

k,q(s) as

Γ♭
k,q(s) :=

(
q

π

)s/2−k+1

Γ

(
s

2
− k + 1

)
.

By the well-known formula sΓ(s) = Γ(s+ 1) and the definition of ξ(s, χ), one has

ξ(s− 2k + 1, χ) =

(
q

π

)s/2−k+1

Γ

(
s

2
− k + 1

)
L(s− 2k + 1, χ) = Γ♭

k,q(s)L(s− 2k + 1, χ),
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ξ(s+ 2k − 1, χ) =

(
q

π

)s/2+k

Γ

(
s

2
+ k

)
L(s+ 2k − 1, χ)

= Γ♭
k,q(s)

(
q

2π

)2k−1

(s− 2k + 2) · · · (s− 2)s(s+ 2) · · · (s+ 2k − 2)L(s+ 2k − 1, χ).

Applying Lemma 2.2, we have∣∣ξ(s+ 2k − 1, χ)
∣∣ > ∣∣ξ(s− 2k + 1, χ)

∣∣, ℜ(s) > 1/2. (2.8)

To avoid the poles of Γ♭
k,q(s), we suppose that s/2−k+1 ̸= m, wherem is a non-positive

integer. Dividing the both side hand of (2.8) by |Γ♭
k,q(s)|, we obtain∣∣q2k−1(s− 2k + 2) · · · (s− 2)s(s+ 2) · · · (s+ 2k − 2)L(s+ 2k − 1, χ)

∣∣
>
∣∣(2π)2k−1L(s− 2k + 1, χ)

∣∣, ℜ(s) > 1/2.

When ℜ(s) > 1/2, one has∣∣(s)2k−1

∣∣ = ∣∣s(s+ 1)(s+ 2)(s+ 3) · · · (s+ 2k − 3)(s+ 2k − 2)
∣∣

=
∣∣(s+ 2k − 3)(s+ 2k − 5) · · · (s+ 3)(s+ 1)s(s+ 2) · · · (s+ 2k − 4)(s+ 2k − 2)

∣∣
>
∣∣(s− 2k + 2)(s− 2k + 4) · · · (s− 4)(s− 2)s(s+ 2) · · · (s+ 2k − 4)(s+ 2k − 2)

∣∣
according to

|s+ 1| > |s− 2|, |s+ 3| > |s− 4|, . . . , |s+ 2k − 3| > |s− 2k + 2|.

Hence, by using |qs+2k−1| > |q2k−1√q| with ℜ(s) > 1/2, we obtain∣∣qs+2k(s)2k−1L(s+ 2k − 1, χ)
∣∣ > ∣∣(2π)2k−1√qL(s− 2k + 1, χ)

∣∣ (2.9)

which implies that R(2k−1)(s, χ) does not vanish if ℜ(s) > 1/2 and s/2− k + 1 ̸= m.
Thus we only have to prove the case that s/2− k + 1 = m, where m is a non-positive

integer. The assumptions s/2 = m+ k − 1 and ℜ(s) > 1/2 imply

1/4 < m+ k − 1 ≤ k − 1

which is equivalent to 5/2− 2k < 2m ≤ 0. In this case, by k ≥ 1, we have

2m+ 4k − 3 > 2k − 1/2 ≥ 3/2, 2m− 1 ≤ −1.

Note that L(2m− 1, χ) = 0 when m is non-positive and χ is odd. Thus, we have

L(s+ 2k − 1, χ) = L(2m+ 4k − 3, χ) > 0,

L(s− 2k + 1, χ) = L(2m− 1, χ) = 0
(2.10)

when s = 2m+ 2k − 2 > 1/2. We note that R(2k−1)(s, χ) is expressed as

R(2k−1)(s, χ) = R
(2k−1)
1 (s, χ) + R

(2k−1)
2 (s, χ),

R
(2k−1)
1 (s, χ) := (s)2k−1q

s+2k−1L(s+ 2k − 1, χ),

R
(2k−1)
2 (s, χ) := (−1)k−1(2π)2k−1√qL(s− 2k + 1, χ).

