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We propose a new interpretation of the parameter optimization in dynamic mode decomposition
(DMD), and show a rigorous application in multi-trajectory modeling. The proposed method, multi-
trajectory DMD (MTDMD) is a numerical method with which we can model a dynamical system
using multiple trajectories, or sets of consecutive snapshots. Here, a trajectory corresponds to an
experiment, so the proposed method accepts multiple experimental results. This is in contrast to
any of the existing DMD-based methods, that accepts only one set of consecutive snapshots. The
incorporation of the multi-trajectory modeling in DMD is beneficial because we can suppress the
undesirable effects from the observation noises. Also, we can perform multiple experiments with
different experimental conditions to model a complex system with simple experimental set-ups.

We test the proposed method against the numerically generated synthetic data, and show that the
MTDMD achieves not only good reconstruction results but also numerically fast multi-trajectory
modeling for multi-dimensional time-series data.

The proposed method is quite flexible, and we suggest that we can also implement L2 regulariza-
tion and equality constraints on the model parameters. The proposed method is expected to serve
as an effective method to model large systems using noisy time-series data without elaborate design
of experiment.
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I. INTRODUCTION

Dynamic mode decomposition (DMD) [1–3] is
a widely-used numerical method to analyze multi-
dimensional time-series data. Since the publication of its
original paper [1] by Schmid in 2010, researchers devel-
oped many variants [3, 4] including DMD with control
(DMDc) [5], optimized DMD (OP-DMD) [6], bagging-
optimized DMD (BOP-DMD) [7], residual DMD [8], and
DMD with memory (DMDm) [9]. Among them, the cel-
ebrated DMDc developed by Proctor et al. enabled us
to incorporate exogeneous control inputs to the DMD
framework (i.e., we can model nonautonomous dynami-
cal systems) [5]. DMDm is another type of variant, in
which Anzaki et al. replaced the time difference opera-
tor implicitly applied to the time-series data in the DMD
framework by a wider class of matrix to include mem-
ory effects [9]. The BOP-DMD is a DMD-based method
equipped with variable projection and statistical bagging
methods. The OP-DMD corresponds to the BOP-DMD
with no statistical bagging [7].
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Along with the developments in the abovementioned
variants, researchers also have deepen the understandings
of the mathematical aspects of the DMD framework from
the view of Koopman theory [4, 10–12]. In this point of
view, we regard the DMD as a numerical method to find
an approximation for Koopman mode decomposition.

Throughout this article, we denote hom(Rq,Rp) by
Rq×p for simplicity.

A. DMD as a Numerical Optimization

From the numerical point of view, the DMD can be
regarded as a framework to optimize the coefficient A ∈
Rn×n of a linear, constant coefficient dynamical system
xi+1 = Axi for time-dependent variable x ∈ Rn and
discrete time variable i = 0, 1, . . . analytically so that the
model prediction xpred fits to the observed data xobs. In
the exact DMD [2], we can get the optimized coefficient
as follows:

A = X ′X+, (1)

where,

X =
[
xobs,0,xobs,1, . . . ,xobs,m−1

]
, (2)

X ′ =
[
xobs,1,xobs,2, . . . ,xobs,m−2

]
. (3)
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In what follows, we use the exact DMD as the example,
but a similar discussion also apply for the DMDc.

In this context, the most important characteristics of
the DMD is that we define the loss function LDMD as
the sum of squared errors (SSE) for the observed- and
predicted increments. An increment of the dynamical
variables at time i is xi+1 −xi, so we have the loss func-
tion as follows:

LDMD =

m−1∑
i=0

|(xobs,i+1 − xobs,i)−Axobs,i|2. (4)

Here, note that Axobs,i is the predicted increment at time
point i for given observations xobs,i,xobs,i+1.

Compared to the other modeling methods such as the
least squares method (LSM), which minimizes a loss
function defined as the SSE of the dynamical variables
LSSE :=

∑
i |xpred,i − xobs,i|2, the DMD is advantageous

because the loss function LDMD becomes quadratic in the
coefficient A of the dynamical system. This simplification
in the loss function in the DMD has two aspects: (a) It
enables us to use the analytical optimization method rep-
resented by a matrix pseudoinversion and matrix prod-
ucts, instead of numerically costly iterative methods; (b)
On the other hand, the simplification makes a long-term
prediction difficult.

To understand the latter aspect, one can imagine the
following situations in which the error xpred,i − xobs,i at
time point i is (approximately) proportional to time ti
with small constant of proportionality:{

xobs,i+1 − xobs,i −Axobs,i = ε (DMD)

xobs,i − xpred,i = εti (LSM)
, (5)

with ε ∈ Rn. Let us assume that the numerically
achieved minimum for LDMD and LLSM is δ > 0. In
the DMD, the loss function LDMD becomes a small value
proportional to the total time interval T > 0 of the ob-
served data: LDMD ∝ |ε|2T . The minimum |ε| DMD can
numerically achieve is |ε| =

√
δ/T . Thus, the DMD is

not sensitive to this type of errors, resulting in a large
model prediction errors for t & T 1/2δ−1/2.

On the other hand, the SSE loss function for xpred

and xobs is proportional to the second power of the to-
tal time interval, i.e., LSSE ∝ |ε|2T 2. Let us assume we
have a time-evolution model xi+1 = f({xj}j≤i, i|θ) with
adjustable parameters θ ∈ Θ. Using an appropriate nu-
merical method, one can suppress the SSE for the given
observation data to δ, provided the family of the model
{f(−,−|θ)|θ ∈ Θ} includes the true model for the target

dynamics. In those cases, one can show that, LSM has
large errors only for t & Tδ−1/2.

