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Abstract 
In the genetic code, most amino acids have multiple corresponding codons, and codons corresponding to 
the same amino acid are called synonymous codons. The use of synonymous codons in protein genes is 
known to be biased rather than random, and such bias is often explained by species differences in the 
guanine + cytosine (GC) content of their genomes, or in the abundance of tRNAs that intervene between 
codons and amino acids in the translation process. 

In this study, I statistically analyzed the synonymous codon usage in protein genes of the proteomes of 
79 species from 3 domains, published as Reference Proteome, and found that the GC content of the 
individual gene, rather than the species to which it belongs, primarily determines its synonymous codon 
usage. 

Why then does the GC content of the individual gene determine its codon usage selection? Some papers 
have already mentioned that the GC content of the third letters of codons is even higher in genes with 
high total GC content and even lower in genes with low total GC content, and these were usually 
explained by evolutionary pressure on their genomic GC content and its subsequent shift. However, 
while this explanation explained the behavior of the third letter of the codon, it did not explain the 
behavior of the first and second letters. To provide a new explanation for the overall behavior of 
synonymous codon usage, I added an analysis. Since in previous work the amino acid composition 
distributions of organisms appeared to be in a state of narrow convergence, and since we know that most 
organisms share some highly conserved proteins across species boundaries, an additional analysis, based 
on the assumption that the organism maintains a proteome close to the amino acid composition of a 
particular conserved protein, suggests that this codon selection counteracts the effect of the GC content 
of the gene on the amino acid composition of the protein and behaves in the direction of 
counterbalancing and maintaining a constant and balanced amino acid composition. 

From the results of this study, I concluded that synonymous codon selection in a protein gene primarily 
counterbalances its GC content to maintain a balanced amino acid composition for the proteome. The 
ability to generate proteins with balanced amino acid composition from genes with different ranges of 
GC content is considered to be one of the basic functions achieved by the genetic code itself. 
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1. Background 
In the genetic code, most amino acids have multiple corresponding codons, and codons 
corresponding to the same amino acid are called synonymous codons. The use of synonymous 
codons in protein genes is known to be biased rather than random, and this bias is called "codon 
usage bias". Since the codon usage bias in bacterial proteomes mainly differs between species, 
these biases are often explained by species differences in the guanine + cytosine (GC) content of 
their genomes, or in the abundance of tRNAs that intervene between codons and amino acids in 
the translation process. [1, 2] 

In a previous report, I showed the possibility that codon usage bias in bacterial proteomes 
primarily counterbalances the GC content of their individual genes [3], so in the current report, I 
performed more detailed statistical analyses not only on bacterial proteomes, but on the 
proteomes of all three domains, archaea, bacteria, and eukaryotes. 

2. Materials and Methods 
In this study, I used protein genes from a protein dataset published on the Internet as "reference 
proteomes" consisting of more than one million protein entries [4]. This reference proteome 
dataset has the amino acid sequence data of each protein and the corresponding gene nucleotide 
sequences, but because I found that their gene sequences did not completely match their amino 
acid sequences, I first excluded protein genes that did not match the length of the protein amino 
acid sequence length. In this first exclusion, 249,042 proteins out of 1,023,125 proteins are 
excluded, leaving 857,750 proteins. Then, I excluded protein genes whose amino acid sequences 
did not match those in the UniProt database [5], whose amino acid sequence data had missing or 
abnormal alphabetic codes, whose nucleotide sequence data had missing or abnormal 
descriptions, and whose start and stop codons did not follow known deviations [6]. Finally, 
protein genes with mismatches to amino acid sequences other than the start codon were 
excluded.  As a result, 774,083 protein genes in 79 species proteomes of 3 domains were 
included in this analysis [Table 1, Supplemental Data.csv]. 

Since the purpose of this analysis was to analyze how the bias in codon usage behaves, I first 
counted the number of each codon in each gene, and then calculated the codon composition by 
gene, by corresponding amino acid. Then, I performed a principal component analysis on all the 
synonymous codon compositions calculated, and then examined the results. 

For the additional analysis mentioned in the Discussion, I calculated the average amino acid 
composition of both the total protein genes and the proteome of each organism as representative 
central amino acid compositions of the total proteins and each proteome, respectively, and then 
calculated the L1 distances (Manhattan distances) of each protein amino acid composition from 
each of the two central compositions. 

