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Abstract 
Organisms have evolved and diverged from a common ancestor, and today there are many different 
species in many different environments. Because these organisms share a nearly identical genetic code, 
it is believed that all species have changed little in their genetic code from that of the ancestor over the 
course of evolution. However, the reasons for this universality, why almost all organisms have never 
changed their genetic code, are not well understood. 

In the present study, principal component analyses of the amino acid residue composition of proteome 
proteins from different species revealed that proteins with high amounts of transmembrane domains 
(TMDs) and proteins with high amounts of intrinsically disordered regions (IDRs) almost universally 
occupy the two extremes of each proteome plot of their first and second principal components. These 
TMD- and IDR-rich proteins correlated not only with the amino acid composition of the proteins, but 
also with the nucleic acid composition of their corresponding genes. 

In my previous report, I showed that the genetic code itself has a structure that can assist the generation 
of TMDs and IDRs by exploiting the partial biases of nucleic acid composition in gene sequences. With 
the current statistical analyses, I also showed that TMD- and IDR-rich proteins always occupy the 
statistical extremes of amino acid composition in the proteomes of different organisms. If TMDs and 
IDRs are always the two largest domains/regions with extreme amino acid composition in the proteome, 
and if the genetic code has a structure that helps synthesize TMDs and IDRs, then I can conclude that 
the structure of the current genetic code may have been chosen to meet the requirements of the typical 
amino acid composition of these functional domains. If this assumption is true, it would be reasonable to 
assume that such a genetic code has become universal. 

This is a new explanation for the universality of the genetic code, and I call it "The Optimized 
Translation Theory". This theory should provide a partial explanation for the origin of the standard 
genetic code in terms of its functions. 
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1. Background 
All living organisms synthesize proteins by translating the nucleic acid sequences of genes into 
the amino acid sequences of proteins according to the genetic code. This genetic code is known 
to be common to nearly all organisms and is called the standard genetic code (SGC) [1]. It was 
originally thought that the genetic code used by the common ancestors of existing organisms 
was frozen and carried over to the present [1], but subsequent analysis has shown that there are 
several organisms that deviate from the SGC [2]. However, even if there are deviations, it is 
believed that most organisms have not changed their genetic code over the course of evolution. 
But there is no standard explanation for why almost all organisms have never changed their 
genetic code, and why even in organisms that have changed their genetic code, the changes from 
the standard genetic code are so small [2, 3, 4]. 

In my previous analyses, I showed that the SGC have the structure to assist the synthesis of 
transmembrane domains (TMDs) and intrinsically disordered regions (IDRs) of proteins as a 
projection of the bias in the partial nucleic acid composition of gene sequences [5]. In another 
analysis, I showed that TMD-rich proteins and IDR-rich proteins appear at the extremes of the 
first and second principal component plots of the amino acid residue composition of protein 
sequences in the human proteome [6]. Hypothetically, if TMD- and IDR-rich proteins always 
appear at the extremes of their principal component plots in all organisms, then the genetic code 
itself could be configured to encode their extreme amino acid compositions. 

Therefore, in the first part of this study, I performed principal component analyses of the amino 
acid residue composition of proteome proteins from the proteome datasets of various organisms 
published as "reference proteomes" [7] to examine where the TMD- and IDR-rich proteins 
would be located in each proteome by coloring each protein plot on their principal component 
plots. 

In the second part of this study, I examined the correlations between the principal components of 
the amino acid composition of the proteins and the nucleic acid composition of their genes by 
coloring the PCA plots with their nucleic acid composition indices. 

In the third and final part of this study, I examined the correlations between the nucleic acid 
composition of the genes and the TMD and IDR fractions of the proteins by examining the color 
distributions of TMD-rich and IDR-rich proteins on plots of their nucleic acid composition. 



