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Abstract

The surge in single-cell RNA sequencing (scRNA-seq) data offers a unique chance for researchers 

to understand functional changes in biological processes and diseases through gene set scoring 

across diverse datasets. Despite this, current methods for comparing scRNA-seq data at the 

signaling pathway level across datasets remain untested. To bridge this gap, we introduce the single-

cell mean rank gene set scoring (scMRGSS) method, which assesses gene set activity between 

different scRNA-seq datasets. Leveraging gene expression ranks within each dataset, scMRGSS 

calculates mean rank scores for gene sets, enabling the comparison of their relative enrichment or 

depletion across datasets. Demonstrating its efficacy through simulated and real datasets, scMRGSS

proves to be a simple yet informative tool for comparing gene set activity between cell types across 

diverse datasets. Its robustness against sequencing depth and dropout rate variations underscores its 

value for integrative scRNA-seq data analysis. Applying the method, we uncover that abnormal 

activity in oxidative phosphorylation and NF-κB signaling pathways in glioblastoma cancer cells 

may not solely stem from neurodevelopmental programs. Notably, the highest activity of these 
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pathways is observed in the mesenchymal cancer cell type, emphasizing the need to target specific 

cell types in glioblastoma drug development.

Keywords: single-cell analysis, RNA sequencing, gene set analysis, glioblastoma, NF-κB pathway

Introduction

Single-cell RNA sequencing (scRNA-seq) has revolutionized various fields of biological research 

by enabling the comprehensive profiling of gene expression at the individual cell level. Over the 

past decade, a substantial amount of scRNA-seq data has been accumulated through collaborative 

efforts in studying diverse biological systems and diseases(1–5). While scRNA-seq data offers 

several advantages in terms of scale and resolution, it presents unique challenges for data analysis 

and interpretation due to its noisy and zero-inflated nature(6). These challenges arise from inherent 

biological phenomena and the limited capture efficiency of the technology and are therefore 

difficult to overcome(7). As a result, specialized analytical methods are necessary to effectively 

process scRNA-seq data and extract meaningful biological insights. 

A particularly noteworthy approach is the aggregation of gene expression profiles into biologically 

functional representations, commonly referred to as gene set analysis. This method aims to better 

comprehend the biological relevance of scRNA-seq data. A plethora of tools have been developed 

to estimate the activity of a priori gene sets or pathways based on scRNA-seq data, including 

single-cell signature explorer (SCSE)(8), AUCell(9), single-cell gene set enrichment analysis 

(scGSEA)(7), variance-adjusted Mahalanobis (VAM)(10), Pagoda2(11), and Vision(12). These tools

enable researchers to assess the enrichment or depletion of specific gene sets in different cell 

populations, thereby providing insight into their functional differences. Considering the rapid 

increase in scRNA-seq data, it has become appealing to compare gene set activity underlying 

essential biological processes across various scRNA-seq datasets to identify commonalities and 

differences in cellular states. Regrettably, existing single-cell gene set scoring methods have yet to 

address this issue.
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In this work, we present the single-cell mean rank gene set scoring (scMRGSS), a straightforward 

method for comparing gene set activity in single-cell RNA sequencing (scRNA-seq) data across 

different datasets. The scMRGSS method calculates a rank-based score for each gene set in a single 

cell mainly by averaging the ranks of genes belonging to that gene set. This simple approach 

facilitates easy interpretation of results, and by utilizing rank-based scores instead of raw or 

transformed expression values, it accounts for the noisy nature of scRNA-seq data. Our study 

demonstrates that scMRGSS is a reliable and robust method for comparing gene set activity 

between scRNA-seq datasets, as evidenced by simulations and real scRNA-seq datasets of cell lines

and peripheral blood. Additionally, we applied the method to cancer biology and found that the up-

regulation of oxidative phosphorylation and NF-κB signaling pathways in glioblastoma did not 

sorely reflect its resemblance to normal neurodevelopmental lineages, and there was notable 

heterogeneity across glioblastoma subtypes.

Methods

Single-cell mean rank gene set scoring

The scMRGSS method, which is adopted from the algorithm developed by Noureen et al.(13), 

calculates the normalized mean gene rank for each gene set among expressed genes in a cell, 

resulting in a score that ranges from 0 to 1. This method is robust to commonly used scRNA-seq 

normalization methods, such as counts per million (CPM), due to its reliance on gene ranks. In this 

study, scMRGSS was used to compare the scores between two datasets from different datasets in 

order to determine if there is a significant difference in the activity of a gene set between the 

datasets.

