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Abstract

The complexity class TFNP, introduced by Megiddo and Papadimitriou [8], has played a crucial
role in computational complexity theory and some real applied fields. In this short paper, we will
revisit the definition of the class of search problems in NP. Then, we formulate a probabilistic
variant of TFNP (and also FNP). Finally, we propose a functional analog of MA vs. ∃ · BPP.
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1 Appetizer
Some parts of this short paper have overlapped with Section 3.3.7 within the author’s Ph.D. thesis [4]. We have
answered a homework for the author left by that thesis. Thus, we will prove that MA = ∃ · BPP if and only if
FMA = gapFMA.

2 Backgrounds
Basic Notations We denote by Z and R the sets of all integers and real numbers, respectively. For an
integer a ∈ Z, we define Z≥a := {x ∈ Z : x ≥ a} and Z>a := {x ∈ Z : x > a}. Similarly, for a real number
a ∈ R, we define R≥a := {x ∈ Z : x ≥ a} and R>a := {x ∈ Z : x > a}. We write [0, 1] for the interval of real
numbers {x ∈ R : 0 ≤ x ≤ 1}. Let X be a finite set. We denote by |X| the cardinality of the elements in X.

Let {0, 1}∗ denote the set of binary strings with a finite length. For every string x ∈ {0, 1}∗, we denote by
|x| the length of x. For each positive integer n, we write {0, 1}n for the set of binary strength with the length
n.

We write poly for the set of all non-zero polynomials with non-negative integer coefficients. We can straight-
forwardly see that every f ∈ poly maps every positive integer to a positive integer. We denote by 1/poly
the set of all functions that are inverse of a polynomial in poly, i.e., 1/poly := {g : Z>0 → [0, 1] : ∃f ∈
poly such that g(n) = 1/f(n) ∀n ∈ Z>0}.

Let a, b : Z>0 → [0, 1] be two polynomials. We say that a pair of polynomials (a, b) is permissible if a and b
are polynomial-time computable and there is q ∈ 1/poly such that a(n)− b(n) ≥ q(n) for every n ∈ Z>0.

Search Problems A total search problem [8] — the existence of solutions is guaranteed, and the correctness
of every solution is efficiently checkable — comprises a fascinating field in computational complexity theory.
Typically, the complexity class of search problems is formulated as follows.

Let R ⊆ {0, 1}∗ × {0, 1}∗ be a relation. We say that R is polynomially balanced if there is a polynomial
p ∈ poly such that for each (x, y) ∈ R, it holds that |y| ≤ p(|x|). We say that R is polynomial-time decidable if
for each pair of strings (x, y) ∈ {0, 1}∗ × {0, 1}∗, we can decide whether (x, y) ∈ R in polynomial time. We say
that R is total if for every string x ∈ {0, 1}∗, there always exists at least one string y such that (x, y) ∈ R.

For a relation R ⊆ {0, 1}∗ × {0, 1}∗, the search problem with respect to R is defined as follows: Given a
string x ∈ {0, 1}∗, find a string y ∈ {0, 1}∗ such that (x, y) ∈ R if such a y exists, otherwise reports “no.”
When R is also total, we call such a search problem a total search problem. The complexity class FNP is the
set of all search problems with respect to a polynomially balanced and polynomial-time decidable relation R.
The complexity class TFNP is the set of all total search problems belonging to FNP. By definition, it holds that
TFNP ⊆ FNP.
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Probabilistic Variants of FNP In this paper, we revisit the notion of polynomial-time decidable. Natu-
rally, it means decidable by a deterministic algorithm. We extend this definition to a probabilistic verification
procedure.

Roughly speaking, a probabilistic verification procedure is a family of polynomial-time uniform Boolean
circuits V = {Vn : n ∈ Z>0} with Vn taking as input (x, z) where x ∈ {0, 1}n is a binary string of length n, z is
a random string of length r(|x|), and r is some polynomial in poly.