2. Materials and Methods 
For this study, a list of proteins published by the European Bioinformatics Institute as "reference 
proteomes" [7] was used. The original dataset contained 1,023,125 protein entries from 79 
species representing all three domains of life. For the amino acid composition analyses, 4,121 
protein entries were excluded due to discrepancies with the UniProtKB database or uncertain or 
unusual information in their sequence or annotation, leaving 1,019,004 proteins for the target [5, 
8]. And for the subsequent gene composition analysis, proteins with mismatches in nucleic acid 
sequence length or codon variations that did not match known genetic code variations were 
excluded, leaving 826,386 protein genes for examination [2, 9]. 

The amino acid residue composition of each protein subjected to principal component analysis 
was calculated using the accompanying data of the "reference proteomes" provided in FASTA 
format. The amino acid residue composition was calculated by first counting the amino acid 
residues for each protein and then dividing the number of amino acid residues by the total 
number of residues. As a result, each amino acid composition took a value between 0 and 1, and 
the sum for each protein was 1. 

In the PCA of this study, the data distribution was first standardized and then analyzed by PCA. 
Although PCA determines the values of each principal component, its polarity is not absolute. 
Therefore, in the results of this analysis, for the sake of consistency in the listing, I chose these 
polarities as those in which the average of the principal component values of the proteins with 
the high amount of TMDs is higher than the average of the other proteins in the same proteome. 

The TMD and IDR fractions of each protein were calculated using the annotation information in 
UniProtKB. The ratios of residues in the TMDs and IDRs to the total length of the amino acid 
residue sequence of each protein were calculated and set as the TMD fraction and IDR fraction, 
respectively [8]. 

In the PCA plots of the results of this paper, the proteins in the proteome of each organism were 
plotted by species, with the first and second principal components calculated in each principal 
component analysis performed for each species. In the first examination, these plots were 
colored by the TMD and IDR fractions in red and blue, respectively, and these two sheets were 
superimposed to create a single plot sheet containing both TMD and IDR information. In the 
second examination, these plots were colored by the nucleic acid composition indices of their 
genes, GC content, TA skew, and GC skew. Each index was calculated using the following 
equations. 

 ,      ,      . 

In these equations, the capital letters T, A, G, and C represent the number of thymine, adenine, 
guanine, and cytosine, respectively, in the nucleic acid sequence of each gene. And, unless 
otherwise noted, the nucleic acid sequences of genes in this paper have been set so that they do 
not contain stop codons that do not encode amino acids. 

In the later nucleic acid composition plots of the results, the proteins in the proteome of each 
organism were again plotted by species, but with their combination of gene GC content and TA 
skew, and their GC skew and TA skew. In this investigation, these plots were again colored by 
the TMD and IDR fractions in red and blue, respectively, and these two sheets were again 
superimposed to create a single plot sheet containing both TMD and IDR information. 

In this study, I used Microsoft® Excel for Mac v16.79.1 (Microsoft Corporation, Redmond, WA, 
USA) to generate compositions and other computational results. I also used JMP® 17.2.0 (SAS 
Institute Inc., Chicago, IL, USA) to perform principal component analysis and to generate 
graphs and figures. 

GC content =
G + C

T + A + G + C
TA skew =

T − A
T + A

GC skew =
G − C
G + C



3. Results 

3.1. Principal Component Analyses of Each Proteome Proteins 

The amino acid composition of each protein generated from the "reference proteomes" dataset 
[7] was subjected to principal component analysis for each organism. The number of registered 
proteins of each organism in the "reference proteomes" and the number of proteins subjected to 
amino acid composition analysis and those subjected to nucleic acid composition analysis in this 
study are listed in Table 1 for each organism [Table 1]. 

Figure 1 plots each protein by organism using the first and second principal components 
calculated by principal component analysis for each organism, and in this figure the proteins are 
color-coded according to the domain to which each organism belongs [Figure 1]. The 
contribution of the first principal component ranged from 11.5 to 19.7% (mean 14.4%), and the 
contribution of the second principal component ranged from 8.6 to 14.7% (mean 11.0%). (Data 
not shown) 

 

Taxonomy ID Domain Organism Name Listed Proteins AAC Targets NAC Targets
64091 Archaea Halobacterium salinarum 2423 2423 2332
69014 Archaea Thermococcus kodakarensis 2301 2301 2298

