
Multi-trajectory Dynamic Mode Decomposition

Ryoji Anzaki,1, ∗ Shota Yamada,2, † Takuro Tsutsui,3, ‡ and Takahito Matsuzawa4, §

1Advanced Engineering 1st Department, Digital Design Center, Tokyo Electron Ltd.,
Akasaka Biz Tower, 3-1 Akasaka 5-chome, Minato-ku, Tokyo 107-6325, Japan

2Advanced Engineering 1st Department, Digital Design Center,
Tokyo Electron Ltd., Daido Seimei Sapporo Bldg, 1, Kita 3-jo,

Nishi 3-chome, Chuo-ku, Sapporo city, 060-0003, Japan
3Advanced Engineering 2nd Department, Digital Design Center,
Tokyo Electron Ltd., Daido Seimei Sapporo Bldg, 1, Kita 3-jo,

Nishi 3-chome, Chuo-ku, Sapporo city, 060-0003, Japan
4Global Sales Division, Tokyo Electron Ltd., Akasaka Biz Tower,

3-1 Akasaka 5-chome, Minato-ku, Tokyo 107-6325, Japan
(Dated: October 7, 2024)

We propose a new interpretation of the parameter optimization in dynamic mode decomposition
(DMD), and show a rigorous application in multi-trajectory modeling. The proposed method, multi-
trajectory DMD (MTDMD) is a numerical method using which we can model a dynamical system
using multiple trajectories, or multiple sets of consecutive snapshots. Here, a trajectory corresponds
to an experiment, so the proposed method accepts multiple experimental results. This is in a clear
contrast to the existing DMD-based methods that accept only one set of consecutive snapshots.
Abovementioned multi-trajectory modeling is quite useful in applications, because we can suppress
the undesirable effects from the observation noises and employ multiple experiments with different
experimental conditions to model a complex system.

The proposed method is quite flexible, and we suggest that we can also implement L2 regulariza-
tion and element-wise equality constraints on the model parameters. We expect that the proposed
method is useful to model large complex systems in the industrial applications.

Keywords: Dynamic Mode Decomposition, Multi-trajectory Modeling, Time-series Data Analysis

I. INTRODUCTION

Dynamic mode decomposition (DMD) [1–3] is
a widely-used numerical method to analyze multi-
dimensional time-series data. Since the publication of its
original paper [1] by Schmid in 2010, researchers devel-
oped many variants [3, 4] including DMD with control
(DMDc) [5], optimized DMD (OP-DMD) [6], bagging-
optimized DMD (BOP-DMD) [7], residual DMD [8], and
DMD with memory (DMDm) [9]. The well-known DMDc
developed by Proctor et al. enabled us to incorporate ef-
fects from exogeneous control inputs to the DMD frame-
work (i.e., we can model nonautonomous dynamical sys-
tems) [5]. DMDm is another type of variant, in which An-
zaki et al. replaced the time difference operator implicitly
applied to the time-series data in the DMD framework
by a wider class of matrix to include memory effects [9].
The BOP-DMD is a DMD-based method equipped with
variable projection and statistical bagging methods. The
OP-DMD corresponds to the BOP-DMD with no statis-
tical bagging [7].
Along with the developments in the abovementioned

variants, researchers also have deepened the understand-

∗ Corresponding author, ryoji.anzaki@tel.com
† shota.yamada@tel.com
‡ takuro.tsutsui@tel.com
§ matty.matsuzawa@tel.com

ings of the mathematical aspects of the DMD framework
from the view of Koopman theory [4, 10–12].
Throughout this article, we denote hom(Rq,Rp) by

Rq×p for simplicity. We also denote the identity matrix
by id.

A. DMD as a Numerical Optimization

We can interpret the exact DMD [2] as a framework
to optimize the coefficient A ∈ Rn×n of a linear, con-
stant coefficient dynamical system xi+1 = Axi for time-
dependent variable x ∈ Rn and discrete time variable
i = 0, 1, . . . analytically so that the model prediction
xpred fits to the observed data xobs. In the exact DMD
[2], we can get the optimized coefficient as follows:

A = X ′X+, (1)

where (−)+ is the Moore-Penrose pseudoinverse of a ma-
trix where − is a placeholder, and

X =
[
xobs,0,xobs,1, . . . ,xobs,m−1

]
, (2)

X ′ =
[
xobs,1,xobs,2, . . . ,xobs,m−2

]
. (3)

In what follows, we use the exact DMD as the exam-
ple, but a similar discussion also applies for the DMDc.
Note that, in practice, we use singular-value decompo-
sition (SVD) to calculate Moore-Penrose pseudoinverse.
We can reduce the model dimensions to r by keeping r
largest singular values and ignoring the smaller ones.

mailto:Corresponding author, ryoji.anzaki@tel.com
mailto:shota.yamada@tel.com
mailto:takuro.tsutsui@tel.com
mailto:matty.matsuzawa@tel.com

2

In this context, the most important characteristics of
the DMD is that we define the loss function LDMD as
the sum of squared errors (SSE) for the observed- and
one-step ahead predicted variables. The one-step ahead
prediction of the dynamical variables at time i+1 is Axi,
so we have the loss function as follows:

LDMD =

m−1∑
i=0

|xobs,i+1 −Axobs,i|2. (4)

Compared to the other modeling methods such as the
least squares method (LSM), in which we minimize a loss
function LSSE :=

∑
i |xpred,i−xobs,i|2 defined as the SSE

between the observed- and multi-step ahead predicted
dynamical variables xpred,i, the DMD is advantageous
because the loss function LDMD becomes quadratic in the
coefficient A of the dynamical system. This simplification
in the loss function in the DMD has two aspects: (a) it
enables us to use the analytical optimization method rep-
resented by a matrix pseudoinversion and matrix prod-
ucts, instead of numerically costly iterative methods, (b)
the simplification makes a long-term prediction difficult
at the same time.

To understand the latter aspect, one can imagine the
following situations in which the error xpred,i+1−xobs,i+1

at time point i+1 is (approximately) proportional to time
ti+1 with small constant of proportionality:{

xobs,i+1 −Axobs,i = ϵ (DMD)

xobs,i+1 − xpred,i+1 = ϵti+1 (LSM)
, (5)

with ϵ ∈ Rn. Let us assume that the numerically
achieved minimum for LDMD and LLSM is δ > 0. In
the DMD, the loss function LDMD becomes a small value
proportional to the total time interval T > 0 of the ob-
served data: LDMD ∝ |ϵ|2T . The minimum |ϵ| DMD can

numerically achieve is |ϵ| =
√
δ/T . Thus, the DMD is not

sensitive to this type of errors, resulting in a large model
prediction errors for t ≳ T 1/2δ−1/2. In other words, in
DMD the estimated dynamical system xi+1 = Axi tend
to accumulate prediction errors step by step.

On the other hand, the SSE loss function for xpred

and xobs is proportional to the second power of the to-
tal time interval, i.e., LSSE ∝ |ϵ|2T 2. Let us assume we
have a time-evolution model xi+1 = f({xj}j≤i, i|θ) with
adjustable parameters θ ∈ Θ. Using an appropriate nu-
merical method, one can suppress the SSE for the given
observation data to δ, provided the family of the model
{f(−,−|θ)|θ ∈ Θ} includes the true model for the tar-

get dynamics. In those cases, one can show that, LSM
prediction has large errors only for t ≳ Tδ−1/2.

B. Errors in Coefficient Optimization in DMD

To overcome the abovementioned difficulty, one need
to improve the accuracy of the estimated coefficients for
the DMD. One of the major contributions to the errors in
the coefficient estimation is from the observation noise.
As we have seen above, in the DMD framework we fit
the increments of the predicted dynamical variables to
the observed ones, meaning that it is vulnerable to high-
frequency parts of noise. In the realm of data analy-
sis, one usually applies preprocesses e.g., decimation and
low-pass filters (e.g., moving average) to mitigate the ef-
fects from the observation noise [13]. However, a pre-
process inevitably worsens the dynamic characteristics of
the original data, resulting in phase delay and prolonged
deadtime.
Another major contribution to the errors in coefficient

estimations is originated from the inappropriate design of
experiment (DoE). Suppose we have a large system with
the degrees of freedom (DoF) more than around one hun-
dred. To model such system precisely, we need to excite
all the modes sufficiently strongly so that the signal to
noise ratio (S/N ratio) becomes sufficiently large. How-
ever, as the number of modes (roughly proportional to
the DoF) becomes large, DoEs to achieve a good S/N ra-
tio often becomes hard to realize, due to the limitations
on the system and observation instruments.
We can understand the abovementioned two contri-

butions in a unified manner: suppose we have a set of
noiseless snapshots from a linear autonomous dynam-
ical system {xi ∈ Rd|i = 0, 1, . . . ,m} and let X =[
x0,x1, . . . ,xm−1

]
and X ′ =

[
x1,x2, . . . ,xm

]
. Let us

denote a realization of noise at time point i is δxi ∈ Rd

for i = 1, . . . ,m and let δX =
[
δx0, δx1, . . . , δxm−1

]
and

δX ′ =
[
δx1, δx2, . . . , δxm

]
. We assume that the noise

is sufficiently small in the sense ϵ := ∥δX∥2/∥X∥2 ≪ 1,
with ∥ − ∥2 being the operator norm of matrix. The
ground truth of the coefficient A0 is as follows:

A0 = X ′X+. (6)

The coefficient estimated using the observed data A is as
follows:

A = (X ′ + δX ′)(X + δX)+. (7)

Here we use a special version of the generalization of Sherman–Morrison–Woodbury theorem (Theorem 3.2 in [14]):
if range(δX) ⊆ range(X), then

(X + δX)+ = X+ −X+S+
XX+, (8)

where, SX = id + X+δX is invertible because we have assumed ∥X+δX∥2 < 1, and we use the facts that (a) the
orthogonal projections onto null spaces of SX vanish, and (b) range(δX∗) ⊆ Rd = range(SX).