Let R ⊆ {0, 1}∗×{0, 1}∗ be a polynomially balanced relation. We say that R is polynomial-time probabilistic
decidable if there is a probabilistic verification procedure V = {Vn : n ∈ Z>0} such that for every pair of strings
(x, y) ∈ {0, 1}∗ × {0, 1}∗, V decides whether (x, y) ∈ R with high probability.

The above idea leads us to a probabilistic extension of the class FNP. This short paper investigates the
properties of such a complexity class.

Related Works Massar and Santha [7, 6] have studied a quantum counterpart of FNP. They introduced the
complexity class FQMA and TFQMA and have shown some quantum total search problems belonging to TFQMA. Our
definition is inspired by their definition. In contrast to [7, 6], this paper focuses on the classical Merlin-Arthur
model.

The complexity class MA, introduced by Babai [1], is a set of all decision problems that are solvable by Merlin-
Arthur protocol, in which Merlin who has unbounded computational power sends a polynomial-size message to
Arthur whose computational power is probabilistic polynomial-time, and then, Arthur must verify whether the
message is correct with high probability. More formally, every problem A in MA has a polynomial p ∈ poly and
a probabilistic verification procedure V := {V r

n : n ∈ Z>0} such that for every input string x of length n, (i) if
the answer is “yes,” then there is a witness y ∈ {0, 1}p(n) such that Pr[V r

n+p(n)(x♯y) = 1] ≥ 2/3; otherwise (ii) if
the answer is “no,” then for every string y ∈ {0, 1}p(n), Pr[V r

n+p(n)(x♯y) = 1] ≤ 1/3.
It is known that there is a very similar class to MA called ∃ · BPP1. For every problem A in ∃ · BPP and for

each input x, its witness space is separated into two subspaces Â(x) and Ǎ(x) such that every string y ∈ Â(x)
is accepted with high probability and every witness string y ∈ Â(x) is rejected with high probability. More
formally, every problem A = (Â, Ǎ) in ∃ · BPP has a polynomial p in poly and a probabilistic verification
procedure V := {V r

n : n ∈ Z>0} such that for every input string x of length n, (i) if the answer is “yes,” then
there is a string y ∈ Â(x) such that Pr[V r

n+p(n)(x♯y) = 1] ≥ 2/3; otherwise (ii) if the answer is “no,” then for
every string y ∈ Ǎ(x), Pr[V r

n+p(n)(x♯y) = 1] ≤ 1/3, where Â(x) ∩ Ǎ(x) = ∅ and Â(x) ∪ Ǎ(x) = {0, 1}p(n).
These two classes, MA and ∃ · BPP, seem to be the same, but Fenner et al. [2] have shown an oracle separation

between MA and ∃ · BPP. In this short paper, we propose a functional counterpart of MA vs. ∃ · BPP.

3 Functional Merlin-Arthur Model
In this section, we formally define the probabilistic procedure and some classes related to the probabilistic
procedures.

Let r be a polynomial in poly. A probabilistic verification procedure for the input length n ∈ Z>0 is a
family of polynomial-time uniform Boolean circuits

V :=
{
V p,r
n : {0, 1}n × {0, 1}p(n) × {0, 1}r(n) → {0, 1}

}
n∈Z>0

,

where p and r are fixed polynomials in poly, and for each positive integer n, the Boolean circuit V p,r
n has n-bits

input register, p(n)-bits witness register, r(n)-bits random register, and 1-bit output register. For each input
string x ∈ {0, 1}n and each witness y ∈ {0, 1}p(n), the acceptance probability of (x, y) by the procedure V p,r

n is
defined as |{z : V p,r

n (x, y, z) = 1}|/2r(n). We write Pr[V p,r
n (x, y) = 1] for the acceptance probability of (x, y) by

the procedure V r
n .

For a relation R ⊆ {0, 1}∗×{0, 1}∗, we use R(x) := {y ∈ {0, 1}∗ : (x, y) ∈ R} for every string x ∈ {0, 1}∗. To
deal with computational problems that have probabilistic features, we focus on promise problems. A promise
problem A is a pair of two relations Â, Ǎ ⊆ {0, 1}∗ × {0, 1}∗ satisfying that for every string x ∈ {0, 1}∗,
Â(x) ∩ Ǎ(x) = ∅ and Â(x) ∪ Ǎ(x) ̸= ∅. Here, we call Â and Ǎ a accepting subspace and a rejecting subspace,
respectively. A promise problem A = (Â, Ǎ) is said to be polynomially balanced if the relations Â and Ǎ are
polynomially balanced.