188937 Archaea Methanosarcina acetivorans 4468 4456 4344
243232 Archaea Methanocaldococcus jannaschii 1787 1774 1667
273057 Archaea Saccharolobus solfataricus 2937 2936 2871
374847 Archaea Korarchaeum cryptofilum 1602 1602 1601
436308 Archaea Nitrosopumilus maritimus 1795 1795 1795

83332 Bacteria Mycobacterium tuberculosis 3995 3995 3821
83333 Bacteria Escherichia coli 4403 4393 4324
85962 Bacteria Helicobacter pylori 1554 1543 1503

100226 Bacteria Streptomyces coelicolor 8035 8035 7969
122586 Bacteria Neisseria meningitidis serogroup B 2001 2001 1972
189518 Bacteria Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai 3676 3676 3645
190304 Bacteria Fusobacterium nucleatum subsp. nucleatum 2046 2046 2022
208964 Bacteria Pseudomonas aeruginosa 5564 5563 5533
224308 Bacteria Bacillus subtilis 4260 4259 4212
224324 Bacteria Aquifex aeolicus 1553 1550 1530
224911 Bacteria Bradyrhizobium diazoefficiens 8253 8253 8192
226186 Bacteria Bacteroides thetaiotaomicron 4782 4782 4768
243090 Bacteria Rhodopirellula baltica 7271 7271 7194
243230 Bacteria Deinococcus radiodurans 3084 3060 2946
243231 Bacteria Geobacter sulfurreducens 3402 3393 3387
243273 Bacteria Mycoplasma genitalium 483 483 470
243274 Bacteria Thermotoga maritima 1852 1851 1818
251221 Bacteria Gloeobacter violaceus 4406 4406 4385
272561 Bacteria Chlamydia trachomatis 895 895 882
289376 Bacteria Thermodesulfovibrio yellowstonii 1982 1977 1977
324602 Bacteria Chloroflexus aurantiacus 3850 3849 3846
515635 Bacteria Dictyoglomus turgidum 1743 1743 1737

1111708 Bacteria Synechocystis sp. 3507 3506 3415
3055 Eukaryota Chlamydomonas reinhardtii 17614 17602 17545
3218 Eukaryota Physcomitrium patens 31359 31287 29632
3702 Eukaryota Arabidopsis thaliana 27481 27476 26146
4577 Eukaryota Zea mays 39225 39198 36382
5664 Eukaryota Leishmania major 8038 8036 8032
5888 Eukaryota Paramecium tetraurelia 39461 39256 38989
6239 Eukaryota Caenorhabditis elegans 19827 19826 18900
6412 Eukaryota Helobdella robusta 23328 23294 19395
6945 Eukaryota Ixodes scapularis 20496 20461 11497
7070 Eukaryota Tribolium castaneum 16568 16552 16367
7165 Eukaryota Anopheles gambiae 13016 12989 2200
7227 Eukaryota Drosophila melanogaster 13821 13594 13037
7719 Eukaryota Ciona intestinalis 16680 16614 8353
7739 Eukaryota Branchiostoma floridae 26627 26421 25272
7918 Eukaryota Lepisosteus oculatus 18321 17988 10552
7955 Eukaryota Danio rerio 26249 26094 24156
8090 Eukaryota Oryzias latipes 23617 23614 21188
8355 Eukaryota Xenopus laevis 35860 35595 34538
8364 Eukaryota Xenopus tropicalis 22229 22104 21315
9031 Eukaryota Gallus gallus 18369 18337 2078
9595 Eukaryota Gorilla gorilla gorilla 21783 21493 19340
9598 Eukaryota Pan troglodytes 23051 22963 21351
9606 Eukaryota Homo sapiens 20586 20486 1026
9615 Eukaryota Canis lupus familiaris 20972 20935 3978
9913 Eukaryota Bos taurus 23841 23798 17948