Hence, by substituting s = 2m + 2k − 2 to R
(2k−1)
1 (s, χ) and R

(2k−1)
2 (s, χ), we have

R(2k−1)(s, χ) > 0 if ℜ(s) > 1/2 and s/2− k + 1 = m. □
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Proof of the Riemann hypothesis for R(2k)(s, χ). Suppose l = 2k and χ is even, and put

Γ♯
k,q(s) :=

(
q

π

)s/2+1/2−k

Γ

(
s

2
− k

)
.

From the definition of ξ(s, χ), one has

ξ(s− 2k, χ) =

(
q

π

)s/2+1/2−k

Γ

(
s

2
− k

)
L(s− 2k, χ) = Γ♯

k,q(s)L(s− 2k, χ),

ξ(s+ 2k, χ) =

(
q

π

)s/2+1/2+k

Γ

(
s

2
+ k

)
L(s+ 2k, χ)

= Γ♯
k,q(s)

(
q

2π

)2k

(s− 2k) · · · (s− 2)s(s+ 2) · · · (s+ 2k − 2)L(s+ 2k, χ),

According to Lemma 2.2 again, we have∣∣ξ(s+ 2k, χ)
∣∣ > ∣∣ξ(s− 2k, χ)

∣∣, ℜ(s) > 1/2. (2.11)

Assume that s/2 − k ̸= m, where m is a non-positive integer to avoid the poles of

Γ♯
k,q(s). Dividing the both side hand of (2.11) by |Γ♯

k,q(s)|, we obtain∣∣q2k(s− 2k) · · · (s− 2)s(s+ 2) · · · (s+ 2k − 2)L(s+ 2k, χ)
∣∣ > ∣∣(2π)2kL(s− 2k, χ)

∣∣.
In addition, when ℜ(s) > 1/2, we have∣∣(s)2k∣∣ = ∣∣s(s+ 1)(s+ 2)(s+ 3) · · · (s+ 2k − 2)(s+ 2k − 1)

∣∣
=
∣∣(s+2k−1)(s+2k−3) · · · (s+3)(s+1)s(s+2) · · · (s+2k−4)(s+2k− 2)

∣∣
>
∣∣(s− 2k)(s− 2k + 2) · · · (s− 4)(s− 2)s(s+ 2) · · · (s+ 2k − 4)(s+ 2k − 2)

∣∣ (2.12)

by the inequalities

|s+ 2k − 1| > |s− 2k|, |s+ 2k − 3| > |s− 2k + 2|, . . . , |s+ 1| > |s− 2|.
Hence, from |qs+2k| > |q2k√q|, we have∣∣qs+2k(s)2kL(s+ 2k, χ)

∣∣ > ∣∣(2π)2k√qL(s− 2k, χ)
∣∣ (2.13)

which implies R(2k)(s, χ) ̸= 0 if ℜ(s) > 1/2 and s/2− k ̸= m.
Finally, suppose that s/2− k = m, where m is a non-positive integer. This assumption

and the condition ℜ(s) > 1/2 imply

1/4 < m+ k ≤ k.

Then, from k ≥ 1, we have

2m+ 4k > 2k + 1/2 ≥ 2, 2m ≤ 0.