The method begins with basic data filtering, in which each dataset is subject to filtering of cells and 

genes in order to reduce technical and biological noise. The intersection of genes between the two 

datasets is selected as the input for the method. Gene sets are represented as a list of HUGO gene 

symbols, and those with less than the threshold proportion of expressed genes in a dataset (typically
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0.6 in this study) are ignored for further procedure. Only expressed genes (with a count or 

expression value greater than 0) are considered for the calculation in order to minimize the 

influence of dropouts across cells in the same dataset. The genes are then ranked in each cell, and 

the rank-based score for each gene set is computed using the following formula:

score(s ,c)=
∑
i=1

m

rank i
(s , c)

m⋅n

where m is the number of expressed genes of gene set s in cell c, and n is the total number of 

expressed genes in this cell. The metric is essentially the effective mean rank normalized by the 

number of expressed genes, and the normalization procedure allows for more comparable scores 

across cells.

Simulation of single-cell RNA-seq datasets and gene sets

The zero-inflated negative binomial (ZINB) model was employed to generate simulated single-cell 

RNA sequencing (scRNA-seq) datasets comprised of 4000 cells divided into four groups, each with 

varying library sizes or dropout rates. The VGAM R package was used to execute the simulation 

processes(14). Each group of cells expressed background genes and group-specific genes from eight

gene sets, the sizes of which ranged from 50 to 120, with increments of 10 for both simulation 

scenarios. All genes not specific to the group were considered as background genes. The datasets, 

which corresponded to individual parameterisations, thus consisted of 2720 genes in total. The 

negative binomial (NB) distribution can be viewed as a gamma-Poisson mixture where the lambda 

parameter of Poisson distribution is distributed as a gamma distribution parameterised by shape and 

scale. For the library size simulation, the shape (size) parameter of the rzinegbin function was 

adjusted from 4 to 8 in increments of 1, while the munb parameter equalled product of shape and 

scale, where the scale parameter remained fixed at 3. The pstr0 parameter, which represents the 

probability of structural zero in the ZINB distribution, was set at 0.5. In the scenario of the dropout 

simulation, the shape and scale parameters were maintained at fixed values of 4 and 3, respectively. 
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Meanwhile, the pstr0 parameter varied from 0.2 to 0.8 in increments of 0.15. Similar to the 

distribution for group-specific genes in the dataset, background gene counts were also simulated 

using the ZINB distribution, of which the shape parameter was the same, the scale parameter was 

scaled by 0.5, and the pstr0 parameter was increased by 0.3 and bounded above by 0.9.

Performance evaluation

Simulation of scRNA-seq datasets was performed to evaluate the capacity of the proposed method 

in producing distinct gene set scores for different biological groups. The Splatter R package's 

splatSimulateGroups function(15) was utilised to generate datasets with two biological groups. The 

simulated dataset encompassed 4000 cells and 5000 genes, with approximately 20% of the genes 

designated as differentially expressed genes (DEGs). The DEGs exhibited a 50% probability of 

being down-regulated. Subsequent to dataset generation, random sampling procedures were 

employed to construct five distinct collections, each comprising 80 gene sets. These gene sets 

varied in size, ranging from 50 to 145 genes, with incremental steps of 5 genes. Importantly, the 

collections were distinguished by varying percentage of DEGs, spanning from 20% to 100%. For 

each gene set size, four gene sets were systematically generated using a consistent procedure for 

both biological groups. Specifically, within each group and gene set size, a group-specific gene set 

and a parallel group-unspecific gene set were simulated. The group-specific gene set was composed

of group-specific genes sampled from the group-specific gene pool, along with background genes 

sampled from the group-unspecific gene pool. In contrast, the group-unspecific gene set solely 

comprised group-unspecific genes.

To quantitatively assess the performance, a diagnostic metric denoted as d was introduced, defined 

by the following equation:

d=
((−log10 (adj . p)/2)+max {fc , 1/ fc})

2

where adj.p is the adjusted p-value, and fc is the fold change (see below). Subsequently, this metric 

d was employed to construct receiver operating characteristic (ROC) curve and precision-recall 
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(PR) curve for each DEG percentage using the EvalMetrics Julia package 

(https://github.com/VaclavMacha/EvalMetrics.jl). The objective was to meticulously evaluate the 

efficacy of scMRGSS in accurately classifying differences in gene set scores as either true or false 

under varying noise conditions, offering insights into the nuanced performance dynamics.