Before calculating L1 distances of protein amino acid compositions, each amino acid 
composition of protein genes is generated by counting each amino acid residue number on each 
gene and dividing it by the sum of all 20 amino acids on the gene, resulting in each amino acid 
composition taking values between 0 and 1 and the total sum being 1. 

The L1 distances between the amino acid compositions of protein  and protein  were 
calculated using the following equation, where  represents each amino acid composition of 
protein . It is the sum of all 20 amino acid composition differences between these two proteins, 
resulting in a value between 0 and 2, the lower the closer. 

  

In this study, I used Microsoft® Excel for Mac v16.79.1 (Microsoft Corporation, Redmond, WA, 
USA) to generate compositions and other computational results. I also used JMP® 17.2.0 (SAS 
Institute Inc., Chicago, IL, USA) to perform principal component analysis and to generate 
graphs and figures. 
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Table 1. 

This table shows the total number of protein entries listed in the reference proteomes and the number of 
target proteins selected for this analysis [4]. 

For organisms with known deviations from the standard genetic code (IDs 243273, 5888, 237561), the 
majority of genes were excluded due to their deviations. In addition, in some proteomes of multicellular 
prokaryotic organisms, the majority of genes were excluded due to their sequence length mismatch 
(reasons unknown). 

As a result, about 75% of the total protein entries were included. 

Taxonomy ID Domain Organism Name Listed Proteins Target Proteins Proportions
64091 Archaea Halobacterium salinarum 2423 2332 0.96244325
69014 Archaea Thermococcus kodakarensis 2301 2298 0.99869622

188937 Archaea Methanosarcina acetivorans 4468 4344 0.97224709
243232 Archaea Methanocaldococcus jannaschii 1787 1666 0.93228875
273057 Archaea Saccharolobus solfataricus 2937 2871 0.97752809
374847 Archaea Korarchaeum cryptofilum 1602 1601 0.99937578
436308 Archaea Nitrosopumilus maritimus 1795 1795 1

83332 Bacteria Mycobacterium tuberculosis 3995 3821 0.95644556
83333 Bacteria Escherichia coli 4403 4323 0.98183057
85962 Bacteria Helicobacter pylori 1554 1501 0.96589447

100226 Bacteria Streptomyces coelicolor 8035 7967 0.99153703
122586 Bacteria Neisseria meningitidis serogroup B 2001 1971 0.9850075
189518 Bacteria Leptospira interrogans serogroup Icterohaemorrhagiae serovar Lai 3676 3645 0.99156692
190304 Bacteria Fusobacterium nucleatum subsp. nucleatum 2046 2022 0.98826979
208964 Bacteria Pseudomonas aeruginosa 5564 5532 0.99424874
224308 Bacteria Bacillus subtilis 4260 4201 0.98615023
224324 Bacteria Aquifex aeolicus 1553 1529 0.98454604
224911 Bacteria Bradyrhizobium diazoefficiens 8253 8191 0.99248758
226186 Bacteria Bacteroides thetaiotaomicron 4782 4768 0.99707235
243090 Bacteria Rhodopirellula baltica 7271 7194 0.98940998
243230 Bacteria Deinococcus radiodurans 3084 2946 0.95525292
243231 Bacteria Geobacter sulfurreducens 3402 3387 0.99559083
243273 Bacteria Mycoplasma genitalium 483 132 0.27329193
243274 Bacteria Thermotoga maritima 1852 1818 0.98164147
251221 Bacteria Gloeobacter violaceus 4406 4385 0.99523377
272561 Bacteria Chlamydia trachomatis 895 882 0.98547486
289376 Bacteria Thermodesulfovibrio yellowstonii 1982 1977 0.9974773
324602 Bacteria Chloroflexus aurantiacus 3850 3846 0.99896104
515635 Bacteria Dictyoglomus turgidum 1743 1737 0.99655766