It is well-known that L(2m,χ) = 0 when m is non-positive and χ is even and non-
primitive. Hence, one has

L(s+ 2k, χ) = L(2m+ 4k, χ) > 0, L(s− 2k, χ) = L(2m,χ) = 0 (2.14)

if s = 2m+ 2k > 1/2. Note that the function R(2k)(s, χ) is written as

R(2k)(s, χ) = R
(2k)
1 (s, χ) + R

(2k)
2 (s, χ),

R
(2k)
1 (s, χ) := (s)2kq

s+2kL(s+ 2k, χ), R
(2k)
2 (s, χ) := (−1)k(2π)2k

√
qL(s− 2k, χ).
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Thus, by substituting s = 2m+2k to R
(2k)
1 (s, χ) and R

(2k)
2 (s, χ), we obtain R(2k)(s, χ) > 0

if ℜ(s) > 1/2 and s/2− k = m. □

Proof of the statements on the central values and real zeros of R(l)(s, χ). Recall

R(l)(s, χ) = R
(l)
1 (s, χ) + R

(l)
2 (s, χ),

R
(l)
1 (s, χ) := (s)lq

s+lL(s+ l, χ), R
(l)
2 (s, χ) := (2π)lψ(l)

√
qL(s− l, χ).

Clearly, we have R
(2k−1)
1 (1/2, χ) > 0 and R

(2k)
1 (1/2, χ) > 0. According to (2.4), one has

L(1/2− 4k + 3, χ) > 0, L(1/2− 4k + 1, χ) < 0 χ is odd,

L(1/2− 4k, χ) > 0, L(1/2− 4k + 2, χ) < 0 χ is even.

Hence, we obtain R
(2k−1)
2 (1/2, χ) > 0 and R

(2k)
2 (1/2, χ) > 0. Therefore, the central value

of R(l)(s, χ) is positive.
By the assumption χ is primitive, the function R(l)(s, χ) is entire. Thus, Riemann’s

functional equation and the fact R(l)(s, χ) ̸= 0 for ℜ(s) > 1/2 imply that all real zeros of
R(l)(s, χ) are simple and located only at the non-positive even integers. □

2.3. Proofs of Theorems 1.2 and 1.3. To put it briefly, we show the functional equa-

tion and Riemann hypothesis for ζ
(2k)
q (s) by using (2.5) and Lemma 2.2, respectively.

The Lindelöf hypothesis and (1.2) for U(s, χ) and Tq(s) are proved by Lemma 2.1 and
the Euler products of ζ(s) and L(s, χ).

Proof of Theorem 1.2. First, we show the following equations.

q−1∑
r=1

Z(s, r/q) = 2
(
qs − 1

)
ζ(s),

q−1∑
r=1

P (s, r/q) = 2
(
q1−s − 1

)
ζ(s). (2.15)

When σ > 1, we have

q−1∑
r=1

ζ(s, r/q) =

q−1∑
r=1

∞∑
n=1

qs

(qn+ r)s
= qsζ(s)−

∞∑
n=1

qs

(qn+ q)s
=
(
qs − 1

)
ζ(s),

q−1∑
r=1

Lis(e
2πir/q) =

q−1∑
r=1

∞∑
n=1

e2πir/q

ns
= q

∞∑
n=1

1

(qn)s
−

∞∑
n=1

1

ns
=
(
q1−s − 1

)
ζ(s).

The equations above and the analytic continuation provide the formulas in (2.15) for all
s ∈ C \ {1}. From (2.7) and (2.15), we have

q−1∑
r=1

S(2k)(s, r/q) =

q−1∑
r=1

Z(2k)(s, r/q) +

q−1∑
r=1

P (2k)(s, r/q)

= (−1)2k(s)2k

q−1∑
r=1

Z(s+ 2k, r/q) + (−1)k(2π)2k
q−1∑
r=1

P (s− 2k, r/q)

= (s)2k
(
qs+2k − 1

)
ζ(s+ 2k) + (−1)k(2π)2k

(
q1−s+2k − 1

)
ζ(s− 2k).

Thus, we obtain the functional equation ζ
(2k)
q (1− s) = Γcos(s)ζ

(2k)
q (s) by (2.5).
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Second, we prove the Riemann hypothesis for ζ
(2k)
q (s). We define the Riemann xi-

function ξ(s) by

ξ(s) :=
1

2
s(s− 1)π−s/2Γ

(s
2

)
ζ(s).