10090 Eukaryota Mus musculus 21957 21680 5025
10116 Eukaryota Rattus norvegicus 22870 22816 9606
13616 Eukaryota Monodelphis domestica 21223 21084 8242
35128 Eukaryota Thalassiosira pseudonana 11717 11717 9246
36329 Eukaryota Plasmodium falciparum 5372 5368 5361
39947 Eukaryota Oryza sativa subsp. japonica 43672 43656 35746
44689 Eukaryota Dictyostelium discoideum 12726 12713 12386
45351 Eukaryota Nematostella vectensis 24427 24322 13316
81824 Eukaryota Monosiga brevicollis 9188 9177 8313

164328 Eukaryota Phytophthora ramorum 15349 15284 13304
184922 Eukaryota Giardia intestinalis 4900 4900 4896
214684 Eukaryota Cryptococcus neoformans var. neoformans serotype D 6604 6597 6515
237561 Eukaryota Candida albicans 6035 5984 5900
237631 Eukaryota Ustilago maydis 6788 6788 6724
284591 Eukaryota Yarrowia lipolytica 6449 6449 6431
284812 Eukaryota Schizosaccharomyces pombe 5122 5122 5063
321614 Eukaryota Phaeosphaeria nodorum 15998 15998 15907
330879 Eukaryota Aspergillus fumigatus 9647 9647 9537
367110 Eukaryota Neurospora crassa 9759 9759 9697
412133 Eukaryota Trichomonas vaginalis 50190 49311 43646
418459 Eukaryota Puccinia graminis f. sp. tritici 15688 15688 15488
559292 Eukaryota Saccharomyces cerevisiae 6060 6059 6033
665079 Eukaryota Sclerotinia sclerotiorum 14445 14445 14421
684364 Eukaryota Batrachochytrium dendrobatidis 8610 8610 7910

Total 1023125 1019004 826386

Figure 1. Principal component plots of the proteome proteins of each organismTable 1. Number of target proteins in this study
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Table 1 shows the number of registered 
proteins for each organism in the 'reference 
proteomes' dataset, along with the number of 
proteins analyzed for amino acid composition 
and nucleic acid composition in this study, 
these are in 'AAC Targets' and 'NAC Targets' 
respectively. The color of the data bar 
corresponds to the domain to which it belongs.

Figure 1 shows scatter plots of each protein by organism using the 
first and second principal components calculated by principal 
component analysis for each organism, and in this figure the color 
of each plot bar corresponds to the domain of the organisms 
represented. The horizontal axis corresponds to the first principal 
component and the vertical axis corresponds to the second principal 
component. Blue represents archaea, red represents bacteria, and 
green represents eukaryotes.



3.2. TMD and IDR Fractions on Principal Component Plots 

Figure 2 plots each protein by organism using the first and second principal components 
calculated by principal component analysis for each organism, and in this figure the proteins are 
doubly color-coded, red and blue, according to their TMD and IDR fractions, respectively. 
Proteins with high amounts of TMDs and proteins with high amounts of IDRs were found to 
almost universally and oppositely occupy the two extremes of the first and second principal 
components of each proteome plot [Figure 2]. In some organisms (e.g. organism ID 83332) 
where these region-rich proteins were not located at either end, the TMD- and IDR-rich proteins 
were located at both ends of their third principal component. (Data not shown) 
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Figure 2. PCA plots of the proteome proteins of each organism, colored according to their TMD and IDR fractions

Figure 2 plots each protein by organism using the first and second principal components calculated by principal 
component analysis for each organism, and in this figure the proteins are doubly color-coded, red and blue, 
according to their TMD and IDR fractions, respectively. Proteins with high amounts of TMDs and proteins with 
high amounts of IDRs were found to almost universally and oppositely occupy the two extremes of their first 
and second principal components of each proteome plot. At the same time, this figure also shows that very few, 
if any, proteins are rich in both TMD and IDR.
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3.3. Gene Nucleic Acid Indices on Principal Component Plots 

Figures 3a, b, c plot each protein by organism using the first and second principal components 
calculated by principal component analysis for each organism, and in this figure the proteins are 
color-coded according to their gene nucleic acid indices, GC content, TA skew, and GC skew. 
The color distributions of these PCA plots are not random at all, but all show gradations, 
indicating that they are all correlated with their gene nucleic acid composition [Figures 3]. 