1111708 Bacteria Synechocystis sp. 3507 3407 0.9714856
3055 Eukaryota Chlamydomonas reinhardtii 17614 17533 0.99540139
3218 Eukaryota Physcomitrium patens 31359 29631 0.9448962
3702 Eukaryota Arabidopsis thaliana 27481 26051 0.94796405
4577 Eukaryota Zea mays 39225 36352 0.9267559
5664 Eukaryota Leishmania major 8038 8031 0.99912914
5888 Eukaryota Paramecium tetraurelia 39461 98 0.00248346
6239 Eukaryota Caenorhabditis elegans 19827 18885 0.95248903
6412 Eukaryota Helobdella robusta 23328 19395 0.83140432
6945 Eukaryota Ixodes scapularis 20496 11496 0.56088993
7070 Eukaryota Tribolium castaneum 16568 16362 0.98756639
7165 Eukaryota Anopheles gambiae 13016 2187 0.16802397
7227 Eukaryota Drosophila melanogaster 13821 12954 0.93726937
7719 Eukaryota Ciona intestinalis 16680 8343 0.50017986
7739 Eukaryota Branchiostoma floridae 26627 25265 0.94884891
7918 Eukaryota Lepisosteus oculatus 18321 10547 0.57567818
7955 Eukaryota Danio rerio 26249 20683 0.78795383
8090 Eukaryota Oryzias latipes 23617 21181 0.89685396
8355 Eukaryota Xenopus laevis 35860 31829 0.88759063
8364 Eukaryota Xenopus tropicalis 22229 20072 0.9029646
9031 Eukaryota Gallus gallus 18369 1998 0.10877021
9595 Eukaryota Gorilla gorilla gorilla 21783 19329 0.88734334
9598 Eukaryota Pan troglodytes 23051 21334 0.92551299
9606 Eukaryota Homo sapiens 20586 935 0.04541922
9615 Eukaryota Canis lupus familiaris 20972 3957 0.18868014
9913 Eukaryota Bos taurus 23841 17832 0.7479552

10090 Eukaryota Mus musculus 21957 4724 0.21514779
10116 Eukaryota Rattus norvegicus 22870 9162 0.40061216
13616 Eukaryota Monodelphis domestica 21223 8094 0.38137869
35128 Eukaryota Thalassiosira pseudonana 11717 9246 0.78910984
36329 Eukaryota Plasmodium falciparum 5372 5361 0.99795235
39947 Eukaryota Oryza sativa subsp. japonica 43672 35690 0.81722843
44689 Eukaryota Dictyostelium discoideum 12726 12384 0.97312588
45351 Eukaryota Nematostella vectensis 24427 13315 0.54509354
81824 Eukaryota Monosiga brevicollis 9188 8289 0.90215498

164328 Eukaryota Phytophthora ramorum 15349 13304 0.86676656
184922 Eukaryota Giardia intestinalis 4900 4896 0.99918367
214684 Eukaryota Cryptococcus neoformans var. neoformans serotype D 6604 6515 0.98652332
237561 Eukaryota Candida albicans 6035 2029 0.33620547
237631 Eukaryota Ustilago maydis 6788 6723 0.99042428
284591 Eukaryota Yarrowia lipolytica 6449 6415 0.99472786
284812 Eukaryota Schizosaccharomyces pombe 5122 5051 0.98613823
321614 Eukaryota Phaeosphaeria nodorum 15998 15891 0.99331166
330879 Eukaryota Aspergillus fumigatus 9647 9518 0.98662797
367110 Eukaryota Neurospora crassa 9759 9673 0.99118762
412133 Eukaryota Trichomonas vaginalis 50190 43646 0.86961546
418459 Eukaryota Puccinia graminis f. sp. tritici 15688 15488 0.9872514
559292 Eukaryota Saccharomyces cerevisiae 6060 6006 0.99108911
665079 Eukaryota Sclerotinia sclerotiorum 14445 14384 0.99577709
684364 Eukaryota Batrachochytrium dendrobatidis 8610 7910 0.91869919

Total 1023125 774083 0.75658693



3. Results 
The results of the principal component analysis of the synonymous codon compositions are 
presented [Figure 1]. The contribution of the first principal component was very large with 
35.4% compared to 4.18% for the second principal component. In addition, most codons were 
bipolarized in the eigenvector of the first principal component [Figure 1]. 

Figure 1. 

This figure shows the results of the principal component analysis of the synonymous codon 
composition, with the eigenvalues of the principal components on the left, the protein plot of the first 
and second principal components in the middle, and the eigenvector plot of the first and second 
principal components on the right. 

The contribution of the first principal component (proportional to the eigenvalues) was very large at 
35.4% compared to 4.18% for the second principal component (middle). In addition, most codons were 
bipolarized in the eigenvector of the first principal component (right). 