3

Thus,

A = A0 + δX ′X+ −X ′X+δXX+ +O(ϵ2). (9)

Let us denote the first-order part of the error by δA as
follows:

δA = δX ′X+ −X ′X+δXX+. (10)

The magnification ratio ρ of the relative error is

ρ :=
∥δA∥2/∥A0∥2
∥δX∥2/∥X∥2

(11)

≤ (∥δX ′X+∥2 + ∥X ′X+δXX+∥2)/∥X ′X+∥2
∥δX∥F/∥X∥2

(12)

≃ (∥δXX+∥2 + ∥X ′X+δXX+∥2)/∥X ′X+∥2
∥δX∥2/∥X∥2

(13)

=
∥δXX+∥2/∥δX∥2
∥XX+∥2/∥X∥2

+
(∥X ′X+δXX+∥2)/∥X ′X+∥2

∥δX∥2/∥X∥2
(14)

≤ ∥δXX+∥2/∥δX∥2
∥XX+∥2/∥X∥2

+ ∥X+∥2∥X∥2. (15)

Here, we use an approximation ∥δX ′∥2 ≃ ∥δX∥2, and in
the last line we use the submultiplicativity of operator
norm ∥X ′X+δXX+∥2 ≤ ∥X ′X+∥2∥δX∥2∥X+∥2. Thus,
the upper bound of the magnification ratio ρ is estimated
as follows:

ρ ≤ 2∥X+∥2∥X∥2 = 2κ(X), (16)

where κ(X) is the condition number of X. This gives im-
portant insights on the errors of coefficient optimizations
in DMD: (1) the error is proportional to the magnitude
of the noises, (2) the errors in the optimized coefficient is
magnified by up to twice of the condition number 2κ(X).
Thus, to suppress the errors in the coefficient optimiza-
tion, we need to suppress the noise and the condition
number κ(X) of the observed data X.
The most trivial approach to this aim is to prepare a set

of experimental conditions {µ = 1, 2, 3, . . . } and take an
average over the set of optimized coefficients A(µ). How-
ever, this approach fails when some experimental condi-
tions do not excite the entire system sufficiently. In those
cases, the optimized coefficients suffer from a bad condi-
tion number κ(X) ≫ 1 of the observed data X and the
contribution from the noises are magnified by the factor
of up to 2κ(X). Thus, to suppress the errors in the opti-
mized coefficients, we need a lot of experiments and must
average the resultant coefficients over the huge number
of ensembles.

C. Multi-Trajectory Modeling

Another, more elaborate approach to suppress the con-
tributions from noises is the multi-trajectory modeling
(or, multiple-trajectory modeling). In a multi-trajectory

modeling procedure, one uses a set of multiple trajecto-
ries to get a single dynamical system which best fits to
the set of given trajectories.

The multi-trajectory modeling is already implemented
in PySINDy [15], a python library for sparse identi-
fication of nonlinear dynamical systems (SINDy) [16].
SINDy is a successful nonlinear modeling method with
sparsity-promoting numerical optimization of coefficients
of the nonlinear dynamical systems for library functions
specified by the user. It is shown that SINDy works quite
well for identification of the underlying dynamics for low-
dimensional (up to tens of spatial dimensions) time-series
data.

However, for systems with huge number of DoF, SINDy
has severe limitations. One of such limitations is the
problem of numerical costs, especially when applying
constraints on the parameters. This is because the op-
timization is performed numerically by using iterative
methods, in contrast to DMD-based methods, in which
we obtain the optimal parameters by applying a small
number of matrix operations to the observed- and con-
trol input data. For example, for a large linear system
with DoF > 100, SINDy becomes prohibitively heavy
even with small number of library functions.

D. Aim of This Research

We propose a new approach to overcome the above-
mentioned difficulty in modeling huge dimensional lin-
ear dynamical systems using a priori constraints (knowl-
edge) on the coefficient matrices by introducing the idea
of multi-trajectory modeling to the DMD framework.

Multi-trajectory modeling methods enable us to model
a system using a set of multiple experimental conditions,
rather than averaging the model parameters for each ex-
perimental condition. However, there is no known ef-
ficient way to perform multi-trajectory modeling using
existing DMD methods.

In this paper, we propose a numerical method MT-
DMD (multi-trajectory DMD), that is a multi-trajectory
modeling method based on DMD. In what follows, we
re-interpret the existing DMD method as a numerical
optimization of the loss function defined as the square
of matrix Frobenius norm of the modeling error, and we
re-write the optimization scheme by using the Jacobian
(gradient) and Hessian of the loss function. Noting that
the derivative operators are linear on the target func-
tions, we easily extend DMD to multi-trajectory frame-
work.

II. THEORY

In this section, we first show an alternative way to in-
terpret the optimization of model parameters in DMD
framework, and propose a DMD-based, multi-trajectory
modeling method using the alternative interpretation.

4

The numerical complexities for the existing DMD and
the proposed method are shown in the last part of this
section.