In these plots, while all three indices of the four nucleic acid compositions correlated with the 
PCA plots, the contrast of the gradients for GC skew was weaker than those for TA skew or GC 
content, even though the plot color of GC skew was on the same color scale as that of TA skew. 

Figure 3. PCA Plots of the Proteome Proteins of Each Organism, Colored According to Their Gene Nucleic Acid Indices

Figure 3a. Colored by their GC content. Figure 3b. Colored by their TA skew.

Figure 3c. Colored by their GC skew.
Figures 3a, b, c plot each protein by 
organism using the first and second 
principal components calculated by 
principal component analysis for each 
organism. 

In this figure the proteins are color-coded 
according to their gene nucleic acid 
indices, GC content, TA skew, and GC 
skew. The color distributions of these PCA 
plots are not random at all, but all show 
gradations, indicating that they are all 
correlated with their gene nucleic acid 
composition. 

In these plots, while all three indices of the 
four nucleic acid compositions correlated 
with the PCA plots, the contrast of the 
gradients for GC skew was weaker than 
those for TA skew or GC content, even 
though the plot color of GC skew was on 
the same color scale as that of TA skew.
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3.4. TMD and IDR Fractions on Gene Nucleic Acid Index Plots 

Figures 4a, b show each protein plotted by organism with its gene nucleic acid composition 
indices:  4a is a plot with GC content and TA skew, and 4b is a plot with GC skew and TA skew. 
And in these figures, the proteins are doubly color-coded according to their TMD and IDR 
fractions, as in Figure 2 [Figures 4]. In Figure 4a, TMD-rich proteins uniformly occupy the 
region of high TA skew, and IDR-rich proteins uniformly occupy the region of primarily lower 
TA skew and partially higher GC content. In Figure 4b, GC skew does not seem to correlate with 
TMD- and IDR-rich proteins compared to TA skew and GC content. 

 
Figure 4. PCA Plots of the Proteome Proteins of Each Organism, Colored According to Their Gene Nucleic Acid Indices

Figures 4a, b show each protein plotted by organism with its gene nucleic acid composition indices:  4a is a plot with GC 
content and TA skew, and 4b is a plot with GC skew and TA skew. And in these figures, the proteins are doubly color-
coded according to their TMD and IDR fractions, as in Figure 2. 
In Figure 4a, TMD-rich proteins uniformly occupy the region of high TA skew, and IDR-rich proteins uniformly occupy 
the region of primarily lower TA skew and partially higher GC content. 
In Figure 4b, GC skew does not seem to correlate with TMD- and IDR-rich proteins compared to TA skew and GC 
content. 
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Figure 4a. Plots with GC content and TA skew Figure 4b. Plots with GC skew and TA skew



4. Discussions 
The deciphering of the genetic code began with Nirenberg's seminal discovery that poly-U codes 
for poly-phenylalanine in 1961 [10]. Subsequent analysis revealed that various organisms share 
a common genetic code, leading to Crick's "The Frozen Accident Theory" in 1968 [1]. Despite 
more than 50 years of debate, there is still no definitive explanation for the structure or 
universality of the genetic code, including why the codon UUU codes for phenylalanine [3, 4]. 

In my previous report, I showed that the genetic code itself has a structure that can assist the 
generation of TMDs and IDRs by exploiting the partial biases of nucleic acid composition in 
gene sequences [5]. From a simple analysis of the genetic code itself, it appears that the genetic 
code is designed to encode TMDs by dense thymine sequences in the gene and IDRs in regions 
of sparse thymine sequence [5]. However, upon detailed analysis, most genes uniformly adjust 
their codon usage bias according to their GC content, counterbalancing the influence of GC 
content on amino acid composition [9]. As a result, the behavior of TMDs and IDRs has been 
linked to their TA skew rather than to the density of thymine in the gene sequence, as shown in 
Figures 4a and 4b. 