B. Errors in Coefficient Optimization in DMD

To overcome the abovementioned difficulty, one need
to improve the accuracy of the estimated coefficients for
the DMD. One of the major contributions to the errors
in the coefficient estimation is the observation noise. As
we have seen above, in the DMD framework we fit the
increments of the predicted dynamical variables to the
observed ones, meaning that it is vulnerable to high-
frequency part of noise. In the realm of data analysis,
one usually apply preprocesses e.g., decimation and low-
pass filters (e.g., moving average) to mitigate the effects
from the observation noise [13]. However, a preprocess in-
evitably worsens the dynamic characteristics of the orig-
inal data, resulting in phase delay and prolonged dead-
time.

Another major contribution to the errors in coefficient
estimations is originated to the inappropriate design of
experiment (DoE). Suppose we have a large system with
the degrees of freedom (DoF) exceeding around one hun-
dred. To model such system precisely, we need to excite
all the modes sufficiently strongly so that the signal to
noise ratio (S/N ratio) becomes sufficiently large. How-
ever, as the number of modes (roughly proportional to
the DoF) becomes large, DoEs to achieve a good S/N ra-
tio often becomes hard to realize, due to the limitations
on the system and observation instruments.

We can understand the abovementioned two contri-
butions in a unified manner: suppose we have a set
of noiseless snapshots from a linear autonomous dy-
namical system {xi|i = 0, 1, . . . ,m − 1} and let X =[
x0,x1, . . . ,xm−1

]
and X ′ =

[
x1,x2, . . . ,xm

]
. Let

us denote a realization of noise at time point i is
δxi and let δX =

[
δx0, δx1, . . . , δxm−1

]
and δX ′ =[

δx1, δx2, . . . , δxm

]
. We assume that the noise is suf-

ficiently small in the sense ‖X+δX‖∞ < 1 and, at the
same time, ε := ‖δX‖F/‖X‖F � 1. The ground truth of
the coefficient A0 is as follows:

A0 = X ′X+. (6)

The coefficient estimated using the observed data A is as
follows:

A = (X ′ + δX ′)(X + δX)+. (7)

Here we can use a special version of the generalization of Sherman–Morrison–Woodbury theorem (Theorem 3.2 in
[14]): if range(δX) ⊆ range(X), range(δX∗) ⊆ range(SX), then

(X + δX)+ = (id +X+δXFSX
δX∗(X+)∗)−1(A+ −A+S+

XX+)(id + (X+)∗ESX
X+)−1, (8)

where SX = id+X+δX and EM = id−MM+ and FM = id−M+M for a matrix M are orthogonal projections onto
null spaces of matrix M∗ and M , respectively.
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Because ‖X+δX‖∞ < 1, the SX is invertible, and hence
we obtain a simple result:

(X + δX)+ = X+ −X+δXX+. (9)

Thus,

A = A0 + δX ′X+ −X ′X+δXX+ +O(ε2). (10)

This gives important insights on the errors of coefficient
optimizations in DMD: (1) the error is proportional to
the magnitude of the noises, (2) the errors in the op-
timized coefficient is magnified by up to the condition
number of X. Thus, to suppress the errors in the coef-
ficient optimization, we need to suppress the noise and
the condition number κ(X) of the observed data X.

The most trivial approach to this aim is to prepare a
set of experimental conditions {µ = 1, 2, 3, . . . } and take
an average over the set of optimized coefficients A(µ).
However, this approach often fails, especially when the
majority of the experimental conditions do not excite the
entire system sufficiently. In those cases, the optimized
coefficients suffer from a bad condition number κ(X) � 1
of the observed data X and the contribution from the
noises are magnified by the factor of up to κ(X). Thus,
to suppress the errors in the optimized coefficients, we
might need huge number of experiments and average the
resultant coefficients.

C. Multi-Trajectory Modeling

Another, more elaborate approach to suppress the con-
tributions from noises is the multi-trajectory modeling.
In a multi-trajectory modeling procedure, one uses a set
of multiple trajectories to get a single dynamical system
which best fits to the given trajectories.

The multi-trajectory modeling is already implemented
in PySINDy [15], a python library for sparse identi-
fication of nonlinear dynamical systems (SINDy) [16].
SINDy is a nonlinear modeling method with numerical
sparse optimization of coefficients of the corresponding
nonlinear dynamical systems. It is shown that SINDy
works quite well for identification of the underlying dy-
namics for low-dimensional time-series data.

However, for systems with huge number of degrees of
freedom, SINDy has severe limitations. One of such limi-
tations is the problem of numerical costs, especially when
applying constraints on the parameters. This is because
the optimization is performed numerically by using iter-
ative methods, in contrast to DMD-based methods, in
which the optimal parameters are obtained by applying
a simple function to observed- and input data. For ex-
ample, for a large linear system with DoF > 100, SINDy
becomes prohibitively heavy even with small number of
library functions.

D. Aim of This Research

We propose a new approach to overcome the above-
mentioned difficulty by introducing the idea of multi-
trajectory modeling to the DMD framework.

Multi-trajectory modeling methods enable us to model
a system using a set of multiple experimental conditions,
rather than averaging the model parameters for each ex-
perimental condition. However, there is no known way to
perform multi-trajectory modeling using existing DMD
methods.

In this paper, we propose a numerical method MT-
DMD (multi-trajectory DMD), that is a multi-trajectory
modeling method based on DMD. In what follows, we
re-interpret the existing DMD method as a numerical
optimization of the loss function defined as the square
of matrix Frobenius norm of the modeling error, and we
re-write the optimization scheme by using the Jacobian
(gradient) and Hessian of the loss function. Noting that
the derivative operators are linear on the target func-
tions, we easily extend DMD to multi-trajectory frame-
work.