According to Lemma 2.2, we have∣∣ξ(s+ 2k)
∣∣ > ∣∣ξ(s− 2k)

∣∣, ℜ(s) > 1/2. (2.16)

Let Gk(s) := π−s/2+kΓ(s/2− k) and suppose ℜ(s) > 1/2 and s/2− k ̸= m, where m is a
non-positive integer. From the definition of ξ(s), we have

2ξ(s− 2k) = (s− 2k)(s− 2k − 1)π−s/2+kΓ(s/2− k)ζ(s− 2k)

= (s− 2k)(s− 2k − 1)Gk(s)ζ(s− 2k),

2ξ(s+ 2k) = (s+ 2k)(s+ 2k − 1)π−s/2−kΓ(s/2 + k)ζ(s+ 2k)

= (s+ 2k)(s+ 2k − 1)Gk(s)(2π)
−2k(s− 2k) · · · (s− 2)s(s+ 2) · · · (s+ 2k − 2)ζ(s+ 2k).

Clearly, one has∣∣s+ 2k
∣∣ > ∣∣s− 2k − 1

∣∣, ∣∣s+ 2k − 1
∣∣ > ∣∣s− 2k

∣∣, ℜ(s) > 1/2.

The inequalities written above, (2.12) and (2.16) imply∣∣(s)2kζ(s+ 2k)
∣∣ > ∣∣(2π)2kζ(s− 2k)

∣∣, ℜ(s) > 1/2, (2.17)

if s/2−k ̸= m, where m is a non-positive integer. We should note that |Gk(s)| = ∞ when
s/2− k = m. Furthermore, we have∣∣qs+2k − 1

∣∣> ∣∣q1−s+2k − 1
∣∣, ℜ(s) > 1/2. (2.18)

This is proved by as follows. Let C := cos(t log q). Then we have∣∣qs+2k − 1
∣∣2= 1 + q4k+2σ + 2q2k+σC,

∣∣q1−s+2k − 1
∣∣2= 1 + q4k+2−2σ + 2q2k+1−σC.

By an easy computation, we have∣∣qs+2k − 1
∣∣2−∣∣q1−s+2k − 1

∣∣2= (qσ − q1−σ
)(
q4k+σ + q4k+1−σ + 2q2kC

)
> 0.

Therefore, for ℜ(s) > 1/2 and s/2− k ̸= m, we obtain∣∣(s)2k(qs+2k − 1
)
ζ(s+ 2k)

∣∣> ∣∣(2π)2k(q1−s+2k − 1
)
ζ(s− 2k)

∣∣
by (2.17) and (2.18). Hence, ζ

(2k)
q (s) ̸= 0 when ℜ(s) > 1/2 and s/2− k ̸= m.

Next, suppose ℜ(s) > 1/2 and s/2− k = m, where m is a non-positive integer. We can
easily see that

ζ(s+ 2k) = ζ(2m+ 4k) > 0, ζ(s− 2k) = ζ(2m) = 0.

if m ≤ −1. Hence, ζ
(2k)
q (s) > 0 when s/2− k = m ≤ −1. Now assume that s/2− k = 0,

namely, s = 2k. From ζ(4k) > 1 and ζ(0) = −1/2, we have

ζ(2k)q (2k) = (2k)2k
(
q4k − 1

)
ζ(4k) + (−1)k(2π)2k(q − 1)ζ(0)

> (2k)2k
(
q4k − 1

)
− (2π)2k(q − 1) > (2k)2k

(
q4k − 1

)
− (2π)2k(q − 1)

> (2k)2kq2k+1 − (2π)2kq = q
(
(2kq)2k − (2π)2k

)
> 0

when k ≥ 2. If k = 1, we have

ζ(2)q (2) = (2)2
(
q4 − 1

)
ζ(4)− (2π)2(q − 1)ζ(0) > 6

(
q4 − 1

)
ζ(4) > 0
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by ζ(0) = −1/2 again. Therefore, ζ
(2k)
q (s) > 0 when s/2 − k = m, where m is a non-

positive integer.