A. Optimization in DMD

Suppose we have a pair of data (Y,X) where Y,X ∈
Rd×m are matrices. We call the row indices of X,Y the
spatial direction, while the column indices the tempo-
ral direction. We call (X,Y) a trajectory. In the exact
DMD, we use the matrix Y constructed by shifting the
matrix X towards the future by one time step. In the
DMDm, we use a memory kernel to construct Y from X
[9]. For a matrix Y that satisfies the causality property
[9], one can construct a time-evolution model of the form:

xi+1 = f({xj}j≤i, i|θ), (17)

where θ is the adjustable parameters. Hereafter, we focus
on the constant coefficient time-evolution model of the
form:

xi+1 = Axi +Bui, (18)

where A ∈ Rd×d and B ∈ Rd×dc are constant matrices,
and u ∈ Rdc is the exogeneous external input. In the
exact DMD we deal with the case B = 0.

In the exact DMD, we use the following well-known
theorem to optimize the model parameter assuming a
linear dependency Y = AX for A ∈ Rd×d:

argmin
A

∥Y −AX∥F = Y X+, (19)

where ∥ • ∥F is the Frobenius norm of a matrix.
The above optimization problem can also be seen as

the optimization of a multivariate quadratic function.
Let us denote

L(A|X,Y) = ∥Y −AX∥2F. (20)

The function L is the loss function of the linear model
Y = AX for given data X,Y and coefficient matrix A.
Noting that the second power of nonnegative numbers
R≥0 ∋ x 7→ x2 is a strictly monotonically increasing
function, one can see that the optimal coefficient A∗ of
L(A|X,Y) also satisfies A∗ = Y X+.

B. An Alternative Interpretation of DMD

In this section, we re-interpret the DMD by showing
a different way to optimize the loss function. Because L
is quadratic in elements of A, we can use the following
analytical formula for a quadratic function f : Rn ∋ x 7→
f(x) ∈ R:[

argmin
ξ

f(ξ)

]
α

= −
∑
β

[(
∂2f

∂ξ2

)+
]β

α

∂f

∂ξβ

∣∣∣∣
ξ=0

, (21)

where, α and β are indices of vectors and matrices.
Before proceeding to application of the above formula

to our loss function L, let us introduce the tensor notation
of a vector a ∈ Rd, a matrix F ∈ Rd×m, and a matrix
G ∈ Rd×d as follows: a = [ai], F = [F i

a], and G = [Gi
j].

Note that, we use upper and lower suffices to discriminate
the contravariant and covariant indices, but we do not
adopt Einstein’s convention. In what follows, we assume
that the metric is the unit tensor δij (δii = 1 and δij = 0
for i ̸= j) unless otherwise stated.
We use i, j, k, ℓ,m, n, . . . for the spatial indices, and

a, b, c, . . . for temporal indices. We use A,B to denote
the vectorized quantities for matrices A ∈ Rd×d and B ∈
Rd×dc , i.e.,

A =


A0

0

A0
1
...

Ad−1
d−1

, B =


B0

0

B0
1
...

Bd−1
dc−1

. (22)

We use the similar symbols Ĥ, K̂, . . . to denote the ma-
trix representation of a linear maps from matrices to
matrices. For instance, for a tensor H = [Hij

kl] ∈
hom(Rd×d,Rd×d) with i, j being the contravariant in-
dices and k, l being the covariant indices, the correspond-
ing matrix is expressed as follows:

Ĥ =


h00 h01 · · · h0,d−1

h10 h11 · · · h1,d−1

...
...

...
hd−1,0 hd−1,1 · · · hd−1,d−1

 ∈ Rd2×d2

, (23)

where submatrices hαβ ∈ Rd×d is expressed as follows:

hαβ =


Hα,0

β,0 Hα,0
β,1 · · · Hα,0

β,d−1

Hα,1
β,0 Hα,1

β,1 · · · Hα,0
β,d−1

...
...

...

Hα,d−1
β,0 Hα,d−1

β,1 · · · Hα,d−1
β,d−1

. (24)

Note that, in the vectorized notation, a matrix becomes
a vector, while a tensor that maps matrices to matrices
becomes a matrix. Also note that a vectorization corre-
sponds to a multi-indexing, in which two or more indices
of a tensor are grouped and treated as one index. We used
the lexicographical order to construct the multi-indices in
the above example.

1. Optimization via Matrix Product

Now that we can apply the general formula to our loss
function, to get[
argmin

A
L(A|X,Y)

]i
j
= −

∑
kℓ

Kik
jℓ

∂L(A|X,Y)

∂Ak
ℓ

∣∣∣∣
A=0

,

(25)

5

where K is the Moore-Penrose inverse of the Hessian of
L,

K = argmin
K

∑
i,j,m,n

[
Kik

jℓ

∂2L(A|X,Y)

∂Ak
ℓ∂A

m
n

− δijδ
n
m

]2
. (26)

The Jacobian and Hessian of the loss function can be
derived analytically, as follows: noting that

L(A|X,Y) =
∑
i,a

Y i
a −

∑
j

Ai
jX

j
a

2

, (27)

we obtain

∂L(A|X,Y)

∂Ai
j

= −2
∑
a

Y i
aX

j
a, (28)

∂2L(A|X,Y)

∂Ai
j∂A

k
ℓ

= 2
∑
a

Xj
aX

ℓ
aδ

ik. (29)

Note that the Hessian is only dependent on two spatial
indices (i.e., j, ℓ in Eq. (28)). Using the standard matrix
multiplication, the Jacobian and Hessian become,

∂L(A|X,Y)

∂Ai
j

= −2(Y X⊤)ij , (30)

∂2L(A|X,Y)

∂Ai
j∂A

k
ℓ

= 2(XX⊤)jℓδik. (31)

Thus, the optimal coefficient A∗ becomes as follows:

A∗ = Y X⊤(XX⊤)+. (32)

This is identical to Eq. (19) as expected, because
X⊤(XX⊤)+ = X+.

