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This paper presents practical methodologies and demonstrations for determining reproduction number, offering 

valuable insights to researchers and public health officials. Multiple approaches for simplified estimation techniques 

are proposed for the reproduction number of infectious diseases, and their effectiveness is compared. Methods 

assuming either exponential or delta distributions for the generation time of infectious diseases offer convenience by 

enabling the calculation of the reproduction number based solely on the mean of the generation time and number of 

new infection cases. However, the former tends to underestimate the reproduction number when the variance of the 

generation time distribution is small, while the latter tends to overestimate it when the variance is large. Conversely, 

the method assuming a normal distribution may underestimate the reproduction number depending on the growth 

rate. However, the estimation method assuming a gamma distribution provides reliable values in all scenarios. 

These estimation formulas should be applied judiciously, considering the characteristics of the generation time 

distribution of infectious diseases. 
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1. Introduction 

 

The pandemic of the novel coronavirus infection (COVID-19) has once again underscored the importance of 

infectious disease control (Stawicki et al., 2020). The rapid spread of such pathogens has profound implications for 

individuals, society, and the global economy. Unprecedented concern about infectious diseases has led to the 

widespread adoption of mathematical pathology terminology, including population immunity, incubation period, 

reproduction number, and doubling rate (Clement et al., 2021; Riccaboni & Verginer, 2022). Among these, 

reproduction numbers such as the basic reproduction number R0 and effective reproduction number Rt are frequently 

used to elucidate the dynamics of infectious disease transmission and contraction. It is defined as the number of 

secondary infections caused by one infected person at a given point in time, or the mean number of new infections 

throughout the infection period, and if this value is less than 1, the infection is under control, while if it exceeds 1, it 

indicates the continuation of the epidemic of infection (Diekmann et al., 1990; Roberts & Heesterbeek, 2003; 

Bacaër & Guernaoui, 2006; Inaba, 2012). The concept of reproduction numbers, notable for its simplicity and clarity, 

serves as a valuable indicator for assessing the risk of an epidemic or the interventions required to curb infection 

spread (Anderson & May, 1991; Roberts & Heesterbeek, 2003; Heffernan et al., 2005). However, a singular 

calculation method does not exist for the exact determination of the reproduction number (R). Consequently, 

numerous estimation methods have been proposed, resulting in different values calculated by various institutions 

and researchers (Annunziato & Asikainen, 2020; Gostic et al., 2020; Arvanitis et al., 2021; Khailaie et al., 2021; 

Bsat et al., 2022). Moreover, the exact calculation of the reproduction number necessitates advanced knowledge of 

mathematics and programming, thus rendering it a “black box” for many researchers. In many cases, existing 

software tools such as those developed by Wallinga and Teunis (2004) or Cori et al. (2013) are employed for these 

calculations (Thompson et al., 2019; Nash et al., 2022; Bhatia et al., 2023). Conversely, to meet societal demands, 

simplified methods have been proposed by reputable institutions such as the Robert Koch Institute (RKI) in 

Germany (Koch-Institut, 2020) or the Joint Research Centre (JRC) (An der Heiden & Hamouda, 2020), enabling 

manual computation of reproduction numbers from newly reported infection cases. Nevertheless, few studies 

compare the practicality of these simplified approaches (Annunziato & Asikainen, 2020), and they appear to lack a 

solid theoretical foundation. Thus, systematic organization of easily calculable methods for estimating reproduction 

numbers is believed to be beneficial for future societal strategies against infectious diseases. Therefore, this paper 

proposes multiple novel estimation equations for reproduction numbers, offering a comparative analysis of their 

attributes alongside existing methods and demonstrating their practical applications. The novel methodologies and 

equations for reproduction number estimation may address the aforementioned challenges. 

 

2. Relationship between the generation time distribution g(t) and the reproduction number R 

 

Let f(a) represent the probability that an individual infected with a certain infectious disease infects others during a 

given time, a. Furthermore, let I(t) denote the number of new infections in a population at time t. The number of new 

infections caused by new infections at time (t-a) (the number of infected individuals is I(t-a)) after a time a has 

elapsed since infection (i.e., at time t) is I(t-a)f(a). The sum of this quantity across all time intervals a subsequent to 

infection yields the total number of infections I(t) at that time (Feller, 1941). 