Public single-cell RNA sequencing datasets and gene sets

We utilised nine public scRNA-seq datasets in this study. These datasets were obtained from a 

variety of sources, including previous research studies and public databases. Four separate datasets 

consisting of Jurkat cells, 293T cells, a 50/50 mixture of  Jurkat cells and 293T cells, a 99/1 mixture

of Jurkat cells and 293T cells were obtained from a previous study(16). PBMC 10k 3p and PBMC 

10k 5p datasets were downloaded from the dataset portal of 10x Genomics. Another human 

peripheral blood dataset was obtained from the Tabular Sapiens project(1). The glioblastoma and 

associated neural development datasets were obtained from previous study(17). Finally, another 

human fetal brain development dataset(18) was downloaded from the GEO database with accession 

number GSE162170. All dataset sources are listed in the Data Availability section. Furthermore, we 

obtained the Biocarta gene set collection, which consists of 292 gene sets, and the oxidative 

phosphorylation gene set of KEGG (v2023.1) from the MSigDB database(19).

Pre-processing of single-cell RNA sequencing datasets

 The raw counts of scRNA-seq datasets were utilized as input for the method. For the human-

derived datasets, we applied filters to exclude genes with numbers of expressed cells less than 2, 

and cells with numbers of expressed genes less than 2000. The threshold for filtering cells was 

determined based on the distribution of the number of genes for the simulated datasets. These 

procedures were pre-implemented in the scMRGSS Julia package and easily executable. We utilized

pre-defined cell type labels when possible, and manually curated the datasets otherwise.
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For the PBMC 10k 3p and BMC 10k 5p datasets, we employed the Seurat R package to cluster cells

separately(20). We first removed low-quality cells based on the number of expressed genes and 

mitochondrial gene expression percentage, resulting in 8,827 and 9,894 cells in the two datasets, 

respectively. The sctransform method was applied to normalize the data(21), followed by linear 

dimensional reduction and cell clustering using the Louvain algorithm(22). The identified cell 

clusters were then embedded in non-linear low-dimensional space using the uniform manifold 

approximation and projection (UMAP) algorithm to better display local relationships. Next, we 

conducted cluster biomarker identification through gene differential expression analysis and 

compared the results with reference cell types to curate the cell clusters. We employed the SingleR 

package for this comparison(23). Cell labels were consistent among three reference sources for 

most identified cell clusters in the PBMC 10k 3p dataset (Supplementary Fig. S2A-C) and the 

PBMC 10k 5p dataset (Supplementary Fig. S2E-G), and cell labels were assigned in both datasets 

accordingly (Supplementary Fig. S2D,H). 

The glioblastoma dataset contained curated cell labels, although they were incomplete. Only cells 

derived from the whole tumor samples were included in the study. The cells without labels and 

duplicates were excluded. In total, 18,430 cells were selected. The fetal brain cells at 24 post-

conceptional weeks (pcw) were excluded from the brain development dataset (GSE162170)(18) to 

match the donor age in the fetal brain dataset associated with the glioblastoma study(17).

Comparison of gene set scores between two groups

To compare gene set scores between two groups, whether from the same dataset or not, we 

leveraged the results of hypothesis testing and the fold change. By default, the two-tailed Mann-

Whitney U test implemented by the HypothesisTests Julia package 

(https://github.com/JuliaStats/HypothesisTests.jl) was applied to determine if the observed gene set 

score difference was statistically significant. The Bonferroni multiple hypothesis correction 

implemented by the MultipleTesting Julia package 
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(https://github.com/juliangehring/MultipleTesting.jl) was used to adjust p-values pertaining to the 

tested gene sets. An adjusted p-value of less than 0.01 was considered indicative of statistical 

significance. The gene set score difference was deemed biologically meaningful if the adjusted p-

value was less than 0.01 and the fold change or its reciprocal was greater than 1.2 in the context of 

simulation study and applications in Jurkat and 293T cells as well as human peripheral blood cells.

For the application in glioblastoma, the Bonferroni procedure was utilised to correct p-values for 

multiple group pair-wise comparisons regarding the selected gene set and the fold change threshold 

was set at 1.1. We also calculated the proportion of meaningfully differential gene sets group pair-

wise and displayed the results on a heatmap using the Makie Julia package(24) for comparisons 

related to the cell lines and peripheral blood cells. Volcano plots were created to identify differential

gene sets between the two groups using the EnhancedVolcano R package 

(https://bioconductor.org/packages/EnhancedVolcano). Venn diagrams were created to illustrate the 

overlapping differential gene sets using the ggVennDiagram R package(25).