For the DMDc, we can use a similar discussion for a
data tuple (Y,X,Υ) with additional Υ being a dc × m
matrix corresponding to the control input. In this case,
we call (Y,X,Υ) a trajectory. We obtain the following
equation:

[
A∗ B∗

]
= Y

[
X⊤ Υ⊤][XX⊤ XΥ⊤

ΥX⊤ ΥΥ⊤

]+
, (33)

where, we assume Y = AX +BΥ with B ∈ Rd×dc being
a matrix. This is identical to DMDc without dimension
reduction for invertible X and Υ.

2. Optimization via Vector Representation

In this subsection, we express the formula Eq. (33)
shown in the previous subsection in another representa-
tion called vector representation.

Let us introduce multi-indices α, β = 0, 1, 2, . . . , d2 − 1
using the lexicographical order lexd : Z≥0 × Z≥0 → Z≥0

lexd(0, 0) = 0,

lexd(0, 1) = 1,

. . . ,

lexd(0, d− 1) = d− 1,

lexd(1, 0) = d,

. . . ,

lexd(d, d) = d2 − 1.

(34)

The vectorization of A is introduced as A = [Aα] ∈ Rd2

,
and the equation for the optimal coefficient A∗ becomes
a matrix-vector product, as follows

A∗ = − ∂L

∂A

(
∂2L

∂A2

)+
∣∣∣∣∣
A=0

. (35)

In this basis, the Hessian Ĥ = ∂2L
∂A2 ∈ Rd2×d2

is a block
matrix:

Ĥ =


h 0 0 · · · 0
0 h 0 · · · 0
0 0 h
...

...
. . .

0 0 · · · h


i = 0
i = 1
i = 2
...

i = d− 1

, (36)

where each submatrix h = [hjℓ] = 2XX⊤ is placed in a

diagonal block (i, k) for Ĥ = [H(i,j),(k,ℓ)]. We therefore
can circumvent a numerically costly inversion operation
of d2 × d2 matrix, by applying the block-wise inversion,
as follows:

Ĥ+ =


h+ 0 0 · · · 0
0 h+ 0 · · · 0
0 0 h+

...
...

. . .

0 0 · · · h+


i = 0
i = 1
i = 2
...

i = d− 1

. (37)

Note that, the Jacobian J = [J(i,j)] =
∂L
∂A does not have a

block-wise structure. The vectorized optimal coefficient
A∗ is obtained as follows:

A∗ = −JĤ+; Ĥ =
∂2L

∂A2
. (38)

This is the vectorized notation for DMD in the alterna-
tive interpretation of the numerical optimization.
Note that, for a large spatial dimension d, the above-

mentioned method is numerically very advantageous
compared to a numerical convex optimization of the loss
function L. However, at this point, the standard pro-
cedure of DMD Eq. (19) is still much better than our
procedure in Eq. (38).
We can follow a similar procedure for the DMD with

control. The number of model parameters is d(d + dc),

6

so we construct the vectorization so that we have d sub-
spaces each of which is (d + dc)-dimensional space, as
shown below. 

0
...

d+ dc − 1
...

(d− 1)(d+ dc)
...

d(d+ dc)− 1




d blocks. (39)

Now, let us introduce multi-indices α = (i, j) =
0, 1, 2, . . . , d(d+ dc)− 1 using the lexicographical order

lexd,d+dc(0, 0) = 0,

lexd,d+dc(0, 1) = 1,

. . . ,

lexd,d+dc
(0, d+ dc − 1) = d+ dc − 1,

lexd,d+dc
(1, 0) = d+ dc,

. . . ,

lexd,d+dc(d, d+ dc) = d(d+ dc)− 1.

(40)

We can now derive similar expression for DMDc using
the concatenated, vectorized coefficient matrix C instead
of A:

C =



A0
0
...

A0
d−1

B0
0
...

B0
dc−1
...

Ad−1
0
...

Ad−1
d−1

Bd−1
0
...

Bd−1
dc−1





d blocks. (41)

The resultant expression is as follows:

C∗ = −JĤ+; Ĥ =
∂2L

∂C2
. (42)

This is the vectorized notation of DMDc in the alterna-
tive interpretation.

C. Multi-trajectory modeling in DMD

We can use our result Eq. (32) and Eq. (33) in the
previous section for multi-trajectory DMD, or MTDMD.