 



                    (2.1) 

 

The number of secondary infections generated by a single infected individual (primary case) within a given time can 

be expressed as the basic reproduction number, R, using the following equation: 

 

              (2.2) 

 

The probability density function, g(t), representing the distribution of the time interval from primary to secondary 

infection can be expressed by normalizing f(t) as shown in the following equation: 

 

                       (2.3) 

 

This g(t) is referred to as the generation time. From equations (2.1), (2.2), and (2.3), the following relationship is 

derived: 

 

                                          (2.4) 

 

 

The number of infections exhibits exponential growth or decline (Kermack & McKendrick, 1927). Denoting the 

growth rate as λ, the number of new infections, I(t), can be expressed as follows (Lipsitch et al., 2003): 

 

                                 (2.5) 

 

Solving this equation yields the following expression: 

 

                                           (2.6) 

 

From equations (2.1) and (2.6), equation (2.7) is obtained: 

 

                                                (2.7) 

 

Dividing both sides of equation (2.7) by I(t) yields the Euler-Lotka equation (Sharpe & Lotka, 1911; Lotka, 1913): 

 

                                            (2.8) 

 

Dividing the Euler-Lotka equation (2.8) by the definition equation (2.2) of the reproduction number R and using 

equation (2.3) to transform f(a) into g(a), R can be expressed as follows: 

 

                                                 (2.9) 

Therefore, given the generation time distribution g(t), the relationship between the growth rate λ and the 
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reproduction number R can be determined from equation (2.9) (Wallinga & Lipsitch, 2007). In the context of 

infectious disease transmission, the generation time distributions commonly used encompass the exponential 

distribution (equivalent to the SIR model), normal distribution, delta distribution, Weibull distribution, gamma 

distribution, and log-normal distribution. Among these, the exponential distribution, normal distribution, and 

gamma distribution allow the description of the reproduction number R solely based on the expected value (mean) 

and variance of the generation time distribution (Chen et al., 2022; Lippiello et al., 2022). In this study, an 

examination is conducted on estimation formulas for the reproduction number derived from these distributions. 

 

3. Relationship between Generation Time Distribution g(t) and Reproduction Number 

 

3.1. Exponential Distribution 

 

The simplest description of the Kermack–McKendrick theory, encompassing the SIR model, classifies the study 

population into susceptible, infected, and recovered individuals. The spread of the infection via contact between 

infected and susceptible individuals can be described by the following differential equations (Kermack & 

McKendrick, 1932; Anderson & May, 1991; Kermack & McKendrick, 1927): 

 

                 (3.1) 

 

                                   (3.2) 

  

 

                               (3.3) 

 

 

Here, S(t) represents the size of the susceptible population at time t, I(t) represents the size of the infected population, 

and Re(t) represents the recovered or removed population. β is the transmission coefficient representing the 

infection rate through contacts between susceptible and infected individuals. γ is the rate constant at which infected 

individuals recover or are isolated. 

The temporal change in the number of infected individuals I(t) until recovery or isolation at time t is described by the 

following equation, which is derived from equation (3.2): 

 

                                          

 

Here, assuming the number of infected individuals at time t = 0 is I(0), I(t) described by the equation (3.2), is 

expressed by the following equation (3.4), indicating that the number of infected individuals decreases 

exponentially: 

 

         (3.4) 

At this juncture, I(t), the quantity of individuals infected by others, is considered to be proportional to the 
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probability of infection f(t). Therefeore, by normalizing I(t) using equation (2.3), the probability density function 

g(t) for the generation time can be expressed as follows: 

 

                      (3.5)      

 

 

Substituting equation (3.4) into equation (3.5), the following equation is obtained: 

 

                     (3.6) 

 

By substituting equation (3.6) into equation (2.9), R can be expressed as follows: 

 

 

 

 

 

Thus, the relationship in equation (3.7) is obtained: 

 

             (3.7) 

 

Furthermore, using equation (3.6), 1/γ is expressed as the mean value (expected value) of the generation time, Tg, as 

follows: 

 

 

 

 

 

 

 

             (3.8) 

 

From equations (3.7) and (3.8), the reproduction number R can be described by the following simple equation: 

 

(3.9) 

 

In order for R > 0, the condition for this equation to hold is λTg > -1. In this case, the variance σ2 is described by the 

following equation: 
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By substituting equations (3.6) and (3.8) into this equation, the following relationship is obtained: 

 

 

             (3.10) 

 

Specifically, when g(t) is expressed by an exponential distribution, the standard deviation σ is equal to the mean 

value Tg. 

 

3.2. Normal and Delta Distributions 

 

If the generation time distribution g(t) follows a normal distribution with a mean value of Tg and a standard 

deviation of σ, g(t) can be described by the following equation: 

 

                           (3.11) 

 

 

By substituting equation (3.11) into equation (2.9) and calculating, the reproduction number R is expressed by the 

following equation:  

 

                           (3.12) 

 

In the case where the variance ó2 of the generation time distribution g(t) approaches 0, i.e., assuming a delta 

distribution, equation (3.12) can be further simplified as follows:  

 

                          (3.13) 

 

This equation assumes a variance σ2 = 0 for g(t). Therefore, when the variance σ2 of g(t) is large, it leads to an 

overestimation of the value of the reproduction number R. 

 

3.3. Gamma Distribution 

 

According to a review study on SARS-CoV-2, the generation time is often assumed to follow a gamma distribution 

(Hart et al., 2022). Out of 90 references, 33 studies used the gamma distribution, 30 studies used the normal 

distribution, 8 studies used the Weibull distribution, and 11 studies used the log-normal distribution (Jusot, 2022). 