Results

scMRGSS accurately identifies cell group-specific gene sets in simulation study

Different scRNA-seq preparation kits and sequencing platforms often produce data with different 

library sizes and dropouts levels. To assess the capacity of the method to detect difference in gene 

set activity between different conditions, we sought to perform simulation studies on the effects of 

library size and dropout rates on the performance of scMRGSS. Firstly, five scRNA-seq count 

datasets with various library sizes (or total count numbers) were simulated based on the ZINB 

model. Each dataset was composed of 2720 genes and 4000 cells, which were divided into four 

groups. Eight gene sets with increasing number of genes were simulated at the same time 

exclusively for one group. Density plots verified that the simulated datasets varied in terms of 

library size, while numbers of genes were comparable (Supp. Fig. S1A,B). As expected, cells within

the same group showed higher similarity in the low-dimensional embedding and were clustered 
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together (Fig. 1A). Library size had a minor effect on cell clustering compared to the group 

condition (Fig. 1B). Each group of cells specifically expressed genes from the corresponding 

simulated gene sets (Fig. 1C). We combined the adjusted p-value and fold change to determine 

whether the detected differential gene sets were meaningful in the sense of biological context (see 

Methods). Proportions of biologically meaningful differential gene sets were larger in the same-

group pairs than in the different-group pairs independent of library size, indicating that scMRGSS 

accurately identifies cell group-specific gene sets despite the challenge of shrinking library size 

(Fig. 1D).

Additionally, we conducted the simulation study on the impact of dropout rates using the ZINB 

model likewise. As dropout rates increased in the simulated datasets, both the total number of 

counts and the number of genes decreased (Supp. Fig. S1C,D). Group condition dominated the cell 

clustering compared to the dropout rate (Fig. 1E,F). Each cell group showed unique gene set 

activity pattern, with group exclusive gene sets only expressed in their respective groups (Fig. 1G). 

Proportions of differential gene sets  were close to zero between the same groups from two datasets,

and approximated 50% between different groups, in line with the theoretical values (Fig. 1H). This 

pattern was consistent regardless of the dropout levels, highlighting the robustness of scMRGSS in 

accurately identifying cell group-specific gene sets even in the presence of varying dropout rates. 

Taken together, these results indicated that scMRGSS is a robust method for detecting difference in 

gene set activity in scRNA-seq data in the simulation settings.

Simulation study demonstrates favourable performance of scMRGSS in yielding distinct 

scores for distinct conditions

We endeavoured to evaluate the method's capability to call true differential gene sets between two 

conditions using simulated datasets, taking into account the trade-off between sensitivity and 

specificity, as well as the trade-off between precision and recall. To assess the robustness of the 

method against noise, we incorporated varying proportions (0, 0.2, 0.4, 0.6, 0.8) of random 
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background genes into the group-specific gene sets. A diagnostic metric, integrating the adjusted p-

value and fold change (see Methods), was developed to predict differential gene sets between the 

two conditions. We found that the 4000 simulated cells from the two groups displayed considerable 

overlap in a low-dimensional linear space, indicating a significant similarity between the two 

conditions (Fig. 2A). The scMRGSS demonstrated satisfactory sensitivity while maintaining high 

specificity even in the presence of 80% noise in the simulated gene sets (Fig. 2B). The PR curve is 

more informative than the ROC curve in imbalanced scenarios(26). The area under the PR curve 

surpassed 0.9 at all levels of noise (Fig. 2C), indicating that scMRGSS consistently exhibited high 

precision and recall in calling differential gene sets between the two conditions. Collectively, these 

findings demonstrate the robustness and favourable performance of scMRGSS in generating 

different gene set scores for two groups on simulated datasets.

scMRGSS differentiates biological conditions in human cell line and peripheral blood datasets

In order to evaluate the utility of scMRGSS for comparing gene set activity between two datasets in

real-world situations, we applied the method to both human cell line and peripheral blood datasets. 

We used scMRGSS to calculate Biocarta gene set scores for Jurkat cells and 293T cells from four 

separate datasets and then determined the proportions of meaningful differential gene sets between 

each group pair. Our results revealed that the proportions of differential gene sets were substantially

lower between same-cell groups compared to different-cell groups, indicating that scMRGSS 

effectively distinguishes between biological conditions (Fig. 3A). Furthermore, we examined the 

overlap of detected differential gene sets and found that only two differential gene sets overlapped 

between Jurkat cells from the Jurkat datasets and Jurkat cells from the 50/50 mixture dataset out of 

all dataset pairs of Jurkat cells (Fig. 3B). On the other hand, nine differential gene sets were shared 

among the four Jurkat-293T dataset pairs, and the majority of differential gene sets for a dataset pair

overlapped with at least one dataset pair, suggesting consistent and reproducible differentiation 

between cell lines using scMRGSS (Fig. 3C).
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We utilized a comparable analytical approach to assess the efficacy of scMRGSS in human 

peripheral blood datasets. This analysis encompassed CD14+ monocytes, CD16+ monocytes, naive 