Hereafter we use DMDc framework, but one can get MT-
DMD without control simply by omitting matrix blocks
containing control input Υ.
Let us assume that we haveN trajectories (Xµ, Yµ,Υµ)

indexed by µ, ν, In the exact DMD case, Y =
[x1, . . .xm−1] and X = [x0, . . . ,xm−2]. We denote
{(X,Y,Υ)} = {(Yµ, Xµ,Υµ) : µ = 0, 1, 2, . . . , N − 1}
for simplicity. Note that the pair of coefficients (A,B)
is independent on the trajectory index µ. In MTDMD
with control, we define the model parameter C by:

C :=
[
A B

]
∈ Rd×(d+dc). (43)

Our goal is to find the best fit matrix C for a given set
of trajectories. Now let us define the loss function for
MTDMD as

L(C|{(X,Y,Υ)}) =
∑
µ

∥Yµ −AXµ −BΥµ∥2F. (44)

1. Optimization via Matrix Product

Noting that the first- and second-order derivative oper-
ators are linear operators, we can readily apply the same
procedure we used in the previous section, and obtain
the following formula for the optimal coefficients C∗:

C∗

=

(∑
µ

Yµ

[
X⊤

µ Υ⊤
µ

])(∑
ν

[
XνX

⊤
ν XνΥ

⊤
ν

ΥνX
⊤
ν ΥνΥ

⊤
ν

])+

.
(45)

This is the MTDMD with control. In this expression, the
Jacobian J and Hessian H appears as matrices:

J = −2
∑
µ

Yµ

[
X⊤

µ Υ⊤
µ

]
, (46)

H = 2
∑
ν

[
XνX

⊤
ν XνΥ

⊤
ν

ΥνX
⊤
ν ΥνΥ

⊤
ν

]
. (47)

Note that, the numerical optimization in Eq. (45) is ro-
bust against noises if the condition number of the Hes-
sian κ(H) ≥ 1 is small enough. Our proposed method is
advantageous to existing methods, because it is almost
as fast as exact DMD, and we can incorporate multi-
trajectory modeling.

2. Optimization via Vector Representation

In this subsection, we show a vector representation of
MTDMD. For the multi-trajectory case, we get the fol-
lowing expression for the Hessian of the loss function H:

Ĥ =


h 0 0 · · · 0
0 h 0 · · · 0
0 0 h
...

...
. . .

0 0 · · · h


i = 0
i = 1
i = 2
...

i = d− 1

, (48)

7

where the matrix h ∈ R(d+dc)×(d+dc) is expressed as fol-
lows:

h =

[
XνX

⊤
ν XνΥ

⊤
ν

ΥνX
⊤
ν ΥνΥ

⊤
ν

]
. (49)

The optimal coefficients are obtained as follows, using
the Jacobian J :

d blocks





C0
0
...

C0
d+dc−1
...

Cd−1
0
...

Cd−1
d+dc−1


= −JĤ+, (50)

Note that, the proposed method in this vectorized nota-
tion is not advantageous compared to the one in using
the matrix product.

D. Application of Constraints

In this section, we impose constraints of the following
form to the MTDMD:

Ci
j = 0 if P i

j = 0, (51)

with P ∈ {0, 1}d×(d+dc) being given matrices. Note
that, the free parameters are now reduced to satisfy the
element-wise constraint C = P ⊙ C, with ⊙ being the
element-wise (Hadamard) product of matrices. To im-
plement this constraint, we use the vectorized formula,
as follows: for i = 0, 1, 2, . . . , d− 1, let us define

(hi)jℓ =

{
∂2L(C|X,Y)
∂Ci

j∂C
i
ℓ

P i
jP

i
ℓ = 1

0 P i
jP

j
ℓ = 0

. (52)

One method to implement this is as follows:

(hi)jℓ =
∂2L(C|X,Y)

∂Ci
j∂C

i
ℓ

P i
jP

i
ℓ. (53)

Note that the repeated indices do not mean summations
(i.e., we do not use Einstein’s convention). We also define
the i-th block of Jacobian Ji ∈ Rd as follows:

(Ji)j =
∂L(C|X,Y)

∂Ci
j

. (54)

For the i-th row of the concatenated parameter matrix,
we use the following formula:

d blocks





C0
0
...

C0
d+dc−1
...

Cd−1
0
...

Cd−1
d+dc−1



= −
[
J⊤
0 J⊤

1 · · · J⊤
d−1

]

h+
0 0

h+
1

. . .

0 h+
d−1

.

(55)

This is a numerically advantageous method compared to

the brute-force method in which one compute −Ĥ+J with

the pseudoinverse being performed for entire Ĥ. Because
the matrix inversion of n-dimensional matrix requires
O(n3) steps, we can reduce the computational cost by
the factor 1/d3 × d = 1/d2 by applying our method,
compared to the brute-force numerical optimization of
multivariate quadratic function.
Note that, we can also impose wider class of equality

constraints to the parameters, such as

Ai
j = α if (Pα)

i
j = 0 α ∈ {αs ∈ R|s = 0, 1, . . . , S− 1},

(56)
for Pα ∈ {0, 1}d×d. In that case, we have to modify the
Jacobian, because the gradient with respect to the free
part of the parameter P ⊙ C at the origin is affected by
the fixed parameters.