When the probability density function of the generation time distribution g(t) follows a gamma distribution with 

a shape parameter m and a scale parameter ç, g(t) is expressed by the following equation:  

 

  

                       (3.14) 
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Here, m > 0 and η > 0. The expected value of the probability distribution represented by equation (3.14), that is, the 

mean value of the population Tg and the variance σ2, are Tg = mη and σ2 = mη2. Therefore, the shape parameter m 

and the scale parameter η are expressed by the following equations: 

 

m = Tg2 / σ2  (3.15) 

η = σ2 / Tg   (3.16) 

 

Furthermore, by substituting equation (3.14) into equation (2.9), the following equation is obtained (Yamauchi, 

2020):  

 

               (3.17) 

 

By substituting equations (3.15) and (3.16) into equation (3.17), the estimation formula for the reproduction 

number R is obtained:  

 

 

               (3.18) 

  

Since R > 0, the condition for this equation to hold is as follows:  

 

                (3.19)  

 

These estimation formulas for the reproduction number R are summarized in Table 1. 

 

3.4. Comparison of Reproduction Number (R) Estimation Methods 

 

Fig. 1 shows the g(t) distributions for different values of the standard deviation σ ranging from 0 to 5, with the 

expected value Tg of the generation time distribution g(t) set to 5. Since generation time is often estimated by serial 

interval (Lehtinen et al., 2021), those values were established based on the reported serial interval distributions of 

SARS-CoV-2, Tg = 4.8, σ = 2.3 (Nishiura et al., 2020), and Tg = 5.1, σ = 5.3(Ali et al., 2020). When σ = 0, all 

distributions except the exponential distribution with a constant σ value (σ = Tg) converge to the delta distribution. 

Moreover, when σ = 2, all distributions except the exponential distribution and the delta distribution exhibit similar 

shapes. When σ = Tg (= 5), the gamma distribution and the Weibull distribution overlap with the exponential 

distribution, while the normal distribution forms an asymmetric low peaked mountain shape. When σ is extremely 

small, the computed value of R assuming the delta distribution approaches the true value, and when σ is large and 

close to the mean value Tg, the computed value assuming the exponential distribution is expected to approach the 

true value. 

For Tg ≥ ó ≥ 0, the order of sizes is Delta distribution ≥ Gamma distribution ≥ Exponential distribution, 

which can be expressed as:  
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                (3.20)  

 

 

When lim(σ → 0), Delta and Gamma formula become equal. Furthermore, when Tg = σ, the Gamma and 

Exponential formula become equal. 

Delta distribution exp(λTg) exhibits the largest value among the estimation methods based on these distributions. 

Additionally, as the variance σ2 approaches 0, both the normal distribution and the gamma distribution approach the 

delta distribution. 

Furthermore, when λ = 0, all the above estimation formulas yield R = 1. Therefore, as R approaches 1, the 

estimated values of R from these methods will approach each other. 

 

4. Estimation Formula for Growth Rate λ(t) 

 

Subsequently, the calculation method for determining the growth rate λ that changes over time is examined. The 

growth rate of the number of new infections I(t) at a certain time t is denoted as λ(t). By designating λ(t) at the 

median of the observation interval s and rearranging equation (2.5), λ(t) can be determined through the following 

equation:  

 

                            (4.1) 

 

 

The value of λ(t) is defined at the median of the observation interval, and since a single day is quantified as the 

minimum time unit, the time given to λ is delayed by (s-1)/2 days. λ(t) can be obtained from the actual measured 

values of the number of infected people using this equation. Furthermore, the number of new infections measured 

varies by the day of the week, especially between weekdays and holidays, with observation bias (Fig. 2). To mitigate 

such observation bias, some form of smoothing is necessary (Eales et al., 2022). One method of smoothing involves 

the use of a 7-day moving average to stabilize the variations associated with different days of the week, yielding the 

following equation (Bonifazi et al., 2021): 

  

 

                                       (4.2) 

 

 

 

When taking a 7-day moving average, there is a 3-day delay in the time of the λ value given by calculation. 

 

5. Simple formula for estimating the reproduction number R(t) from the number of new infections I(t) 

 

Subsequently, a formula for estimating the reproduction number from the number of new infections is examined. 
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The time function of the reproduction number at a certain time is denoted as R(t), and the estimation formula for the 

reproduction number is derived for each of the exponential distribution, normal distribution, delta distribution, and 

gamma distribution when assuming the generation time distribution g(t) in the previous λ(t) formula. 

 

5.1. Estimation formula derived from exponential distribution 

 

If g(t) is assumed to be an exponential distribution (equivalent to SIR model) with a mean value of Tg, the 

reproduction number is expressed as R(t) = 1 + λ(t)Tg according to equation (3.9). 