To analyze the structure of bipolarization found in Figure 1, I compared the eigenvalues of the 
first principal component of the synonymous codons of each amino acid and found that the 
bipolar split occurred between synonymous codons with low GC content (the same with high TA 
content) and those with high GC content. Furthermore, those that were not at either extreme 
were all those with intermediate GC content when three or more synonymous codons were 
present for an amino acid [Figure 2]. 

Figure 2. 

This figure shows each eigenvector value of the first principal component of the synonymous codons by 
each amino acid. 

The upper and lower extremes of each amino acid codon were uniformly composed of those with lower 
and higher GC content of the synonymous codons, respectively, and the codons not at either extreme 
were uniformly composed of codons with intermediate GC content when there were three or more 
synonymous codons. 
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The above uniform bipolarization of codons suggested that the first principal component of 
synonymous codon composition was related to the GC content of synonymous codons. To verify 
this, I next evaluated the character of bipolarized GC-rich and GC-poor synonymous codons in 
the first principal component by introducing the value of "GC score". Specifically, I first defined 
"GC content" as the proportion of the number of guanine and cytosine in the gene sequence, and 
it takes values from 0 to 1. Then, I defined "max GC" and "min GC" as the GC content of amino 
acids on the target protein when only the most GC-rich and most GC-poor synonymous codons 
were used, respectively. Finally, the following equation was used to calculate the GC score. 

 

Consequently, this GC score takes values from 0 to 1, and a higher GC score means that the 
synonymous codons with higher GC content are used in the protein gene, and vice versa. And 
because this GC score describes the behavior of synonymous codon usage in terms of GC 
content, it could also be used as an index for codon usage selection. 

Comparing the GC score with the first principal component of synonymous codon composition, 
I found that they correlated with each other with a correlation coefficient of 0.99 [Figure 3]. 
They also correlated with the GC content of each protein gene with correlation coefficients of 
0.94 and 0.93, respectively [Figure 3]. In addition, by calculating the GC score for each amino 
acid in each protein independently, I found that they were all positively correlated with each 
other with correlation coefficients of 0.34 - 0.75 [Figure 3]. 

Figure 3. 

These figures show the correlations between the individual amino acid GC scores calculated for all 
target proteins in this study. On the left are scatter plots of their first principal components of codon 
usage, GC score, GC content, and individual GC scores by amino acid of all target proteins, and on the 
right are their density ellipses (α = 0.90) and their correlation coefficients. 

The GC score correlated with the first principal component of synonymous codon composition with a 
correlation coefficient of 0.99. These two also correlated with their GC content with correlation 
coefficients of 0.94 and 0.93, respectively. In addition, their independently calculated GC scores for 
each amino acid were all positively correlated with each other, with correlation coefficients ranging 
from 0.34 to 0.75. 

GC score =
GC content − min GC

max GC − min GC



4. Discussions 
In the results of this study, the first principal component of synonymous codon usage 
composition correlated with the GC score, a newly defined index of GC content balance in 
synonymous codon usage, with a correlation coefficient of 0.99, so that these two were 
considered almost identical [Figure 3]. At the same time, the eigenvectors of the first principal 
component were bipolarized into those with high GC content and those with low GC content in 
each synonymous codon triplet, and those in the middle of the two extremes were those with 
intermediate GC content when three or more synonymous codons were present [Figure 2]. In 
addition, I found that not only was the GC score correlated with GC content, but the individual 
GC scores calculated independently for each amino acid were not only positively correlated with 
total GC content, but were all positively correlated with each other (correlation coefficient 0.34 - 
0.75) [Figure 3]. Because the correlation coefficients between individual amino acid GC scores 
and gene GC content are smaller than that between GC score and GC content, I speculate that 
the background of these correlations is likely due to selection pressure on overall amino acid 
composition rather than selection pressure on individual codon usage of each amino acid. 

Then why does the GC content of the individual gene determine its codon usage selection? 
Some papers have already mentioned that the GC content of the third letters of codons is even 
higher in genes with high total GC content and even lower in genes with low total GC content, 
and these were usually explained by evolutionary pressure on their genomic GC content and its 
subsequent shift [1]. However, while this explanation explained the behavior of the third letter 
of the codon, it did not adequately explain the behavior of the first and second letters. 