CD4+ T cells, and B cells from three separate scRNA-seq sources generated by 10x Genomics 

microfluidic droplet and Smart-seq2 techniques(1). Similarly, we calculated the proportions of 

differential Biocarta gene sets between pairwise groups from the same or different datasets and 

observed similar patterns. In general, the proportions of differential gene sets were lower between 

same-cell groups compared to different-cell groups. Additionally, CD14+ monocytes and CD16+ 

monocytes shared a higher degree of similarity regarding this proportion compared to other cell 

group pairs (Fig. 3D), consistent with their intrinsic biological similarity and cell clustering results 

(Supplementary Fig. S2). The largest proportion of differential gene sets was observed between 

CD14+ monocytes and naive CD4+ T cells (Fig. 3D). We further investigated the detected 

differential gene sets in greater depth and found that the majority of differential gene sets were 

unique to each dataset pair in the cases of comparisons involving naive CD4+ T cells (Fig. 3E-H). 

However, when comparing CD16+ monocytes and naive CD4+ T cells, there was a higher overlap 

of differential gene sets among the four dataset combinations (Fig. 3I-M), indicating that the 

identified gene set score difference was consistent across different sources of scRNA-seq data. 

Given the above, our results illustrate that scMRGSS is effective in identifying differential gene sets

in various cell types between scRNA-seq datasets.

scMRGSS reveals cancer cell heterogeneity of oxidative phosphorylation and NF-κB pathway 

activity in glioblastoma

Identifying differential gene sets and revealing potential heterogeneity in cellular activity across 

different cell types and sources can be of great utility to researchers. This is particularly true when 

comparing gene set activity in cells from various sources. One such application is the analysis of 

scRNA-seq datasets from glioblastoma samples. A previous study revealed that glioblastoma cancer

cells resembled the human fetal brain lineages, including truncated radial glia (tRG), glial 
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progenitor cells (GPCs), oligo-lineage cells (OPCs), and interneurons, and hence the cancer cells 

were classified into mesenchymal, glial-progenitor, oligo-lineage, and neuronal subtypes(17). 

Another study uncovered four cell states and subtypes in glioblastoma along neurodevelopmental 

and metabolic axes, of which the mitochondrial cell state depends on the oxidative phosphorylation 

pathway for energy production(27). 

NF-κB pathway is active in glioblastoma and plays an essential role in tumour progression and 

treatment resistance(28,29). We were interested in investigating if the up-regulated activity of 

oxidative phosphorylation and NF-κB pathways in glioblastoma could be explained by its 

resemblance to neurodevelopmental lineages and further if heterogeneity across cancer cell types 

exists regarding the activity of these pathways. In addition to the glioblastoma and neural 

development datasets included in the study of Couturier et al.(17), we incorporated another human 

brain development dataset(18) in the comparisons of gene set scores to demonstrate the consistency 

of our findings. The difference in gene set scores was viewed as significant in the biological sense if

the related adjusted p-value was below 0.01 and the fold change exceeded 1.1. Our analysis 

revealed that gene set scores of the oxidative phosphorylation pathway were comparable between 

tRG from two neural development datasets (Fig. 4A). Notably, the gene set score of the 

mesenchymal cell type was higher when compared to tRG, whereas the scores of the other cancer 

cell types exhibited rising trends. When the scores of various cancer cell types were compared to 

those of GPCs and OPCs, respectively, this pattern remained (Supplementary Fig. S3A,B). This 

suggests that the up-regulated activity of the oxidative phosphorylation pathway in glioblastoma 

could not be merely attributed to its resemblance to neurodevelopmental lineages. Furthermore, the 

analysis revealed significant cellular heterogeneity within glioblastoma tumours with regard to the 

activity of the oxidative phosphorylation pathway.

The NF-κB pathway exhibited different patterns of activity across the various cancer cell types of 

glioblastoma. While tRG from two sources showed comparable scores of NF-κB pathway activity, 

the scores were significantly higher in the mesenchymal subtype compared to tRG (Fig. 4B). 

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309



However, the activity of the NF-κB pathway was lower in the neuronal subtype than in tRG, while 

the oligo-lineage and glial progenitor subtypes remained comparable to tRG. All other subtypes 

showed lower activity of the NF-κB pathway compared to the mesenchymal subtype, indicative of 

notable heterogeneity within glioblastoma with regard to the activity of the NF-κB pathway (Fig. 

4B). Using GPCs and OPCs as the reference groups, respectively, we found similar patterns 

(Supplementary Fig. S3C,D). Collectively, these findings suggest that the up-regulated activity of 

the oxidative phosphorylation and NF-κB pathways in glioblastoma are not solely due to their 

resemblance to neurodevelopmental lineages. Moreover, the results also demonstrate the 

consistency of the method in comparing gene set scores between datasets.