 

When equation (4.1) is substituted into equation (3.9), equation (5.1) is obtained: 

 

 (5.1) 

 

 

Here, I is the number of new infections, t is any observation day, and s is the observation interval (days). This 

formula represents a general form of the formula proposed by the Joint Research Centre (JRC) (Annunziato & 

Asikainen, 2020). JRC sets Tg and s to 7 days. The reason why they set s to 7 days is presumably to eliminate 

fluctuations due to the day of the week. Employing a 7-day moving average for I(t) to suppress variations 

originating from weekdays yields the following equation:  

 

 

                                                          (5.2) 

 

 

In this case, given the utilization of a 7-day average, an approximate 3-day lag in the obtained value can be expected. 

The method of calculating R(t) using this formula will be referred to as Exponential method. 

 

5.2. Estimation formula derived from normal distribution 

 

If g(t), the generation time distribution, is assumed to be a normal distribution with a mean value of Tg and a 

variance of ó2, R = exp(λTg - (1/2) λ2ó2) according to equation (3.12). When equation (4.1) is substituted into 

equation (3.12), the following equation is obtained:  

 

 

                                                         (5.3) 

 

To eliminate fluctuations originating from the day of the week and to smooth out data, the adoption of a 7-day 

moving average results in the following equation:  
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      (5.4) 

 

 

The method of calculating R(t) using this formula will be abbreviated as Norm method. 

 

5.3. Estimation formula derived from delta distribution 

 

If g(t) is assumed to be a normal distribution with a mean value of Tg and a variance of 0, which essentially 

corresponds to a delta distribution, then R(t) = exp(λTg) according to equation (3.13). When equation (4.1) is 

substituted into equation (3.13), the following relationship is obtained:  

 

 

                        (5.5) 

 

 

Employing a 7-day moving average in equation (5.5) yields the following equation.  

 

 

 

                            (5.6) 

 

 

Many simple estimation formulas for R(t) that have been published previously can be explained by this formula. The 

method proposed by the Robert Koch Institut (RKI) in Germany fixes the generation time at 4 days (An der Heiden 

& Hamouda, 2020) and employs a 7-day summation to eliminate fluctuations due to the day of the week and 

enhance data smoothness (Bonifazi et al., 2021; Koch-Institut, 2020). This is equivalent to substituting 4 days for 

Tg in equation (5.6). Similarly, the National Institute of Infectious Diseases (NIID) proposed the formula R(t) = 

(recent 7-day new positive reports) / (7-day new positive reports 5 days before), assuming a mean generation time 

(Tg) of 5 days and a reporting interval of Tg = 5 days (Ko et al., 2021). This aligns with substituting Tg = 5 days for 

s in equation (5.6). Toyo Keizai Shinpo’s Corona Dashboard provides daily R(t) estimates on its HP using R(t) = 

(recent 7-day new positive cases / previous 7-day new positive cases)^ (mean generation time / reporting interval) 

(Toyo_Keizai_Online, 2023). This formula is essentially substituting 7 for s in equation (5.6). The method of 

calculating R(t) using this original equation (5.6) will be referred to as the Delta method. 

 

5.4. Estimation formula derived from gamma distribution 

 

If g(t) is assumed to be a gamma distribution with a mean value of Tg and a variance of ó2, equation (5.7) is 

obtained by substituting equation (4.1) into equation (3.18): 
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                        (5.7) 

 

 

 

Here, I represents the number of new infections and s is the observation interval (days). When using a 7-day 

moving average to eliminate fluctuations due to the day of the week and smooth out data for this formula, the 

following equation is derived:  

 

 

                        (5.8) 

 

 

 

The method of calculating R(t) using this formula will be referred to as the Gamma method. These R(t) estimation 

formulas are summarized in Table 1. 

 

5.5. Formula without assuming distribution 

 

Methods have been reported to determine R(t) using specific observation days for generation time without 

assuming generation time distribution g(t) (Wallinga & Teunis, 2004; Cori et al., 2013). Among these, the method 

outlined by Cori et al. (2013) can be expressed by the following formula, which discretely solves equation (2.4) 

and converts the denominator into a sum:  

 

 

                                         (5.9) 

 

Here j is a discrete time (e.g., days), and w(j) is a probability distribution, equivalent to g(t) expressed in (2.3) in 

continuous functions. The delay component Tg/2 is derived from the denominator and can be deduced from the 

following relationship: 

 

(5.10) 

 

 

This formula requires specific observation data to obtain generation time distribution; however, it is expected to 

yield more accurate R(t) values compared to cases where only the mean value of generation time is available. When 

smoothed with a 7-day moving average, the following formula is obtained: 
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The method of calculating R(t) using this formula will be referred to as the Cori et al. method. 