We show that MTDMD is useful in suppressing the ef-
fects from noises in the observation data. The method is
also shown to be useful to model huge systems, because
one can use a set of multiple experimental conditions each
of which excites merely small portion of the whole sys-
tem, meaning that each of the experimental set-ups can
be quite simple. This also means that we can design
experiments to improve S/N ratio much easier than the
case with existing methods, especially when the exper-
imental set-ups has limitations (e.g., total input power,
the number of simultaneous nonzero inputs).

II. THEORY

In this section, we first show an alternative way to in-
terpret the optimization of model parameters in DMD
framework, and propose a DMD-based, multi-trajectory
modeling method using the alternative interpretation.
The numerical complexities for each model (i.e., exist-
ing DMD and proposed methods) are shown in the end
of this section.

A. Optimization in DMD

Suppose we have a pair of data (Y,X) where Y,X ∈
Rd×m are matrices. We call the row indices of X,Y the
spatial direction, while the column indices the temporal
direction. In the exact DMD, we use the matrix Y con-
structed by shifting the matrix X towards the future by
one time step. In the DMDm, we use a memory kernel to
construct Y from X [9]. For a matrix Y that satisfies the
causality property [9], one can construct a time-evolution
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model of the form:

xi+1 = f({xj}j≤i, i|θ), (11)

where θ is the adjustable parameters. Hereafter, we
mainly focus on the constant coefficient time-evolution
model of the form:

xi+1 = Axi +Bui, (12)

where A ∈ Rd×d and B ∈ Rd×dc are constant matrices,
and u ∈ Rdc is the exogeneous external input. The exact
DMD is the case B = 0.

In the exact DMD, we use the following well-known
theorem to optimize the model parameter assuming a
linear dependency Y = AX for A ∈ Rd×d:

argmin
A

‖Y −AX‖F = Y X+, (13)

where •+ is the Moore-Penrose pseudo-inverse of a ma-
trix, and ‖ • ‖F is the Frobenius norm of a matrix.

The above optimization problem can also be seen as
the optimization of a multivariate quadratic function.
Let us denote

L(A|X,Y ) = ‖Y −AX‖2F. (14)

The function L is the loss function of the linear model
Y = AX for given data X,Y . Noting that the second
power R≥0 3 x 7→ x2 is a strictly monotonically increas-
ing function, one can see that the optimal coefficient A∗
of L(A|X,Y ) also satisfies A∗ = Y X+.

B. An Alternative Interpretation of DMD

In this section, we re-interpret the DMD by showing
a different way to optimize the loss function. Because L
is quadratic in elements of A, we can use the following
analytical formula for a quadratic function f : Rn 3 x 7→
f(x) ∈ R:

[
argmin

x
f(x)

]
α
= −

∑
β

[(
∂2f

∂x2

)+
]β

α

∂f

∂xβ

∣∣∣∣
x=0

, (15)

where, α and β are indices of vectors and matrices.
Before proceeding to application of the above formula

to our loss function L, let us introduce the tensor notation
of a vector a ∈ Rd, a matrix F ∈ Rd×m), and a matrix
G ∈ Rd×d as follows: a = [ai], F = [F i

a], and G = [Gi
j ].

Note that, we use upper and lower suffices to discriminate
the contravariant and covariant indices, but we do not
adopt Einstein’s convention. In what follows, we assume
that the metric is the unit tensor δij (δii = 1 and δij = 0
for i 6= j) unless otherwise stated.

We use i, j, k, `,m, n, . . . for the spatial indices, and
a, b, c, . . . for temporal indices. We use A,B to denote

the vectorized quantities for matrices A ∈ Rd×d and B ∈
Rd×dc , i.e.,

A =


A0

0

A0
1

...
Ad−1

d−1

, B =


B0

0

B0
1

...
Bd−1

dc−1

. (16)

We use the similar symbols Ĥ, K̂, . . . to denote the linear
maps from matrices to matrices. For instance, for a ten-
sor H = [Hij

kl] ∈ hom(Rd×d,Rd×d) with i, j being the
contravariant indices and k, l being the covariant indices,
the corresponding matrix is expressed as follows:

Ĥ =


h00 h01 · · · h0,d−1

h10 h11 · · · h1,d−1

...
...

...
hd−1,0 hd−1,1 · · · hd−1,d−1

 ∈ Rd2×d2

, (17)

where submatrices hαβ ∈ Rd×d is expressed as follows:

hαβ =


Hα,0

β,0 Hα,0
β,1 · · · Hα,0

β,d−1

Hα,1
β,0 Hα,1

β,1 · · · Hα,0
β,d−1

...
...

...
Hα,d−1

β,0 Hα,d−1
β,1 · · · Hα,d−1

β,d−1

. (18)

Note that, in the vectorized notation, a matrix becomes
a vector, while a tensor that maps matrices to matrices
becomes a matrix. Also note that a vectorization corre-
sponds to a multi-indexing, in which two or more indices
of a tensor are grouped and treated as one index. We used
the lexicographical order to construct the multi-indices in
the above example.