Let (a, b) be a permissible pair of polynomials, and let A = (Â, Ǎ) denote a polynomially balanced promise
problem. We say that A is (a, b)-verifiable if there is a probabilistic verification procedure V := {V p,r

n : n ∈ Z>0}
such that for every input string x of length n, exactly one of the following holds:

1See also Complexity Zoo: BPP with Existence Operator.
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(i) Â(x) ̸= ∅ and for every y ∈ Â(x), Pr[V p,r
n (x, y) = 1] ≥ a(n);

(ii) for every y ∈ {0, 1}p(n) = Ǎ(x), Pr[V p,r
n (x, y) = 1] ≤ b(n).

In the rest of this short paper, we simply call a promise problem that is polynomially balanced and (a, b)-
verifiable a polynomial-time (a, b)-verifiable problem. Furthermore, we omit (a, b) when the permissible pair of
polynomials (a, b) is clear from the context.

We are now ready to define the complexity class, which is a functional counterpart of MA(a, b). Let (a, b) be a
permissible pair of polynomials, and let A = (Â, Ǎ) denote a polynomial-time (a, b)-verifiable problem. A search
problem with respect to A is formulated as: Given an input x ∈ {0, 1}∗, find y ∈ Â(x) if Â ̸= ∅; otherwise report
“no.” The complexity class FMA(a, b) is the set of all search problems with respect to polynomial-time (a, b)-
verifiable problems. The complexity class TFMA(a, b) is the subset of FMA(a, b) satisfying that R≥a(x) ̸= ∅ for
every input string x ∈ {0, 1}∗. We simply write FMA and TFMA for FMA(2/3, 1/3) and TFMA(2/3, 1/3), respectively.

3.1 Reduction in Search Problems
This section defines a polynomial-time reduction between two search problems.

Let (a, b) be a permissible pair of polynomials. Let R =
(
R̂≥a, Ř≤b

)
be a (a, b)-verifiable problem, and let

S =
(
Ŝ≥a′

, Š≤b′
)

be a (a′, b′)-verifiable problem. A polynomial-time reduction from R to S is defined by two
polynomial-time computable functions f : {0, 1}∗ → {0, 1}∗ and g : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ satisfying the
following properties:

1. For every input x of R, the string f(x) is an input of S.

2. If R̂≥a(x) ̸= ∅, then it holds that Ŝ≥a′
(f(x)) ̸= ∅ and g(x, y) ∈ R̂≥a(x) for every y ∈ Ŝ≥a′

(x).

3. If R̂≥a(x) ̸= ∅, then it holds that either Ŝ≥a′
(f(x)) ̸= ∅ or for every y ∈ Ŝ≥a′

(f(x)), the string g(x, y) is
a succinct witness to show Ř≥a(x) = ∅.

3.2 Properties of FMA
This section observes some properties of the class FMA. We first show that the class FMA achieves perfect
completeness in the same way as the decision class MA.

Proposition 1. Let (a, b) be a permissible pair of polynomials. It holds that FMA(a, b) = FMA(1, 1/2).

Proof. Apply the same technique provided by [3, 9] to show the perfect completeness of the Merlin-Arthur
protocol.