Discussion

In recent years, the volume of scRNA-seq data has increased significantly across various research 

domains. This surge in data has made it feasible to compare the activity of gene sets of interest 

between different cell types across datasets. However, existing methods have not yet been tested to 

address this issue. In this study, we introduced scMRGSS, a simple yet effective approach for 

performing between-dataset comparisons of gene set activity using scRNA-seq data. The reliance of

scMRGSS on the gene rank rather than the expression value confers it with greater robustness 

against commonly adopted normalisation and transformation methods, such as CPM, log 

transformation and z-score normalisation. This simplifies the analysis pipeline and enhances the 

applicability of the method to diverse datasets. Additionally, the normalisation of mean rank 

facilitates more consistent comparisons of cells between datasets with different scales of gene 

expression. We demonstrated the potential of scMRGSS in cancer research by identifying 

differences in the activity of oxidative phosphorylation and NF-κB pathways between glioblastoma 

cancer cell types and tRG, as well as highlighting the cellular heterogeneity within glioblastoma 

concerning these pathway activity.
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The efficacy of the method in identifying disparate gene sets between biological conditions while 

concurrently regulating false positive rates was demonstrated through both simulated and genuine 

data analysis. The performance of scMRGSS is contingent upon the premise that the technical bias 

of mRNA capture and amplification between the two data sources remains consistent or varies only 

marginally. To elucidate, when the biological variations between the two datasets are equivalent, the

discrepancy in gene rank on average is negligible. This assumption is generally applicable to data 

derived from the 10x Genomics and Smart-seq2 platforms, particularly when obtained from the 

same platform. Nonetheless, when employing the method to compare pathway activity of two cell 

types from two datasets generated by distinct scRNA-seq protocols or platforms, it would be 

prudent to include one shared cell type between the two datasets to assess the validity of the 

assumption. In such cases, single-cell dataset integration approaches, such as Scanorama(16) an 

scGen(30), may be required to account for the technical bias. In light of the challenge in 

establishing strict rules for determining thresholds in adjusted p-values and fold changes, the 

interpretation of disparities in gene set scores demands meticulous attention. For instance, assuming

the difference in gene set scores remains constant, larger group sizes often yield smaller p-values. 

Given that gene set scores range between 0 and 1, the upper limit for the fold change must be 

constrained by a value depending upon the reference score. Accumulating datasets from analogous 

sources will contribute valuable insights towards identifying pattern of gene set activity difference.

scMRGSS is designed for gene set analysis following the clustering and labelling of cells within 

datasets. Although it is a non-parametric and rank-invariant method, it is essential to note that basic 

gene and cell filtering is necessary to ensure the reliability and accuracy of the analysis results. This

is because noise in the data could potentially impact the gene rank(31) and the mean and dispersion 

of gene set scores within a cell type when performing hypothesis testing. As a general guideline, it 

is advisable to set the filtering threshold based on the distribution of the data and a priori 

knowledge about the cells of interest. For datasets generated by common scRNA-seq platforms such

as 10x Genomics and Smart-seq2, we typically recommend removing genes with the number of 
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cells below 2 and removing cells with the number of expressed genes below 2000. Additionally, the 

percentage of mitochondrial genes may be integrated into the filtering scheme to account for 

potential cell stress or contamination. Furthermore, it is recommended to include gene sets whose 

percentage of expressed genes in both datasets exceeds some threshold, such as 0.6 in this study, to 

avoid identifying differential gene sets of little biological value depending on only a small subset of 

genes. The exact percentage may depend on both the gene set and the datasets.

In this study we also sought to investigate the relationships of the activity of oxidative 

phosphorylation and NF-κB pathways between neurodevelopmental lineages and cancer cell types 

in glioblastoma. Previous research has shown that glioblastoma cells epitomise the normal 

neurodevelopmental process and resemble several lineages during the process, including tRG, 