To provide a new explanation for the overall behavior of synonymous codon usage, I added an 
analysis of amino acid composition distances between proteins. Since in previous work the 
amino acid composition distributions of each organism's proteome appeared to be in a state of 
narrow convergence [7, 8], and since we know that most organisms share some highly 
conserved proteins across species boundaries, I speculated that the centers of amino acid 
composition of the proteomes of all organisms are relatively close to each other. And if this is 
true, then organisms must derive their amino acid composition from genes on their genomes 
with different ranges of GC content. Therefore, in this additional analysis, I examined where and 
how the proteins near the central amino acid composition of total protein and the proteins near 
the central amino acid composition of each organism's proteome would lie on a scatter plot of 
their GC score and their GC content. 

For the additional analysis mentioned above, I used the L1 distance, called the Manhattan 
distance, as a metric to measure the distance of each protein's amino acid composition from both 
the central composition of all target proteins and the central composition of each species' 
proteome. First, I made a scatter plot of all protein genes by their GC score and their GC 
content, and then I displayed their distance from the central composition of all target proteins. 
And in the next sheet, I further highlighted only those proteins that were relatively close to the 
center of each organism's proteome. These plots of protein genes were also colored according to 
the species to which they belonged [Figure 4]. 

As a result of the current additional study, I found that protein genes close to the central amino 
acid composition of all proteins were not only distributed over a fairly wide range of GC 
content, but also that they were almost lined up in a narrow belt [Figure 4]. And I also found that 
proteins close to the center of each organism were also relatively close to the overall center 
[Figure 4]. From these results, I concluded that the strong correlation between GC score and GC 
content was because the GC score, an index of synonymous codon usage, is used to balance the 
GC content of their gene to synthesize interspecies relatively conserved amino acid 
compositions of proteome proteins from genes with a wide range of GC content. 



Figure 4. 

These figures are the scatter plots of the GC scores and GC contents of all target protein genes by the 
domains to which they belong. Top left (a) shows the plots colored by their distance from the central, i.e. 
average, amino acid composition of all proteins, and top right (b) shows the same plots but highlighting 
only proteins that are close to each central amino acid composition of each organism, with distances less 
than 0.2. Bottom left (c) and right (d) are the same as above, but colored according to the species to 
which they belong. All distributions of amino acid composition and all distributions of their distances 
are shown in supplementary figures [Supplementary Figure 1a.pdf, Supplementary Figure 1b.pdf, 
Supplementary Figure 2.pdf]. 

In Figure (a), protein genes close to the central amino acid composition of the total target proteins were 
not only distributed over a rather wide range of GC content, but also almost lined up in a narrow belt. 
Figure (b) shows that protein genes close to the individual centers of each organism were also relatively 
close to the overall center (colored almost in blue). 

In figures (c) and (d), the plots of the protein genes of each organism showed a somewhat broad but 
linear correlation with their GC content. If the species were the determinant of their codon usage bias, 
their GC scores should be correlated with the species, not with their GC content. In the current result, I 
found that they correlated with their GC content, leading me to conclude that individual GC content 
itself is the primary determinant of their codon usage bias. 

a. b.

c. d.



Deviations from the correlation of GC score with GC content were overwhelmingly observed in 
eukaryotes compared to archaea and bacteria, but the many deviating proteins were also found 
to contain a non-trivial amount of intrinsically disordered regions [Supplementary Figure 3.pdf]. 
In a previous report, I showed that the structure of the genetic code itself is designed to convert 
gene sequences with less thymine into intrinsically disordered regions [9]. Since the amount of 
thymine used to determine amino acid composition is thought to be controlled by the GC 
content and GC score of the gene, it seemed reasonable that deviations in GC score would be 
associated with intrinsically disordered regions. This is also thought to be consistent with a 
report that codons encoding intrinsically disordered regions often deviate from the codon usage 
bias of the organism [10]. 

Finally, there have been several reports that codon usage bias is determined by the GC content 
of each organism's genome [1, 11, 12, 13]. However, there has been no report that the GC 
content of "individual genes" is the most dominant determinant of codon usage bias, and this is 
the first report to state this. 

5. Conclusion 
From the results of this study, I concluded that synonymous codon selection in a protein gene 
primarily counterbalances its individual GC content to maintain a balanced amino acid 
composition of the proteome. The ability to generate proteins with functionally balanced amino 
acid composition from genes with different ranges of GC content is considered to be one of the 
basic functions achieved by the standard genetic code itself. And perhaps this explains one of the 
reasons why the genetic code has degenerated. 
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