Finally, we prove the statements on the central values and real zeros of ζ
(2k)
q (s). We

obviously have ζ(1/2 + 2k) > 0. From the functional equation (1.1), one has

ζ(1/2− 4k) > 0, ζ(1/2− 4k + 2) < 0.

Therefore, we have ζ
(2k)
q (1/2) > 0. By the definition, the function ζ

(2k)
q (s) is entire. Hence,

Riemann’s functional equation and the fact ζ
(2k)
q (s) ̸= 0 for ℜ(s) > 1/2 imply that all real

zeros of ζ
(2k)
q (s) are simple and located only at the non-positive even integers. □

Proof of Theorem 1.3. Since the functions R(2)(s, χ) and ζ
(2)
q (s) are entire and have real

simple zeros only on non-positive even integers, we can see that U(s, χ) and Tq(s) have a
pole at s = 1 and real zeros at only negative even integers. Hence, we show the Lindelöf
hypothesis for U(s, χ) and Tq(s). Applying Lemma 2.1, we have

U(s, χ), Tq(s) = Oq,σ(1), σ ≥ 1/2.

Thus, by functional equations for U(s, χ) and Tq(s) and Stirling’s approximation∣∣Γ(s)∣∣ = √
2πe−π|t|/2|t|σ−1/2

(
1 +O(|t|−1)

)
(2.19)

(see [8, (1.5.7)] or [15, (4.12.2) and (4.12.3)]), we obtain

U(s, χ), Tq(s) ≪q,σ |t|µ(σ),

where µ(σ) is given in (1.3). From the Euler products of L(s, χ) and ζ(s), we have

(s)2L(s+ 2, χ)

s(1− s)
,
(s)2ζ(s+ 2)

s(1− s)
≫q,σ

∏
p

1

1 + pσ+2
≫q,σ 1

when σ, |t| ≥ 1. On the other hand, by using the estimation

L(s, χ), ζ(s) ≪q,σ

{
|t|1/2−σ σ ≤ 0,

|t|1 σ > 0,

we can see that

L(s− 2, χ)

s(1− s)
,
ζ(s− 2)

s(1− s)
≪q,σ

{
|t|−2|t|5/2−σ −1 ≤ σ − 2 ≤ 0

|t|−2|t|1 σ − 2 > 0
≪q,σ |t|−1/2

for σ ≥ 1. Hence, when σ ≥ 1, we obtain

U(s, χ), Tq(s) ≫q,σ 1.

The estimation above and Riemann’s functional equations for U(s, χ) and Tq(s) imply the
estimation (1.6). □
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2.4. Proofs of Theorem 1.5, Propositions 1.4 and 1.6. In this subsection, we show
results on R(l)(s,χ, b) defined as (1.7).

Proof of Proposition 1.4. First we define three functions as

ξ(s,χ, b) :=

(
q

π

)(s+1)/2

Γ

(
s+ κ(χ)

2

) j∑
h=1

bhL(s, χh),

R
(l)
1 (s,χ, b) :=

j∑
h=1

bh(s)lq
s+lL(s+ l, χh),

R
(l)
2 (s,χ, b) :=

j∑
h=1

bh(2π)
lψ(l)

√
qL(s− l, χh).

(2.20)

The functional equation (1.8) is easily proved by (2.5) by the assumption all χ1, . . . , χj

are odd or even. From the Dirichlet series expression L(s, χ), one has

1

qσ+l(σ)l
R(l)(σ,χ, b) =

j∑
h=1

bh + o(1), σ → +∞.

Thus, there exits σ0 > 1 such that the function R(l)(s,χ, b) does not vanish for all
ℜ(s) > σ0 from the assumption b1, . . . , bj > 0. Hence, there is α0 > 0 such that all zeros

of
∑j

h=1 bhL(s, χh) lie in the vertical strip |ℜ(s)−1/2| < α0. Now suppose that χ1, . . . , χj

are odd. By using Proposition 2.2 we can see that there exist l0 ∈ N such that for any
2l − 1 ≥ l0, ∣∣ξ(s+ 2l − 1,χ, b)

∣∣ > ∣∣ξ(s− 2l − 1,χ, b)
∣∣.