1. Optimization via Matrix Product

Now that we can apply the general formula to our loss
function, to get[
argmin

A
L(A|X,Y )

]i
j
= −

∑
k`

Kik
j`

∂L(A|X,Y )

∂Ak
`

∣∣∣∣
A=0

,

(19)
where K is the Moore-Penrose inverse of the Hessian of
L,

K = argmin
K

∑
i,j,m,n

[
Kik

j`

∂2L(A|X,Y )

∂Ak
`∂A

m
n

− δijδ
n
m

]2
. (20)

The Jacobian and Hessian of the loss function can be
derived analytically, as follows: noting that

L(A|X,Y ) =
∑
i,a

Y i
a −

∑
j

Ai
jX

j
a

2

, (21)
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we obtain

∂L(A|X,Y )

∂Ai
j

= −2
∑
a

Y i
aX

j
a,

∂2L(A|X,Y )

∂Ai
j∂A

k
`

= 2
∑
a

Xj
aX

`
aδ

ik.

(22)
Note that the Hessian is only dependent on two spatial
indices (i.e., j, ` in Eq. (22)). Using the standard matrix
multiplication, the Jacobian and Hessian become,

∂L(A|X,Y )

∂Ai
j

= −2(Y X>)ij ,
∂2L(A|X,Y )

∂Ai
j∂A

k
`

= 2(XX>)j`δik.

(23)
Thus, the optimal coefficient A∗ becomes as follows:

A∗ = Y X>(XX>)+. (24)

This is identical to Eq. (13) for left-invertible X (i.e.,
X>X = idd), because in that case X>(XX>)+ = X+,
as expected.

For the DMDc, we can use a similar discussion for a
data tuple (Y,X,Υ) with additional Υ being a dc × m
matrix corresponding to the control input, and obtain
the following equation:

[
A∗ B∗

]
= Y

[
X> Υ>][XX> XΥ>

ΥX> ΥΥ>

]+
, (25)

where, we assumed Y = AX+BΥ with B ∈ Rd×dc being
a matrix. This is shown to be identical to DMDc without
dimension reduction for invertible X and Υ.

2. Optimization via Vector Representation

In this subsection, we express the formula Eq. (25)
shown in the previous subsection in a vectorized notation.

Let us introduce multi-indices α, β = 0, 1, 2, . . . , d2 − 1
using the lexicographical order lex− : Z≥0 × Z≥0 → Z≥0

lexd(0, 0) = 0,

lexd(0, 1) = 1,

. . . ,

lexd(0, d− 1) = d− 1,

lexd(1, 0) = d,

. . . ,

lexd(d, d) = d2 − 1.

(26)

The vectorization of A is introduced as A = [Aα] ∈ Rd2 ,
and the equation for the optimal coefficient A∗ becomes
a matrix-vector product, as follows

A∗ = −∂2L

∂A2

+
∂L

∂A

∣∣∣∣
A=0

. (27)

In this basis, the Hessian Ĥ = ∂2L
∂A2 ∈ Rd2×d2 is a block

matrix:

Ĥ =


h 0 0 · · · 0
0 h 0 · · · 0
0 0 h
...

...
. . .

0 0 · · · h


i = 0
i = 1
i = 2

...
i = d− 1

, (28)

where each submatrix h = [hj`] = 2XX> is placed in a
diagonal block (i, k) for Ĥ = [H(i,j),(k,`)]. We therefore
can circumvent a numerically costly inversion operation
of d2 × d2 matrix, by applying the block-wise inversion,
as follows:

Ĥ+ =


h+ 0 0 · · · 0
0 h+ 0 · · · 0
0 0 h+

...
...

. . .
0 0 · · · h+


i = 0
i = 1
i = 2

...
i = d− 1

. (29)

Note that, the Jacobian J = [J(i,j)] =
∂L
∂A does not have a

block-wise structure. The vectorized optimal coefficient
A∗ is obtained as follows:

A∗ = −Ĥ+J; Ĥ =
∂2L

∂A2
. (30)

This is the vectorized notation for DMD in the alterna-
tive interpretation of the numerical optimization.

Note that, for a large spatial dimension d, the above-
mentioned method is numerically very advantageous
compared to a numerical convex optimization of the loss
function L. However, at this point, the standard proce-
dure of DMD Eq. (13) is still much than our procedure
in Eq. (30).

We can follow a similar procedure for the DMD with
control. The number of model parameters is d(d + dc),
so we construct the vectorization so that we have d sub-
spaces each of which is (d + dc)-dimensional space, as
shown below.



0
...

d+ dc − 1
...

(d− 1)(d+ dc)
...

d(d+ dc)− 1




d blocks (31)

Now, let us introduce multi-indices α = (i, j) =
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0, 1, 2, . . . , d(d+ dc)− 1 using the lexicographical order

lexd+dc
(0, 0) = 0,

lexd+dc
(0, 1) = 1,

. . . ,

lexd+dc(0, d+ dc − 1) = d+ dc − 1,

lexd+dc
(1, 0) = d+ dc,

. . . ,

lexd+dc
(d, d+ dc) = d(d+ dc)− 1.

(32)

We can now derive similar expression for DMDc using
the concatenated, vectorized coefficient matrix C instead
of A:

C =



A0
0

...
A0

d

B0
0

...
B0

dc

...
Ad

0
...

Ad
d

Bd
0

...
Bd

dc





d blocks (33)

The resultant expression is as follows:

C∗ = −Ĥ+J; Ĥ =
∂2L

∂C2
. (34)

This is the vectorized notation of DMDc in the alterna-
tive interpretation.

C. Multi-trajectory modeling in DMD

We can use our result Eq. (24) and Eq. (25) in the
previous section for multi-trajectory DMD, or MTDMD.
Hereafter we use DMDc framework, but one can get MT-
DMD without control simply by omitting matrix blocks
containing control input Υ.