GPCs, OPCs and interneurons(17). It is established that most glioblastoma cancer cells produce 

energy through oxidative phosphorylation as opposed to glycolysis(32). The key role of oxidative 

phosphorylation in glioblastoma is also emphasized by the potent inhibitory effect of the oxidative 

phosphorylation inhibitor on glioblastoma cancer cells(33). Our findings suggest that the metabolic 

feature of the glioblastoma messenchymal cell type is not associated with the neurodevelopmental 

programs, as we observed elevated oxidative phosphorylation activity in the messenchymal cell 

type compared to brain development lineages. We speculate this cancer cell type may overlap with a

recently identified mitochondrial subtype that depends exclusively on oxidative phosphorylation for

energy production(27). Though not as strong as in messenchymal cells, other glioblastoma cancer 

cell types also showed increasing trends in oxidative phosphorylation activity, indicating 

glioblastoma cellular heterogeneity in energy metabolism. Aberrant NF-κB activation in 

glioblastoma contributes to cancer cell proliferation, invasion, mesenchymal differentiation, and 

resistance to radiotherapy(34). We found that NF-κB activity were significantly elevated in the 

messenchymal cell type of glioblastoma relative to neurodevelopmental lineages, but not other 

subtypes. This suggests that the neurodevelopmental programs hijacked by glioblastoma cannot 

fully explain NF-κB pathway activation in all cancer cell types. The heterogeneity of glioblastoma 
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also highlights the need for a more precise approach to target the messenchymal cancer subtype 

when developing drugs aimed at the NF-κB pathway in glioblastoma treatment.

In brief, we have presented a simple and efficient method to compare gene set activity amongst cell 

types from various scRNA-seq datasets. By applying this approach to glioblastoma, it has been 

discovered that the disease's aberrant oxidative phosphorylation and NF-κB pathway activity is not 

exclusively caused by neurodevelopmental programs. This finding has implications for precision 

medicine strategies aimed at addressing particular cancer subtypes.

Availability of data 

All scRNA-seq datasets used in this study are available for download. We used the following public

datasets:

pbmc_10k_3p dataset from 10x Genomics: 

https://cf.10xgenomics.com/samples/cell-exp/4.0.0/Parent_NGSC3_DI_PBMC/

Parent_NGSC3_DI_PBMC_filtered_feature_bc_matrix.h5;

pbmc_10k_5p dataset from 10x Genomics: 

https://cf.10xgenomics.com/samples/cell-vdj/5.0.0/sc5p_v2_hs_PBMC_10k/

sc5p_v2_hs_PBMC_10k_filtered_feature_bc_matrix.h5;

Tabular Sapiens dataset from figshare: 

https://figshare.com/articles/dataset/Tabula_Sapiens_release_1_0/14267219;

Glioblastoma dataset: https://github.com/mbourgey/scRNA_GBM;

Human neural development dataset: https://github.com/mbourgey/scRNA_GBM;

Human cortex development dataset: https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?

acc=GSE162170.

All human gene sets in the study were downloaded from MSigDB 

(https://www.gsea-msigdb.org/gsea/msigdb).
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Simulated datasets have been deposited on figshare with the following DOI 

https://doi.org/10.6084/m9.figshare.24886047.

Availability of code

scMRGSS is developed in Julia programming language v1.9.3 (https://julialang.org/) and available 

at https://github.com/giuseppedelnapalle/scmrgss, while the scripts to reproduce results of the 

manuscript can be accessed on zenodo at the DOI https://doi.org/10.5281/zenodo.10418687.
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Figures and Legends

Figure 1. Simulation study of the single-cell mean rank gene set scoring (scMRGSS) method. 

(A,B) UMAP representation of 20,000 simulated cells categorised into four groups across five 

datasets with varying library sizes, labelled by group (A) and the shape (size) parameter (B) for the 

zero-inflated negative binomial (ZINB) model, respectively. Each shape parameter value 

corresponds to a distinct dataset. (C) Gene set activity of 32 simulated gene sets computed by 

scMRGSS across 20,000 cells from five distinct datasets as presented in (A,B). Rows represent 

gene sets while columns represent cells in the heatmap. The hierarchical clustering algorithm 

groups cells into four categories mirroring the simulated groups. (D) Heatmap illustrating the 
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proportions of biologically meaningful differential gene sets between groups from the same or 

distinct datasets as observed in (A,B). The difference in gene set activity is considered valid if the 

associated adjusted p-value is below 0.01 and the fold change or its reciprocal is larger than 1.2. 

(E,F) UMAP plots depicting 20,000 simulated cells categorised into four groups across five datasets

with varying dropout rates, labelled by group (E) and the pstr0 parameter (F) for the zero-inflated 

negative binomial (ZINB) model, respectively. pstr0 controls the probability of structural zero in the

ZINB model, and each pstr0 value corresponds to a different dataset. (G) Heatmap presenting the 

activity of 32 simulated gene sets computed by scMRGSS across 20,000 cells from five distinct 

datasets as shown in (E,F). Rows represent gene sets while columns represent cells. The 

hierarchical clustering algorithm categorises cells into four groups as expected. (H) Proportions of 

biologically meaningful differential gene sets between groups from same or distinct datasets as 

depicted in (E,F).
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Figure 2. Performance evaluation of scMRGSS. (A) Principal component analysis (PCA) biplot of 