 

6. Discussion 

 

6.1. Synthetic data for new infections I(t) 

 

Synthetic data for new infections were used to compare and examine the λ(t) and R(t) estimation methods. The 

synthetic data were generated assuming the conventional strain of SARS-CoV-2, using the probability density 

function of generation time g(t) and the reproduction number R(t). While the generation time distribution of 

infectious diseases is generally approximated using the Weibull distribution, log-normal distribution, or gamma 

distribution, many studies approximating SARS-CoV-2 have employed the gamma distribution (Jusot, 2022; 

Knight & Mishra, 2020). Therefore, in this study, synthetic data were created using the gamma distribution as the 

generation time distribution g(t). 

For baseline information on the generation time distribution g(t) of the conventional SARS-CoV-2 strain, Nishiura 

et al. (2020) reported a mean value of 4.8 days (95% credibility interval (CrI): 3.8, 6.1) and a standard deviation of 

2.3 days (95% CrI: 1.6, 3.5), based on a survey of 28 pairs of infected-infected individuals. Ali et al. (2020) reported 

Tg = 5.1 days [95% CrI: 4.7, 5.5] and σ = 5.3 days [95% CrI: 5.0, 5.6] based on a survey of 677 pairs. Although the 

mean value Tg in both cases is approximately 5 days and similar, the standard deviation exhibits a difference of 

more than twice, with Ali’s σ almost equal to the mean value Tg. Based on these findings, synthetic data were 

generated by setting the mean value (Tg) of generation time g(t) to 5 days and changing the standard deviation (σ) 

from 0 to 5. 

Synthetic data based on the gamma distribution were generated using the inverse function of equation (5.7), which 

is shown below:  

 

 

                     (6.1) 

 

 

 

 

Here, Tg represents the mean value of generation time distribution g(t), and σ2 is the variance. Moreover, for the 

observation interval s, the shortest time of 1 day was used, and the initial number of infected individuals I(0) was set 

to one. Additionally, R(t) for the initial 30 days was set to R(t) = 3 based on reports on the basic reproduction number 

of the new coronavirus (Iyaniwura et al., 2022; Alimohamadi et al., 2020; D'Arienzo & Coniglio, 2020). Assuming 

a public health intervention for the subsequent 30 days, R(t) was set to one and for the subsequent 30 days it was set 

to 0.5 to generate the total number of new infections I(t) for a total of 90 days. Notably, when σ = 0, equation (5.1) 

cannot be applied. As σ approaches zero, the gamma distribution overlaps with the delta distribution, so when σ = 0, 

I(t) was generated using the following formula based on the delta distribution: 
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(6.2) 

 

Moreover, when σ = 5, the gamma distribution becomes equal to the exponential distribution since σ = Tg (mean 

value). The formula for generating synthetic data based on the exponential distribution is as follows: 

 

(6.3) 

 

 

6.2. Examination of day-of-week smoothing and observation interval 

 

The relationship between λ(t) and observation interval s, which are elements that make up the R(t) estimation 

formula, was examined in terms of time function. 

 

6.2.1 Examination of time delay using synthetic data. Λ(t) encompasses the observation interval s and forms a key 

part of the R(t) estimation formula. Therefore the impact of varying the observation interval s on λ(t) was explored 

helping evaluate bias originating from the day-of-week effect. The simplest method to reduce the day-of-week 

effect is to use the corresponding day of the week from one week ago. Consequently, calculations were conducted 

with s = 7 in equation (4.1). Additionally, λ(t) was calculated using equation (4.2) with actual new infection data 

using 7-day moving average and setting observation interval s from 1 day to 7 days at intervals of 1 day. The 

reference value for λ was calculated using equation (4.1) with s = 1. 

The λ(t) was calculated with and without considering the time delay within the parentheses in equations (4.1) and 

(4.2). When model data was generated under the conditions of Tg = 5, σ = 2, and varying R(t) values from 3 to 1.5 

and then to 0.5, λ(t) changed from 0.24 to 0.08 and then to -0.13 (Fig. 3). 

As shown in Fig. 3 (a), the λ(t) value lags as the observation interval s increases in cases without considering the 

time delay. By contrast, when delay is considered, almost all λ(t) values are consistent and intersect at the centre of 

the transition with the reference λ line as shown in Fig. 3(b). These results suggest that considering delay is a 

reasonable approach. 

When the R(t) value was changed from 3 to 1.5, λ(t) changed from 0.26 to 0.09, taking 7 days in the case without 

using a 7-day moving average with s = 7 and when using a 7-day moving average with s = 1. Moreover, it took 12 

days to take a 7-day moving average with s = 7. Additionally, the time taken to reach half the value, i.e., 0.17, was 4 

and 6 days, respectively. This demonstrates that the time delay indicated by [-(s-1)/2] or [-(s-1)/2-3] in equations 

(4.1) or (4.2) aligns with the number of days required to reach the halfway point. Similar results were obtained for 

other synthetic data. 

 

6.2.2 Examination of smoothing of λ(t) using actual data. Changes in λ(t) due to differences in observation interval 

s were examined using actual data. The actual data used were the daily reported number of new infections I(t) in 

Japan provided by the Ministry of Health, Labour and Welfare (Ministry of Health. Labour and Welfare, 2023). 