Let us assume that we have N tuples of data
Xµ, Yµ,Υµ indexed by µ, ν, . . . Hereafter, we assume that
Y , X, and Υ represents the observation, state, and ex-
ternal input. In the exact DMD case, Y = [x1, . . .xm−1]
and X = [x0, . . . ,xm−2]. We denote {X,Y,Υ} =
{(Yµ, Xµ,Υµ) : µ = 0, 1, 2, . . . , N − 1} for simplicity. We
call each tuple (Yµ, Xµ,Υµ) a trajectory. Now let us de-
fine the loss function for MTDMD as

L(A,B|{X,Y,Υ}) =
∑
µ

‖Yµ −AXµ −BΥµ‖2F. (35)

Note that the pair of coefficients (A,B) is a constant of
trajectory index µ. In MTDMD with control, we think
that the model parameters form a d× (d+ dc) matrix as
follows:

[
A B

]
∈ Rd×(d+dc). (36)

1. Optimization via Matrix Product

Noting that the first- and second-order derivatives are
linear with respect to the target function, we can readily
apply the same procedure we used in the previous sec-
tion, and obtain the following formula for the optimal
coefficients A∗, B∗:

[
A∗ B∗

]
=

(∑
µ

Yµ

[
X>

µ Υ>
µ

])(∑
ν

[
XνX

>
ν XνΥ

>
ν

ΥνX
>
ν ΥνΥ

>
ν

])+

.

(37)
This is the MTDMD with control. In this expression, the
Jacobian J and Hessian H appears as matrices:

J = −
∑
µ

Yµ

[
X>

µ Υ>
µ

]
, H =

∑
ν

[
XνX

>
ν XνΥ

>
ν

ΥνX
>
ν ΥνΥ

>
ν

]
.

(38)
Note that, the numerical optimization in Eq. (37) is ro-
bust against noises if the condition number of the Hes-
sian κ(H) ≥ 1 is small enough. Our proposed method is
advantageous to existing methods, because it is almost
as fast as exact DMD, and we can incorporate multi-
trajectory modeling.

2. Optimization via Vector Representation

Now that we get the following expression for the Hes-
sian H:

Ĥ =


h 0 0 · · · 0
0 h 0 · · · 0
0 0 h
...

...
. . .

0 0 · · · h


i = 0
i = 1
i = 2

...
i = d− 1

, (39)

where the matrix h ∈ R(d+dc)×(d+dc) is expressed as fol-
lows:

h =

[
XνX

>
ν XνΥ

>
ν

ΥνX
>
ν ΥνΥ

>
ν

]
(40)
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The optimal coefficients are obtained as follows, using
the Jacobian J :

d blocks





A0
0

...
A0

d

B0
0

...
B0

dc

...
Ad

0
...

Ad
d

Bd
0

...
Bd

dc



= −Ĥ+J. (41)

Note that, the proposed method in this vectorized nota-
tion is not advantageous compared to the one in using
the matrix product.

D. Application of Constraints

In this section, we impose constraints of the following
form to the MTDMD:

Aij = 0 if PA
ij = 0, Bij = 0 if PB

ij = 0, (42)

with PA ∈ {0, 1}d×d and PB ∈ {0, 1}d×dc are matrices.
Note that, the free parameters are now reduced to PA �
A, with � being the element-wise (Hadamard) product
of matrices. Let us define a matrix P as follows:

P =
[
PA PB

]
. (43)

To implement this constraint, we use the vectorized for-
mula, as follows: for i = 0, 1, 2, . . . , d− 1, let us define

(hi)
j` =

{
∂2L(A|X,Y )
∂Ai

j∂A
i
`

PijPi` = 1

0 PijPj` = 0
. (44)

One method to implement this is as follows:

(hi)
j` =

∂2L(A|X,Y )

∂Ai
j∂A

i
`

P i
jP

i
`. (45)

Note that the repeated indices do not mean summations
(i.e., we do not use Einstein’s convention). We also define
the i-th block of Jacobian Ji as follows:

(Ji)j =
∂L(A|X,Y )

∂Aij
. (46)

For the i-th row of the concatenated parameter matrix,
we use the following formula:

d blocks





A0
0

...
A0

d

B0
0

...
B0

dc

...
Ad

0
...

Ad
d

Bd
0

...
Bd

dc



= −


h+
0 0

h+
1

. . .
0 h+

d−1




J0
J1
...

Jd−1

.

(47)
This is a numerically advantageous method compared to
the brute-force method in which one compute −Ĥ+J with
the pseudo-inverse being performed for entire Ĥ. Be-
cause the matrix inversion of n-dimensional matrix re-
quires O(n3) steps, we can reduce the computational cost
by the factor 1/d3 × d = 1/d2 by applying our method,
compared to the brute-force numerical optimization of
multivariate quadratic function.

Note that, we can also impose wider class of equality
constraint to the parameters, such as

Aij = α if PA
α,ij = 0 α ∈ {αs ∈ R|s = 0, 1, 2, . . . , S},

(48)
for PA

α ∈ {0, 1}d×d. In that case, we have to modify the
Jacobian, because the gradient with respect to the free
part of the parameter PA�A at the origin is affected by
the fixed parameters.

E. Numerical Complexity of Proposed Methods

In this section, we show the asymptotic order of the nu-
merical costs for the proposed method. Because the SVD
in the Moore-Penrose pseudoinverse is the most heavy
operation in MTDMD, the asymptotic order of MTDMD
equals to that of SVD of the Hessian matrix. Note that
the asymptotic order of the SVD of a matrix M ∈ n×m
is n×m2.

In table I below, we compare the proposed method
against the existing method (exact DMD and DMDc).
The dimension n is n = d for exact DMD and n = d+ dc
for DMDc.