When s/2− l + 1 ̸= m, where m is a non-positive integer, we have∣∣R(2l−1)
1 (s,χ, b)

∣∣ > ∣∣R(2l−1)
2 (s,χ, b)

∣∣.
by modifying the proof of (2.9). If s/2− l+1 ̸= m, we can show the inequality above form
(2.10). When s/2− l+ 1 = m, we have R(2l−1)(s,χ, b) ̸= 0 by (2.10) and the assumption
b1, . . . , bj > 0. Therefore, functions R(2l−1)(s,χ, b) does not vanish when ℜ(s) > 1/2. We
can prove that R(2l)(s,χ, b) ̸= 0 for ℜ(s) > 1/2 by modifying the proof of (2.13) and
using (2.14). □
Proof of Thereom 1.5. Riemann’s functional equation and the Lindelöf hypothesis for the
function U(s,χ, b) are prove by the argument in the proofs of Proposition 1.4 and Theorem
1.3, respectively. Hence, we show that U(s,χ, b) does not satisfy an analogue of the
Riemann hypothesis for some b1, . . . , bj ∈ C \ {0}. Let j = 2 and fix s0 ∈ C satisfying
ℜ(s0) > 1/2. Then we define 0 ̸= c0 ∈ C by

c0 :=
R(2)(s0, χ1)

R(2)(s0, χ2)
,

where χ1 and χ2 are different real primitive Dirichlet characters. Note that R(2)(s0, χ2)
and R(2)(s0, χ2) are not zero if ℜ(s0) > 1/2 by Theorem 1.1. Then, obviously, the function

R(2)(s, χ1)

s(1− s)
− c0

R(2)(s, χ2)

s(1− s)

has a zero at s = s0 from the definitions of c0 ∈ C and s0 ∈ C. □
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Proof of Proposition 1.6. Let R(l)(s,χ, b) = (s)lq
s+lR

(l)
∗ (s,χ, b). Recall that there exits

σ0 > 1 such that the function R(l)(s,a, b) does not vanish for all ℜ(s) > σ0 (see the proof
of Proposition 1.4). From the argument in the proof of [15, Theorem 9.3], functional
equations (1.1) and (1.8), we have

πN(T,R1) = ∆arg π−s/2 +∆arg Γ(s/2) + ∆arg(s)lq
s+l +∆argR(l)

∗ (s,χ, b),

where ∆ denotes the variation from σ0 to σ0 + iT , and then to 1/2 + iT , along straight
lines. By the estimations in the proof of [15, Theorem 9.3], we obtain

∆arg π−s/2 +∆arg Γ(s/2) + ∆arg(s)lq
s+l

=
T

2
log

T

2
− T

2
− T

2
log π + T log q +O(1).

Now we consider ∆ argR∗
1(s). Clearly, there exists σ1 ≥ σ0 and m1 such that∣∣ℜ(R(l)

∗ (σ1,χ, b)
)∣∣ > m1.

Applying Proposition 2.3 with f(s) = R∗
1(s), α = 0 and β = 1/2, we obtain

∆argR(l)
∗ (s,χ, b) = O(log T )

by Lemma 2.1. Therefore, we have (1.9). □

3. Remarks

3.1. Lindelöf hypothesis. Constant functions satisfy the LH but do not fulfill (1.2).
Taylor’s function ζ∗(s+1/2)− ζ∗(s− 1/2) mentioned in Section 1.1 does not satisfy (1.2)
by Stirling’s approximation (2.19). However, his function fulfills both the LH and RH.

Under the LH of Dirichlet L-functions, the function
∑j

h=1 bhL(s, χh) satisfies the LH.