Next, we focus on the extremal soundness of the class FMA. We write FMA(1, < 1) for the class of all
polynomially (1, < 1)-verifiable problems R =

(
R̂≥1, Ř<1

)
, where for every string x ∈ {0, 1}∗, the set R<1(x)

is the set of all strings with non-zero probability of rejection.
We now show that the class FMA(1, < 1) is equal to the complexity class TFΣP

2, introduced by Kleinberg et al.
[5]. The class TFΣP

2 is the set of all relations R ⊆ {0, 1}∗ ×{0, 1}∗ satisfying that there are polynomials p and r
in poly such that (i) for every x ∈ {0, 1}∗, there is a string y ∈ {0, 1}p(|x|) such that (x, y) ∈ R; and (ii) there is a
family of polynomial-time uniform Boolean circuits M = {Mp,r

n : {0, 1}n×{0, 1}p(n)×{0, 1}r(n) → {0, 1}}n∈Z>0

such that (x, y) ∈ R if and only if Mp,r
|x| (x, y, z) = 1 for every z ∈ {0, 1}r(|x|). Note that every relation R in TFΣP

2

is a polynomially-balanced total relation by definition.

Proposition 2. FMA(1, < 1) = TFΣP
2

Proof. It is not hard to see that FMA(1, < 1) ⊆ TFΣP
2. Therefore, we prove the reverse containment: TFΣP

2 ⊆
FMA(1, < 1).

Let A ⊆ {0, 1}∗ × {0, 1}∗ be any polynomially balanced relation in TFΣP
2. We denote by M = {Mp,r

n :
n ∈ Z>0} a polynomial-time uniform Boolean circuits corresponding to A. Then, there is a naturally induced
promise problem A = (Â, Ǎ) such that for every string x ∈ {0, 1}∗,

Â(x) := {y ∈ {0, 1}p(|x|) : Mp,r
|x| (x, y, z) = 1∀z ∈ {0, 1}r(|x|)}

and

Ǎ(x) := {y ∈ {0, 1}p(|x|) : ∃z ∈ {0, 1}r(|x|) s. t. Mp,r
|x| (x, y, z) = 0}.

Hence, we can easily see that the promise problem A = (Â, Ǎ) belongs to FMA(1, < 1).
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4 Functional Counterpart of MA vs. ∃ · BPP

Recall that, in the class FMA, we only consider the promise problems. Let R =
(
R̂≥a, Ř≤b

)
be a polynomially

(a, b)-verifiable problem. It is straightforward to see that for some polynomial p, it holds that R̂≥a(x)∪Ř≤b(x) ⊆
{0, 1}p(|x|) for every input string x. Note that, in our definition, there may exist a string y ∈ {0, 1}p(|x|) \(
R̂≥a(x) ∪ Ř≤b(x)

)
when the acceptance subspace R̂≥a(x) is non-empty.

We now consider the new variant of FMA which is promised that R≥a(x) ∪ R≤b(x) = {0, 1}p(|x|) for every
input string x. We call this class gapFMA(a, b). Also, we simply write gapFMA for gapFMA(2/3, 1/3).

It is not hard to see that gapFMA(a, b) ⊆ FMA(a, b). At this moment, a natural and interesting question
arises: Does gapFMA contain FMA? Unfortunately, it would be abstruse to resolve. As shown in Theorem 3, we
can regard the class gapFMA as a functional counterpart of ∃ · BPP.

Theorem 3. MA = ∃ · BPP if and only if FMA = gapFMA

Proof. (=⇒) It is trivial.
(⇐=) From the assumption, for every polynomially (a, b)-verifiable problem R = (R̂, Ř) ∈ FMA, we have a

reduction from L to another problem S ∈ gapFMA. By definition, it holds that Ŝ(x) ∪ Š(x) = {0, 1}p(|x|) for
every input string x. Furthermore, we have a witness g(x, y) ∈ R̂(x) for each witness y ∈ Ŝ(f(x)). Therefore,
we can see that S ∈ ∃ · BPP when we regard S as a decision problem.

5 Conclusion
In this short paper, we have investigated the theoretical features of a probabilistic analog of FNP. In particular,
we have proposed a functional counterpart of MA vs. ∃ · BPP.

From Proposition 1, it seems that FNP and FMA are the same. However, Theorem 3 implies that there
might be a gap between these two classes. Note that from the simple observation, we obtain the following two
equations: FNP = gapFMA(1, 0) and TFNP = gapTFMA(1, 0). Our revisit in this short paper implies that it is
important to shed light on the rejecting subspaces.
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