4000 simulated cells from two groups. (B) Receiver operating characteristic (ROC) curve of five 

classifiers associated with different differential expressed gene (DEG) percentage (ranging from 

20% to 100%) of the group-specific gene sets. For each DEG percentage, 20 group 1-specific gene 

sets, 20 group 2-specific gene sets, and 40 unspecific gene sets of varying sizes spanning from 50 to

145 genes were generated from the simulated single-cell RNA sequencing (scRNA-seq) dataset in 

(A). A diagnostic metric d incorporating the adjusted p-value and the fold change was introduced to 

formulate classifying models for each DEG percentage to predict the veracity of the observed 

differences in gene set scores between the two groups. The ROC curve serves as a visual 

representation of the performance of the classifying models. (C) Precision-recall (PR) curve of the 

five classifiers as described in (B).
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Figure 3. scMRGSS distinguishes biological groups in real datasets. (A) Heatmap displaying the 

proportions of biologically meaningful differential Biocarta gene sets between cell lines from four 

datasets comprising Jurkat and/or 293T cells. scMRGSS was applied to a collection of four datasets 

consisting of one entirely of Jurkat cells (Jurkat), one entirely of 293T cells (293T), a 50/50 mixture

of Jurkat and 293T cells (Jurkat_293T_50_50), and a 99/1 mixture of Jurkat and 293T cells 

(Jurkat_293T_99_1). Cell line names and Dataset name are split by a hyphen (“-”) in each row or 

column. The difference in gene set scores is considered meaningful if the adjusted p-value is below 

0.01 and the fold change or its reciprocal is larger than 1.2. (B) Venn diagram illustrating how 

differential gene sets between Jurkat cells from three different datasets as described in (A) overlap. 

(C) Overlap of differential gene sets between Jurkat and 293T cells from four different datasets. 

Mix_50: Jurkat_293T_50_50; Mix_99: Jurkat_293T_99_1; JK: Jurkat cells; 293T: 293T dataset or 

293T cells. (D) Proportions of biologically meaningful differential Biocarta gene sets between 

human peripheral blood cells from the PBMC_10k_3p, PBMC_10k_5p and TabularSapienes 

datasets. The analysis takes into account four distinct cell groups: CD14+ monocytes, CD16+ 

monocytes, naive CD4+ T cells and B cells. An identical process was carried out as in (A). (E-G) 

Identification of differential gene sets of naive CD4+ T cells between PBMC_10k_5p and 

PBMC_10k_3p datasets (E), between TabularSapienes and PBMC_10k_3p datasets (F), and 

between TabularSapienes and PBMC_10k_5p datasets (G), respectively. (H) Overlap of differential

gene sets between naive CD4+ T cells from three different datasets depicted in (D). (I-L) 

Identification of differential gene sets between naive CD4+ T cells and CD16+ monocytes from the 

three datasets. Pairwise comparisons of gene set activity were conducted between naive CD4+ T 

cells and CD16+ monocytes of the PBMC_10k_3p dataset (I), between naive CD4+ T cells of the 

PBMC_10k_3p dataset and CD16+ monocytes of the PBMC_10k_5p dataset (J), between naive 

CD4+ T cells of the PBMC_10k_3p dataset and CD16+ monocytes of the TabularSapienes dataset 

(K), between naive CD4+ T cells of the PBMC_10k_5p dataset and CD16+ monocytes of the 

PBMC_10k_3p dataset (L), respectively. (M) Overlap of differential gene sets between naive CD4+
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T cells and CD16+ monocytes from the three datasets. 3p: PBMC_10k_3p; 5p: PBMC_10k_5p; TS:

TabularSapienes; CD4_T: naive CD4+ T cells; CD16_M: CD16+ monocytes.
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Figure 4. Application of scMRGSS in glioblastoma. (A-B) Gene set activity of the KEGG oxidative

phosphorylation (A) and the Biocarta NF-κB (B) pathways estimated by scMRGSS in distinct 

cancer cell types of glioblastoma compared to truncated radial glia (tRG) of two datasets. tRG of 

the cortex development dataset (first column) and the messenchymal cancer cells are chosen as 

reference to calculate p-values. Bonferroni procedure was used to adjust the p-values. The 

difference in gene set scores is considered meaningful if the adjusted p-value is below 0.01 and the 

fold change or its reciprocal is larger than 1.1. * denotes the difference is meaningful when 

compared to tRG, whereas #  denotes the difference is meaningful when compared to the 

messenchymal cancer cells.
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