From [13, Theorem], the function
∑j

h=1 bhL(s, χh) has infinitely many zeros in both the
vertical strip 1/2 < ℜ(s) < 1 and the half-plane ℜ(s) > 1 if j ≥ 2 and bh ̸= 0 for all
1 ≤ h ≤ j. Let j ≥ 2 and bh ̸= 0 and all Dirichlet characters be even (or odd) mod q. In

this case,
∑j

h=1 bhL(s, χh) does not satisfy (1.2) by the zeros in the half-plane ℜ(s) > 1.
Therefore, it is difficult to find functions which satisfy the condition (1.2). Furthermore,

it should be emphasised that U(s, χ) and Tq(s) have a simple pole at s = 1 and simple
real zeros only at the negative even integers just like ζ(s).

3.2. Infinite product representation. Recall the functions R
(l)
1 (s,χ, b) andR

(l)
2 (s,χ, b)

are given in (2.20). Clearly one has

R(l)(s,χ, b) = R
(l)
1 (s,χ, b) + R

(l)
2 (s,χ, b).

Suppose |R(l)
1 (s,χ, b)| > |R(l)

2 (s,χ, b)| when ℜ(s) > 1/2 and does not vanish identically.
Then we have

R(l)(s,χ, b) = R
(l)
1 (s,χ, b) exp

(
∞∑

m=1

Nm
u(s,χ, b)m

m

)
, (3.1)

where Nm and u(s,χ, b) are defined as

Nm := (−1)m+1, u(s,χ, b) =
R

(l)
2 (s,χ, b)

R
(l)
1 (s,χ, b)

.
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Noted that the function above looks like the local zeta function or the congruent zeta
function. We can prove the infinite product representation (3.1) by modifying the proof
in [12, Section 3.1].

3.3. Hardy’s Z -function. Let

η(s) :=
1

Γcos(s)
=

Γ(1/2− s/2)

Γ(s/2)
πs−1/2.

By using η(s) above, we define Hardy’s Z-function Z(t) by

Z(t) :=
(
η(1/2 + it)

)−1/2
ζ(1/2 + it) = eiθ(t)ζ(1/2 + it),

where θ(t) := ℑ(log Γ(1/4 + it/2)) − (t/2) log π. It is well known (e.g. [4, Chapter 1.3])
that for t ∈ R,

Z(t) ∈ R, |Z(t)| = |ζ(1/2 + it)|, Z(t) = Z(−t).

Since R(l)(s,χ, b) is real on the real line and satisfy Riemann’s functional equation, we
can define

H(l)(t,χ, b) := eiθ(t)R(l)(1/2 + it,χ, b), j = 1, 2, 3

as an analogue of Z(t). By modifying the argument in [4, Chapter 1.3], we have

H(l)(t,χ, b) ∈ R,
∣∣H(l)(t,χ, b)

∣∣ = ∣∣R(l)(1/2 + it,χ, b)
∣∣, H(l)(t,χ, b) = H(l)(−t,χ, b).

Note that the cases when l = 1 and q = 3, 4 have already treated in [12, Section 3.2].

3.4. Numerical calculation. Recall that Tq(s) and U(s, χ) given in Theorem 1.3 satisfy
Riemann’s functional equation and the Lindelöf and Riemann hypotheses. We define two
functions H1(t) and H2(t) by

H1(t) := eiθ(t)T2(1/2 + it), H2(t) := eiθ(t)U(1/2 + it, χ5),

where χ5 is the real non-primitive Dirichlet character mod 5. The following figures are
given by Mathematica 13.0. It should be noted that they are plotted by not Hj(t) but
ℜ(Hj(t)) because Mathematica 13.0 can not regard Hj(t) as real functions

*.
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Figure 1. {H1(t) : 0 ≤ t ≤ 100}
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*In [12, Section 3.3], all Hj(1/2 + it) should be replaced by Hj(t).
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