One remarkable feature is that the asymptotic order
of MTDMD is not dependent on the number of trajecto-
ries N . Also, as mentioned above, in the case with con-
straints on the parameter matrices, our method achieves
better reconstructions compared to the trivial approach
(the asymptotic order is O(d6)) in which the Jacobian
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TABLE I. Asymptotic order of the numerical costs: N is the
number of trajectories, n = d for exact DMD and n = d+ dc
for DMDc.

DMD Averaged DMD a MTDMD
matrix vector

single-trajectory O(nm2) O(nm2) O(n3) O(n3d)
multi-trajectory − O(Nnm2) O(n3) O(n3d)
with constraintb − − − O(n3d)
a Applying the existing DMD method for each experimental

result and take an average of the estimated coefficients
b Constraints of the form shown in Eq. (42)

and Hessian of the loss function becomes n2 dimensional
vector and matrix, respectively.

III. NUMERICAL TESTS

In this section, we perform numerical tests for our pro-
posed methods against numerically generated synthetic
data.

A. Synthetic Data

Suppose we have a graph consists of N nodes and
several edges. A node has finite heat capacity, and an
edge has finite heat transfer constant. Each node has
a heater and a thermometer. Let us denote nodes by
i, j, k, · · · = 0, 1, . . . , N − 1. We denote the temperature
and heater power at node i by Ti and Pi, respectively.
For a node i, we denote the set of adjacent nodes to i by
Γ
(1)
i . Using a graph theoretic statement, we can define

more generic case: Γ
(n)
i is the set of nodes connected to

the node i by a path of length n and not connected to i
by any paths shorter than n.

The heat energy ith heater generates transfers to adja-
cent nodes j ∈ Γ

(1)
i with heat transfer constants κji > 0.

We denote the heat capacity of node i by Ci > 0.
Note that, the heat transfer constant κji is zero for non-
adjacent pairs of nodes i, j:

κji = 0 (j 6∈ Γ
(1)
i ). (49)

As the special case of the above equation, we have κii = 0
for any node i.

The heat transfer equation for node i becomes as fol-
lows:

dTi

dt
=
∑

j∈Γ
(1)
i

κij

Ci
(Tj − Ti) +

1

Ci
Pi. (50)

Let us denote the state vector of the system by
T =

[
T0, T1, . . . , TN−1

]> and input vector by P =[
P0, P1, . . . , PN−1

]>. The system of the above heat

transfer equations for i = 0, 1, . . . , N − 1 is equivalent to
the following linear nonautonomous dynamical system:

dT

dt
= AT (t) +BP (t), (51)

with matrices A =
[
Aij

]
∈ RN×N and B = [Bij ] ∈

RN×N being

Aij =
κij − δij

∑
j κij

Ci
, (52)

and

Bij =
δij
Ci

. (53)

Note that, the matrix A = [Aij ] satisfies the following
conditions:

Aij > 0 and
∑
k

Aik = 0 (i, j = 0, 1, . . . , N − 1). (54)

In this set-up, our aim is to determine the matrices A
and B from time-series data T (t) and P (t).

We generate a matrix A randomly so that A satisfies
the conditions Eq. (54), and simulate the time-evolutions
of temperature T (µ) for P = 0 and initial temperature
distributions T

(µ)
0 for µ = 0, 1, . . . , N !. We define the

vectors T
(µ)
0 using the permutation function:

T
(µ)
0 = perm(T

(0)
0 , µ) (µ = 1, 2, . . . , N !), (55)

where perm(−, µ) applies the µth permutation to a vec-
tor. We assume that the permutation is enumerated by
lexicographical order.

We simulate the trajectory for initial condition T
(µ)
0

using implicit Euler scheme. The resultant set of trajec-
tories becomes as follows:

S = {T (µ)|µ = 0, 1, . . . , N !}, (56)

where T (µ) =
[
T

(µ)
0 ,T

(µ)
1 , . . . ,T

(µ)
m−1

]
is the discrete time-

evolution with m time points.
We prepare the test dataset using the similar proce-

dures as follows. For T
(0)
test ∈ RN , we prepare the initial

conditions using the permutation function:

T
(µ)
test = perm(T

(0)
test, µ) (µ = 1, 2, . . . , N !). (57)

We simulate the time-evolutions using the implicit Eu-
ler scheme with m time points, and get the set of test
trajectories

Stest = {T (µ)
test|µ = 0, 1, . . . , N !− 1}. (58)

We use the test dataset to evaluate the modeling methods
below.
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FIG. 2. The generated trajectory T (0)(t) ∈ S. Each solid line
(temp i) shows the ith component of T (0)(t).

B. Numerical Set-ups

We set N = 6 and T
(0)
0 = [−3,−2,−1, 0, 1, 2]> and

T
(0)
test = [−2.5,−1.5,−0.5, 0.5, 1.5, 2.5]> for training and

test dataset, respectively. Consequently, we got a set of
6! = 720 training trajectories S and 720 test trajectories
Stest. We simulated the time-evolutions from t = 0 to
t = 1 with uniformly discretized m = 100 time points.
The generated coefficient A ∈ R6×6 is shown in Fig. 1;
A has no zero element, so the graph we consider is a
complete graph.

FIG. 1. The generated matrix A = [Aik].

The time-series data T (0)(t) is shown in Fig. 2 below.
As one can see, the temperatures approach to the equi-
librium as time passes.