With the current statistical analyses of this study, I have shown that TMD- and IDR-rich proteins 
always occupy the statistical extremes of amino acid composition in the proteomes of different 
organisms. If TMDs and IDRs are always the two largest domains/regions with extreme amino 
acid composition in the proteome, and if the genetic code has a structure that helps synthesize 
TMDs and IDRs, then I can conclude that the structure of the current genetic code may have 
been chosen to meet the requirements of the typical amino acid composition of these functional 
domains. If this assumption is true, it would be reasonable to assume that such a genetic code 
has become universal. 

Previous research on the origin of the genetic code has focused primarily on the structure of the 
code itself or the structures of tRNA itself. However, there is a lack of studies that analyze the 
genetic code from the perspective of the synthesized proteins or the overall structure of the 
proteome. My report is the first to suggest that the structure of the genetic code could be 
designed to assist the generation of domains with biased amino acid compositions in the proteins 
of the proteome. 

Chargaff's Second Parity Rule (CSPR) is an empirical rule that states that in a genome sequence 
longer than a certain length, the number of thymine (T) and adenine (A) will be approximately 
equal, and the number of guanine (G) and cytosine (C) will also be approximately equal, 
although there is no confirmed requirement by the DNA itself or by the chromosomes 
themselves. It's known that this rule applies to most organisms with genomes of double-stranded 
DNA, and this has been a mystery in biology [11]. On the other hand, the results of the present 
study suggest that organisms could control the amount of their TMDs and IDRs in their 
proteomes by controlling the TA skew distributions in their genome sequences, and thus the 
balance between T and A in genome sequences must be crucial for maintaining optimal TMD 
and IDR fractions in genes. Looking at it the other way around, it's possible that CSPR results 
from genome sequences being controlled in coordination with the genetic code to regulate the 
fractions of TMDs and IDRs in the proteome by each organism controlling the distribution of 
TA skew in their genomes. This finding is consistent with previous reports that the entire 
genome is highly structured in terms of nucleic acid composition indices such as TA skew, GC 
skew, and GC content [12]. Therefore, it has been suggested that this CSPR may operate in 
conjunction with the current genetic code. 

It is already known that the genetic code in mitochondrial genomes deviates from the standard 
code [13] and that mitochondrial DNA exhibits deviations from the CSPR [14]. However, the 
reasons for these deviations were not clear. In free-living organisms, the balanced generation of 
TMDs and IDRs appears to be a critical requirement, suggesting that significant deviations from 
the standard genetic code and the CSPR are typically not tolerated. In contrast, mitochondria 
have evolved to a state of complete intracellular parasitism. I hypothesize that the evolutionary 
selective pressure to encode functional proteins with such TMDs and IDRs has decreased in 
mitochondria, potentially leading to deviations in the genetic code and CSPR in these 
organelles. 



My findings provide a new perspective on the structural design of the genetic code and link it to 
the functional requirements of proteomes. This insight may contribute to a better understanding 
of the evolutionary constraints and adaptability of the genetic code in different biological 
contexts. 

Finally, and in addition, I propose an answer to the long-standing question of why UUU encodes 
phenylalanine. As I have shown in this study, the genetic code is thought to have a structure that 
converts dense thymine gene sequences into TMDs and scarce thymine sequences into IDRs. 
Thus, the UUU corresponding to the triple thymine on the gene must encode amino acid 
residues that are common in the TMDs and rare in the IDRs. And phenylalanine is a 
hydrophobic amino acid residue that is abundant in the TMDs and rare in the IDRs. Therefore, I 
assumed that UUU codes for phenylalanine because it is abundant in the TMDs and rare in the 
IDRs. I believe this is a possible answer to Nirenberg's historical question. 

5. Conclusion 
In this report, I have shown that the TMDs and IDRs always occupy their statistical extremes in 
the amino acid residue composition distribution of proteome proteins in all organisms. And 
together with previous reports that the genetic code has a function that assists its encoding of the 
TMDs and IDRs, I have also shown that the genetic code could become universal because these 
two domains/regions are universally required in all organisms. 

This is a new explanation for the universality of the genetic code, and I call it "The Optimized 
Translation Theory". This theory should also provide a new perspective on the origin of the 
standard genetic code in terms of its functions. 
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