When examining the transition of new infections I(t), the ratio of new infections I(t) on observation day t to new 

infections I(t-7) 7 days before t, both without and with a 7-day moving average with s = 1 for λ(t), revealed strong 
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periodic fluctuations each week (Fig. 4). While it is possible to calculate λ(t) manually by substituting I(t) data every 

7 days into equation (4.1), it should be noted that considerable day-of-week fluctuations are introduced. Almost all 

day-of-week fluctuations can be eliminated when s is approximately ≥ 5 (Fig. 4). However, as s increases to achieve 

greater smoothing, so does the progression of the delay (s-1)/2. In this study, a 7-day moving average was applied to 

the number of infected individuals I(t), and calculations were performed with an observation interval s = 7 days. 

 

6.3. Comparison of R(t) estimation methods  

 

6.3.1 Comparison of R(t) estimation methods using synthetic data. Synthetic data were used to compare the 

estimated value of R(t) obtained through the Cori et al., Exponential, Delta, Norm, and Gamma methods. A 7-day 

moving average of the new infected number I(t) was used for the calculation. For all methods except the Cori et al. 

method, the observation interval s was set to 7 days. For the Cori et al. method, the coefficients w(i) were calculated 

for i = 1-20 using the synthetic data. For all R(t) estimation methods, the time delay was approximately 12 days, as 

discussed in the section on λ(t). 

When the reproduction number R(t) was set to 3 and synthetic data with a generation time distribution g(t) of Tg = 5 

days and σ = 0 days (i.e., delta distribution) were used to generate the number of new infections I(t), all estimation 

methods for R(t) except the Exponential method, accurately yielded a value of 3.0 as shown in Fig. 5(a). Conversely, 

the Exponential method produced a lower value of 2.1. When R(t) = 1.5 or 0.5, the Exponential method yielded 

relatively low values of 1.41 and 0.31, respectively, whereas the other methods produced accurate values. 

For the estimated R(t) values obtained from synthetic data with Tg = 5 days σ = 2 days, when R(t) = 3, the Cori et al., 

Norm, and Gamma methods yielded an accurate value of 3.0, while Delta method slightly overestimated with a 

value of 3.3, and the Exponential method considerably underestimated with a value of 2.2 as shown in Fig. 5(b). 

When R(t) = 1.5, the Cori et al. method, Norm method, and Gamma method accurately estimated a value of 1.5. The 

Delta method also yielded an almost accurate value of 1.52, while the Exponential method slightly underestimated 

with a value of 1.42. When R(t) = 0.5, the Cori et al, Norm, and Gamma methods provided accurate values of 0.50 

each, and the Delta method yielded an almost accurate value of 0.52. By contrast, the Exponential method 

significantly underestimated with a value of 0.34. 

Conversely, for the synthetic data with Tg = 5 and σ = 5, which had a standard deviation equal to the mean value (i.e., 

data following an exponential distribution), when R(t) = 3, the Delta method yielded a markedly higher value of 7.4 

(Fig. 5(c)). Similarly, the Cori et al. method produced a relatively high value of 4.1. By contrast, the Norm method 

yielded an erroneous value of 1.0. In comparison, the Exponential and Gamma methods produced accurate values of 

3.0. When R(t) = 1.5, the Cori et al. and Delta methods generated high values of 1.76 and 1.65, respectively. The 

Gamma and Exponential methods remained accurate with values of 1.5, and the Norm method yielded an almost 

accurate value of 1.45. When R(t) = 0.5, the Cori et al. and Delta methods generated higher values of 0.62 and 0.61, 

respectively, while the Gamma and Exponential methods yielded accurate values of 0.5, and the Norm method 

remained nearly accurate with a value of 0.54. In the case of σ = Tg, representing an exponential distribution, 

∑(1-20)w(i) = 0.90 in the Cori et al. method, indicating a discrepancy of 0.04, because about 10% of the data is not 

reflected in the calculation. These results encapsulate the characteristics of each probability density function. 

Notably, when the standard deviation σ of the generation time distribution takes on large values close to the mean 

value, the reproduction number R(t) approximates the value from the Exponential method. Conversely, when the 



standard deviation σ is small and close to zero, it converges towards the value of the Delta method. 

The Gamma method, which incorporates the properties of these distributions, consistently produces appropriate R(t) 

values in both cases. The Norm method exhibited an extremely low value of 1.0 when R(t) = 3. With a large σ 

relative to Tg, the Norm method introduced a negative term and a decrease that is absent in other methods. As shown 

in Fig. 1(c), when σ becomes large in a normal distribution, it is assumed to have a negative value in the time domain. 

In this study, g(t) is discussed as a generation time distribution constrained within the range of t > 0. However, if g(t) 

is defined based on a serial interval distribution that considers t < 0 instead of a generation time distribution, 

correlation with the Cori et al. method could potentially be explained by a normal distribution. 