We applied the proposed method MTDMD for the in-
creasing sequence of subsets:

S0 ⊂ S1 ⊂ · · · ⊂ S, (59)

where, for k = 0, 1, . . . , N !− 1,

Sk = {T (µ)|µ = 0, 1, . . . , k − 1} ⊂ S. (60)

We adopt DMD and OP-DMD as the existing meth-
ods for comparison. As we have seen above, DMD and
OP-DMD accept only one trajectory. To compare with
the proposed method, we use average over the test tra-
jectories, as follows: for k = 1, 2, . . . and method =
DMD, OP-DMD,

A = k−1
k−1∑
µ=0

A(µ) A(µ) = fit(Sk, method), (61)

where fit(−,method) returns the coefficient matrix A
using method for given set of trajectories. The resultant
matrix A is used for the model reconstruction.

C. Modeling of Noiseless Data

We performed numerical test using noiseless synthetic
data. We will show the results for noisy data in the next
subsection.

The numerical result is shown in Fig. 3. As we can see,
the proposed method achieves smaller RMSE compared
to the existing methods (DMD and OP-DMD) for the
cases with more than one trajectory.

FIG. 3. Upper panel: Comparison of the reconstruction errors
for noiseless time-series data. Blue solid line (MTDMD): the
proposed method applied for increasing sequence of subsets
Eq. (59). Green dashed line (Averaged OP-DMD): OP-
DMD with the averaged coefficient matrix Eq. (61) for the
same increasing sequence of subsets Eq. (59). The result of
DMD (labeled as Averaged DMD) with the same proce-
dure is not shown, because the reconstruction error diverged.
The reconstruction error is defined for the test dataset Stest
Eq. (58) and shown in root mean squared error (RMSE) per
trajectory per DoF per time point. Lower panel: Condition
number of the Hessian matrix in the MTDMD for the noise-
less time-series data.

An example for reconstruction is shown in Fig. 4 below.
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FIG. 4. The reconstruction results for the model identi-
fied using noiseless time-series data. Solid lines (true dy-
namics): the ground truth (generated trajectory) T (0)(t).
Dashed lines (recon (MTDMD)): the reconstructed time-
series data using coefficient matrix A modeled by MTDMD.
Dash-dotted lines (recon (OP-DMD)): the reconstructed
time-series data for OP-DMD using the averaged coefficient
matrix Eq. (61). Black dotted lines (forecast (OP-DMD)):
the reconstructed time-series data using the forecast method
of pyDMD (svd_rank = 2) fitted to T (99). The recon-
struction results by DMD are not shown, because the time-
evolutions diverged. The number of trajectories used for sys-
tem identification is 100, and the other details of the system
identification for OP-DMD and DMD are the same as shown
in Fig. 3.

One can see that the reconstruction by MTDMD
matches the ground truth, while the reconstruction by
OP-DMD fails to mimic the qualitative behaviors of the
dynamics. The reason for this improvement is partly ex-
plained by the improvements in the condition number of
the Hessian matrix.

D. Modeling of Noisy Data

We now show numerical results for noisy data in this
subsection. We used the same matrix A and the (noise-
less) trajectories shown in the previous subsection, and
added independently and identically distributed (i.i.d.)
Gaussian noise with zero mean and standard deviation
σ = 0.1 to each time point of the trajectories. In this
section, we identify the model coefficient A using noisy
data, and evaluate the reconstruction errors for the ob-
tained A against noiseless data. All other set-ups are the
same as we used in the previous subsection.

The noisy time-series data T (0)(t) is shown in Fig. 5
below.

The numerical result is shown in Fig. 6. As we can see,
the proposed method achieved smaller RMSE compared
to the existing methods (DMD and OP-DMD) for the
cases with more than one trajectory.

FIG. 5. The generated trajectory T (0)(t) plus the i.i.d. Gaus-
sian noise with 0 mean and standard deviation σ = 0.1 for
each time point. Each solid line (temp i) shows the ith com-
ponent of T (0)(t).

FIG. 6. Upper panel: Comparison of the reconstruction er-
rors for noisy time-series data. Blue solid line (MTDMD):
the proposed method applied for increasing sequence of sub-
sets Eq. (59). Green dashed line (Averaged OP-DMD):
OP-DMD with the averaged coefficient matrix Eq. (61) for
the same increasing sequence of subsets Eq. (59). The result
of DMD (labeled as Averaged DMD) with the same proce-
dure is not shown, because the reconstruction error diverged.
The reconstruction error is defined for the test dataset Stest
Eq. (58) and shown in root mean squared error (RMSE) per
trajectory per DoF per time point. Lower panel: Lower panel:
Condition number of the Hessian matrix in the MTDMD for
the noisy time-series data.

An example for reconstruction is shown in Fig. 7 below.



11

FIG. 7. The reconstruction results for the model identi-
fied using noisy time-series data. Solid lines (true dy-
namics): the ground truth (generated trajectory) T (0)(t).
Shaded solid lines (observed data): noisy, observed data.
Dashed lines (recon (MTDMD)): the reconstructed time-
series data using coefficient matrix A modeled by MTDMD.
Dash-dotted lines (recon (OP-DMD)): the reconstructed
time-series data for OP-DMD using the averaged coefficient
matrix Eq. (61). Black dotted lines (forecast (OP-DMD)):
the reconstructed time-series data using the forecast method
of pyDMD (svd_rank = 2) fitted to T (99). The recon-
struction results by DMD are not shown, because the time-
evolutions diverged. The number of trajectories used for sys-
tem identification is 100, and the other details of the system
identification for OP-DMD and DMD are the same as shown
in Fig. 3.

One can see that the reconstruction by MTDMD ap-
proximately coincides with the ground truth, while the
reconstruction by OP-DMD fails to reconstruct the phys-
ical behavior of the dynamics at all. The reason for this
improvement is, again, partly explained by the improve-
ments in the condition number of the Hessian matrix.
Interestingly, the condition number declines quicker com-
pared to the case with noiseless data.