E. Fine-tuning of Models using Additional Set of
Trajectories

In the industrial applications, the target systems of-
ten have variations, i.e., small deviations in model pa-
rameters. Such variations are often caused by e.g., ma-
chine difference, aging, and change of the external en-
vironment of the system. In some cases, the identical
system exhibit different characteristics for different re-
gion of the dynamical variable x, the control inputs u,
and initial state x(0). For example, a thermostat system
exhibits different characteristics for low-temperature re-
gion x < x0, middle-temperature region x0 < x < x1

and high-temperature region x1 < x, where the inequal-
ities are applied element-wise.
To cope with the variations in the target systems,

we can fine-tune the coefficient matrices obtained by
MTDMD using additional set of trajectories after the
original modeling: we model the reference coefficient
matrices A,B using the reference train data, and then
fine-tune the model using additional train trajectories

8

(X
(p)
µ , Y

(p)
µ , U

(p)
µ) for µ = 0, 1, 2, ..., Np−1 from variation

p = 0, 1, 2, ... of the target system, as follows: first, from

the state variable Y
(p)
µ we subtract the model prediction

by the reference model:

δY (p)
µ = Y (p)

µ −
(
AX(p)

µ +BU (p)
µ

)
. (57)

Then we model the increments of the model coefficient
matrices δA(p) ∈ Rd×d, δB(p) ∈ Rd×dc using MTDMD
assuming

δY (p) = δA(p)X + δB(p)U (58)

for (X,Y, U) = (X
(p)
µ , Y

(p)
µ , U

(p)
µ) with µ =

0, 1, 2, ..., Np − 1.
We can also use MTDMD with reference for partial

modeling a nonlinear system; one can train a reference
model using all the experimental data and fine-tune the
model using a subset of train data corresponding to cer-
tain region of state variables.

F. Numerical Complexity of Proposed Methods

In this section, we show the asymptotic order of the
numerical costs for the proposed method. Because the
SVD in the Moore-Penrose pseudoinverse is the heaviest
operation in MTDMD, the asymptotic order of MTDMD
equals to that of SVD of the Hessian matrix. Note that
the asymptotic order of the SVD of a matrix M ∈ Rn×m

is n×m2.
In table I below, we compare the proposed method

against the existing method (exact DMD and DMDc).
The dimension n is n = d for exact DMD and n = d+ dc
for DMDc.

TABLE I. Asymptotic order of the numerical costs: N is the
number of trajectories, n = d for exact DMD and n = d+ dc
for DMDc. In this table, N/A means not applicable.

DMD MTDMD
matrix vector

single-trajectory O(nm2) O(n3) O(n3d)
multi-trajectory N/A O(n3) O(n3d)
with constrainta N/A N/A O(n3d)

a Constraints of the form shown in Eq. (56)

One remarkable feature is that the asymptotic order of
MTDMD is not dependent on the number of trajectories
N .

III. CONCLUDING REMARKS

We proposed a numerical method MTDMD, or multi-
trajectory DMD. We can use MTDMD to model a lin-
ear dynamical system using a set of multiple trajectories.

Here, a trajectory is a set of consecutive snapshots cor-
responding to observed data. The proposed method em-
ploies Moore-Penrose pseudoinverse of a matrix to model
the dynamical system. Although this procedure resem-
bles DMD, the proposed method has remarkable feature
that using it we can model a dynamical system even if
each trajectory has insufficient information or is too noisy
to model the entire system. The proposed method is ex-
pected to be useful to model linear dynamical systems
with noisy observations using multiple trajectories. Be-
cause the multi-trajectory modeling framework enables
us to simplify the design of experiments for large, com-
plex systems, MTDMD is expected to serve as an efficient
method to identify the dynamical systems.
As a future work, we would like to add rigorous

numerical experiments. Another issue to be addressed in
the future work is inclusion of generic constraints such
as inequality constraint.

9

Appendix A: Implementation of L2 Regularization

In some cases, we want to suppress the values of el-
ements in the parameter matrices A,B. We can imple-
ment a L2 regularization by using the following replace-
ment of Hessian: In the matrix notation,

H → H + 2λidd+dc
, (A1)

while in the vectorized notation,

Ĥ → Ĥ+ 2λ

idd+dc 0
. . .

0 idd+dc

, (A2)

where idq is the identity matrix of order q, and λ > 0 is
the coefficient of the regularization.

Appendix B: Dimension Reduction in MTDMD

We use singular-value decomposition (SVD) to reduce
the dimensions in DMD. In MTDMD, we can also per-
form the dimension reduction using SVD. For MTDMD
without control, we use the SVD

UΣV ∗ =
∑
µ

XµX
⊤
µ , (B1)

where U,Σ, V ∈ Rd×d, and U, V are unitary matrices.
By keeping the r largest singular values, we introduce

the reduced SVD as follows:

UΣV ∗ → UrΣrV
∗
r , (B2)

where Ur, Vr ∈ Rd×r and Σr ∈ Rr×r.