 

6.3.2 Comparison of R(t) estimation methods using actual data. A comparison was conducted among each R(t) 

estimation method using actual data on new infections in Japan. After the SARS-CoV-2 outbreak, various strains 

have emerged, and the generation time distribution g(t) differs for each strain. Therefore, data concerning the 

number of new infections before the mutations were used for comparing each estimation method. The period 

considered was from 1 March 2020 to 28 February 2021 (105th Novel Coronavirus Infection Control Advisory 

Board, 2022). This period encompasses the so-called first wave to the third wave, showcasing the peak of infections 

in Japan stemming from the conventional strain of SARS-CoV-2. The actual data on new infections were derived 

from openly accessible information on daily COVID-19 infections reported in Japan, published by the Ministry of 

Health, Labour and Welfare of Japan (Ministry of Health. Labour and Welfare, 2023). Mean generation time (Tg) 

and standard deviation (σ) values were set at Tg = 4.8, σ = 2.3 (Nishiura et al., 2020), and Tg = 5.1, σ = 5.3 (Ali et al., 

2020). The generation time distribution data for w(i) in the Cori et al. method were also obtained from these 

literature sources. When R(t) was calculated with a mean generation time of Tg = 4.8 and a standard deviation of σ = 

2.3, the Exponential method yielded smaller values of R(t) than the other methods in the initial stage of the first 

wave from 1 March 2020 to 31 May 2020 (Fig. 6(a)). Similarly, when R(t) estimation was performed with Tg = 5.1 

and σ = 5.3 during the same period, the Delta method yielded significantly larger R(t) values than the other methods 

(Fig. 6(b)). 

The differences in R(t) obtained by each method were quantitatively analysed through correlation coefficients 

(Table 2). All methods exhibited high correlations of more than 0.94 with each other. In calculations with Tg = 4.8 

and σ = 2.3, the Exponential and Delta method showed slightly lower correlations of 0.98 with the Cori et al. method 

compared with the other methods. Similarly, in calculations with Tg = 5.1 and σ = 5.3, the Delta method exhibited a 

slightly lower correlation of 0.94 with the Cori et al. method compared with the other methods. 

A paired one-way analysis of variance (ANOVA) was applied to the mean R(t) values with Tg = 4.8 and σ = 2.3. 

Statistically significant difference were observed in the mean R(t) values (P < 0.01), prompting multiple comparison 

tests using the Bonferroni, Sidak, and Holm methods. These tests consistently yielded the same results. The mean 

R(t) values obtained by each estimation method, along with the standard deviation and standard error, are presented 

in Table 3. Significantly different results were observed between the Cori et al. method (set as level 1) and the other 

estimation methods (set as level 2) using Bonferroni’s method (P < 0.01), indicated by ** symbols. Specifically, the 

Exponential method yielded a significantly lower mean R(t) value (mean:1.057, P < 0.01), while the Delta method 

produced a significantly higher value (mean:1.097, P < 0.01).  

Similarly, when employing paired one-way ANOVA with Tg = 5.1 and σ = 5.3, significant differences were also 

observed in the mean R(t) values (P < 0.01). Multiple comparison tests using Bonferroni’s, Sidak’s, and Holm’s 



methods consistently indicated significantly higher values for the Delta method (mean:1.147, P < 0.01) compared 

with the other methods. Conversely, the Norm and Gamma methods did not show significant differences from the 

Cori et al. method.  

When organizing these methods for estimating R(t) by assuming some distribution for the generation time 

distribution g(t), the Gamma method showed the most versatile and reliable value. The Norm method yielded 

negative values with high variance in generation time g(t). The Delta method tended to overestimate R(t) when the 

standard deviation (σ) of the generation time distribution was large, while the Exponential method underestimated 

R(t) when standard deviation σ was small. These R(t) estimation methods have the advantage of enabling relatively 

easy calculation of the effective reproduction number R(t), even when daily information on new infection counts is 

not available and the data are limited to intervals of one week or more. 

 

7. Conclusion 

 

This study introduces novel methodologies and presents clear and comprehensible equations for estimating the 

reproduction number (R(t)) of infectious diseases. The formulas for R(t) estimation were compared for each 

assumed generation time distribution, g(t). When a reliable histogram of the generation time distribution is 

available, and continuous data on daily new infections are obtainable, the Cori et al. formula, which does not 

presuppose a generation time distribution, proves useful for determining R(t). However, situations may arise where 

these conditions are not met, necessitating the utilization of estimation methods that rely on certain assumed 

generation time distributions as examined in this study. The assumptions made regarding the generation time 

distribution g(t ) —whether as delta distribution or an exponential distribution— offer the advantage of allowing the 

straightforward estimation of R(t) using only the mean generation time Tg and the number of new infections I(t). 