E. Computational Cost

The computational time for parameter optimization by
MTDMD using 100 trajectories is 0.0127 seconds, while
fitting DMD and OP-DMD for 100 trajectories one-by-
one and take an average over the resultant 100 coefficient
matrices requires 0.0639 seconds and 2.174 seconds, re-
spectively. The computer used in this numerical exper-
iment has Intelr CoreTM i7-10610U processor [17] and
16.0 GB of random access memory. We implemented the
numerical code in Python and no multi-thread computing
used explicitly.

IV. DISCUSSION

The proposed method, MTDMD, is shown to be able
to model the linear dynamical system effectively and ac-

curately using multiple trajectories even for noisy time-
series data. The reconstruction error (RMSE) for the
proposed method with 100 trajectories is approximately
2×10−2 for noiseless data and approximately 0.3 for noisy
data (noise standard deviation σ = 0.1). Note that, the
initial temperature is of order of unity, and the recon-
struction error is calculated against noiseless dynamics
with different set of initial temperatures. The reconstruc-
tion error for MTDMD is much smaller compared to the
existing DMD-based methods (DMD and OP-DMD with
averaged coefficient matrices).

Although a careful selection of hyper-parameter of OP-
DMD enables us to get a better reconstruction using
the built-in forecast method of PyDMD for noisy time-
series data, the reconstruction result using OP-DMD co-
efficients (i.e., without coefficient averaging over multi-
ple trajectories and forecast method) is worse than the
MTDMD results for noiseless time-series data. Note that,
we can use the forecast method only for time-series data
which belong to the set of training trajectories. The fact
suggests that although OP-DMD can efficiently suppress
the undesirable effects from observation noises, the gener-
alizability of the identified model by OP-DMD is largely
dependent on the closeness of the training trajectory to
the test trajectory.

The improvement of the reconstruction by the MT-
DMD is partly attributed to the quick decay of the con-
dition number κ(H) of the Hessian H with respect to
the number of the trajectories. A comparison between
MTDMD using the noiseless- and noisy data shows us
that the improvement in condition number is larger in
noisy data. Another comparison between MTDMD and
existing DMD-based methods using the noisy data indi-
cates that even from noisy data one can reconstruct the
original, noiseless data using the MTDMD.

It is also shown that, for sufficiently large number of
trajectories, the proposed method achieves better recon-
struction results compared to the existing methods not
only in a sense of reconstruction error, but also in a sense
of computational time. Note that, each trajectory is a
6 × 100 array, so the total amount of data is relatively
large.

V. SUMMARY

We propose a numerical method MTDMD, or multi-
trajectory DMD, for time-series data analysis. The pro-
posed method is useful to model linear dynamical sys-
tems with noisy observations using multiple trajectories.
We show that with MTDMD we can successfully iden-
tify the system using the set of noiseless- and noisy syn-
thetic time-series data. The computational time for MT-
DMD is shown to be comparative to the existing DMD-
based methods, and the reconstruction results are better
in MTDMD, especially for cases with noisy time-series
data. The MTDMD achieves not only good reconstruc-
tion results, but also numerically fast multi-trajectory
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modeling. Because the multi-trajectory modeling frame-
work enables us to simplify the design of experiments for
large, complex systems, MTDMD is expected to serve as
an efficient method to identify the dynamical systems.

As a future work, one may perform a qualitative com-
parison between MTDMD and the existing DMD-based
methods for identification of non-autonomous dynamical
systems. Another issue to be addressed in the future
work is numerical test using large, complex systems.

Appendix A: Implementation of L2 Regularization

In some cases, we want to suppress the values of el-
ements in the parameter matrices A,B. We can imple-
ment a L2 regularization by using the following replace-
ment of Hessian: In the matrix notation,

H → H + 2λidd+dc , (A1)

while in the vectorized notation,

Ĥ → Ĥ+ 2λ

idd+dc
0

. . .
0 idd+dc

, (A2)

where idq is the identity matrix of order q, and λ > 0 is
the coefficient of the regularization.

Appendix B: Dimension Reduction in MTDMD

We use singular-value decomposition (SVD) to reduce
the dimensions in DMD. In MTDMD, we can also per-
form the dimension reduction using SVD. For MTDMD
without control, we use the SVD

UΣV ∗ =
∑
µ

XµX
>
µ , (B1)

where U,Σ, V ∈ Rd×d, and U, V are unitary matrices.
By keeping the r largest singular values, we introduce
the reduced SVD as follows:

UΣV ∗ → UrΣrV
∗
r , (B2)

where Ur, Vr ∈ Rd×r and Σr ∈ Rr×r.
For MTDMD with control, we have to use more elabo-

rate method to ensure that the any block in the Hessian
is not totally suppressed. To understand this, one may
think of a case in which the Hessian is so suppressed that
only upper (lower) diagonal block survives. In that case,
the reduced model can not incorporate the effects from
the input (state). To circumvent this, we can use the
formula for inverse matrix of a 2 × 2 block matrix: for
A,B,C,D ∈ An×n, provided A and S = D − CA−1B
are invertible,[

A B
C D

]−1

=

[
A−1 +A−1BS−1CA−1 −A−1BS−1

−S−1CA−1 S−1

]
.

(B3)
We can apply a similar expression for pseudo-inverse[

A B
C D

]+
'
[
A+ +A+BS+CA+ −A+BS+

−S+CA+ S+

]
. (B4)

with matrix pseudo-inversion operation for A,B,C,D
and S are calculated using SVDs of A,B,C,D and S by
keeping e.g., r,max(r, p),max(r, p), p and p largest singu-
lar values, respectively.
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