For MTDMD with control, we must use more elaborate
method to ensure that the any block in the Hessian is not
totally suppressed. To understand this, one may think
of a case in which the Hessian is so suppressed that only
upper (lower) diagonal block survives. In that case, the
reduced model cannot incorporate the effects from the
input (state). To circumvent this, we can use the formula
for inverse matrix of a 2×2 block matrix: for A,B,C,D ∈
An×n, provided A and S = D − CA−1B are invertible,

[
A B
C D

]−1

=

[
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]
.

(B3)
We can apply a similar expression for pseudoinverse

[
A B
C D

]+
≃
[
A+ +A+BS+CA+ −A+BS+

−S+CA+ S+

]
. (B4)

with matrix pseudoinversion operation for A,B,C,D and
S are calculated using SVDs of A,B,C,D and S by keep-
ing e.g., r,max(r, p),max(r, p), p and p largest singular
values, respectively.

[1] P. J. Schmid, Dynamic mode decomposition of numerical
and experimental data, Journal of fluid mechanics 656,
5 (2010).

[2] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brun-
ton, and J. N. Kutz, On dynamic mode decomposition:
Theory and applications, Journal of Computational Dy-
namics 1, 391 (2014).

[3] P. J. Schmid, Dynamic mode decomposition and its vari-
ants, Annual Review of Fluid Mechanics 54, 225 (2022).

[4] I. Mezic, Analysis of fluid flows via spectral properties of
the koopman operator, Annual Review of Fluid Mechan-
ics 45, 357 (2013).

[5] J. L. Proctor, S. L. Brunton, and J. N. Kutz, Dynamic
mode decomposition with control, SIAM Journal on Ap-
plied Dynamical Systems 15, 142 (2016).

[6] T. Askham and J. N. Kutz, Variable projection methods
for an optimized dynamic mode decomposition, SIAM
Journal on Applied Dynamical Systems 17, 380 (2018).

[7] D. Sashidhar and J. N. Kutz, Bagging, optimized dy-
namic mode decomposition for robust, stable forecast-
ing with spatial and temporal uncertainty quantifica-
tion, Philosophical Transactions of the Royal Society A:
Mathematical, Physical and Engineering Sciences 380,
20210199 (2022).

[8] E. Rodrigues, B. Zadrozny, C. Watson, and D. Gold,

Decadal forecasts with resdmd: a residual dmd neural
network, arXiv preprint arXiv:2106.11111 (2021).

[9] R. Anzaki, K. Sano, T. Tsutsui, M. Kazui, and T. Mat-
suzawa, Dynamic mode decomposition with memory,
Physical Review E 108, 034216 (2023).

[10] I. Mezić, Spectral properties of dynamical systems, model
reduction and decompositions, Nonlinear Dynamics 41,
309 (2005).

[11] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and
D. S. Henningson, Spectral analysis of nonlinear flows,
Journal of fluid mechanics 641, 115 (2009).

[12] S. L. Brunton, M. Budǐsić, E. Kaiser, and J. N. Kutz,
Modern koopman theory for dynamical systems, arXiv
preprint arXiv:2102.12086 (2021).

[13] A. Sano and H. Tsuji, Optimal sampling rate for sys-
tem identification based on decimation and interpolation,
IFAC Proceedings Volumes 26, 297 (1993).

[14] X. Xu, Generalization of the sherman–morrison–
woodbury formula involving the schur complement, Ap-
plied Mathematics and Computation 309, 183 (2017).

[15] A. A. Kaptanoglu, B. M. de Silva, U. Fasel, K. Kahe-
man, A. J. Goldschmidt, J. Callaham, C. B. Delahunt,
Z. G. Nicolaou, K. Champion, J.-C. Loiseau, J. N. Kutz,
and S. L. Brunton, Pysindy: A comprehensive python
package for robust sparse system identification, Journal

https://doi.org/10.1146/annurev-fluid-030121-015835
https://doi.org/10.1098/rsta.2021.0199
https://doi.org/10.1098/rsta.2021.0199
https://doi.org/10.1098/rsta.2021.0199
https://doi.org/10.21105/joss.03994

10

of Open Source Software 7, 3994 (2022).
[16] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Discovering

governing equations from data by sparse identification of

nonlinear dynamical systems, Proceedings of the national
academy of sciences 113, 3932 (2016).

https://doi.org/10.21105/joss.03994

	Multi-trajectory Dynamic Mode Decomposition
	Abstract
	Introduction
	DMD as a Numerical Optimization
	Errors in Coefficient Optimization in DMD
	Multi-Trajectory Modeling
	Aim of This Research

	Theory
	Optimization in DMD
	An Alternative Interpretation of DMD
	Optimization via Matrix Product
	Optimization via Vector Representation

	Multi-trajectory modeling in DMD
	Optimization via Matrix Product
	Optimization via Vector Representation

	Application of Constraints
	Fine-tuning of Models using Additional Set of Trajectories
	Numerical Complexity of Proposed Methods

	Concluding Remarks
	Implementation of L2 Regularization
	Dimension Reduction in MTDMD
	References