However, R(t) calculated using the delta distribution-based estimation formula tends to result in higher values, 

whereas those computed using the exponential distribution-based formula tend to yield lower values. When the 

standard deviation is small compared to the mean generation time, the Delta method yields more accurate values, 

but when the standard deviation is large and close to the mean value, the Exponential method yields more accurate 

values. By contrast, when using the R(t) estimation formula based on the gamma distribution, a reliable R(t) can be 

obtained in either case. The normal distribution-based estimation formula may produce negative values when the 

standard deviation of the generation time is large, but it may be effective when using a serial interval including 

negative values instead of the generation time. Regardless of the method employed, the pivotal factor is the 

generation time distribution g(t). If an accurate generation time distribution for a pathogen or variant is not available, 

it is imperative to recognize that the R(t) value estimated, irrespective of the selected method, could exhibit 

considerable error. 
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Figure Captions 

 

Figure 1. Generation time distributions g(t) with a mean (Tg) of 5 days and standard deviation (σ) values of 0, 2, 
and 5 days. 

 

Figure 2. Trend in the number of newly confirmed cases of COVID-19 during the initial wave of infections in 
Japan (Ministry of Health. Labour and Welfare, 2023). 

 

Figure 3. Estimation of the parameter λ(t) based on synthetic data, assuming gamma distribution with parameters 
Tg = 5 and σ = 2. 
 
Figure 4. Relationship between the observation interval (s) and the growth rate λ(t). 
 
Figure 5. Estimation of the reproduction number R(t) using various methods, based on synthetic data. 
 
Figure 6. Estimation of the reproduction number R(t) based on real data of newly confirmed cases of COVID-19 
in Japan. 
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Figure 1. Generation time distributions g(t) with a mean (Tg) of 5 days and standard 
deviation (σ) values of 0, 2, and 5 days. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Trend in the number of newly confirmed cases of COVID-19 during the 
initial wave of infections in Japan (Ministry of Health. Labour and Welfare, 
2023). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Estimation of the parameter λ(t) based on synthetic data, assuming gamma 
distribution with parameters Tg = 5 and σ = 2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4. Relationship between the observation interval (s) and the growth rate λ(t). 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Estimation of the reproduction number R(t) using various methods, based 
on synthetic data. 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Estimation of the reproduction number R(t) based on real data of newly 
confirmed cases of COVID-19 in Japan. 

 

 

 

 

 

 

 

 

 



 
Tables 
Table 1. Estimation methods of reproduction number R(t) and the generation time distributions g(t) 

Method 
R(t-s/2-3) seven-day moving 
average 

R(t-s/2) by I(t), Tg and σ R by λ, Tg and σ g(t) 

 
 
Exponential 
 
 

    

 
 
Delta 
 
 

   

if t = Tg ∞, else 0 

 
 
Norm. 
 
 

    

 
 
Gamma 
 
 

    

I(t): the number of new infections in a population at time t., s: observation interval, Tg: mean generation time, σ: standard deviation of 
the generation interval, Γ():gamma function, m: Tg 2 / σ2, η: σ2 / Tg 
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Table 2. Correlation coefficients among estimation methods of reproduction number R(t) based on confirmed 

COVID-19 case numbers in Japan, from March 1, 2020 to February 28, 2021. n=365 

Tg =4.8, σ=2.3 Cori et al. Exponential Delta Norm. Gamma 

Cori et al. 1.00  0.98  0.98  0.99  0.99  

Exponential 0.98  1.00  0.98  0.99  0.99  

Delta 0.98  0.98  1.00  1.00  1.00  

Norm 0.99  0.99  1.00  1.00  1.00  

Gamma 0.99  0.99  1.00  1.00  1.00  

Tg=5.1, σ=5.3 Cori et al. Exponential Delta Norm. Gamma 

Cori et al. 1.00  0.96  0.94  0.96  0.96  

Exponential 0.96  1.00  0.98  1.00  1.00  

Delta 0.94  0.98  1.00  0.96  0.98  

Norm 0.96  1.00  0.96  1.00  1.00  

Gamma 0.96  1.00  0.98  1.00  1.00  
 
 



Table 3. Summary statistics of estimated reproduction number R(t) based on confirmed COVID-19 case numbers 
in Japan, from March 1, 2020 to February 28, 2021, including mean, standard deviation(SD) and standard 
error(SE). n=365 
Mean and SD of 
generation time 

R(t) estimation method 
R(t) 
average

SD SE 

Tg=4.8, σ=2.3 

Cori et al. 1.08  0.28  0.015 

Exponential  **1.05  0.26  0.014 

Delta **1.09  0.30  0.016 

Norm 1.08  0.29  0.015 

Gamma 1.08  0.29  0.015 

Tg=5.1, σ=5.3 

Cori et al. 1.05  0.25  0.013 

Exponential  1.06  0.28  0.015 

Delta **1.10  0.32  0.017 

Norm 1.04  0.25  0.013 

Gamma  1.05  0.28  0.015 

** indicates the results of multiple comparison analysis when Cori et al.'s method was specified as Level 1, 
demonstrating significant differences (P < 0.01). 
 
 
 

 

 

 

 


