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Researchers have struggled to understand the mechanism underlying the formation
of celestial magnetic fields. Ideas in some studies, including Cowling’s theory, limit
research. Complex convection is necessary to generate a magnetic field. Research in this
field could progress through the discovery of a new underlying mechanism. We found
a clue in Cowling’s paper. In Cowling’s theory, to verify the possibility of generating a
stable magnetic field, a condition that does not allow the magnetic field to fluctuate is
imposed. However, for the magnetic field to increase to a certain intensity, a fluctuating
process is essential. Therefore, in this work, we propose a new idea related to this theory.
In our theory, the magnetic field and convection are allowed to fluctuate once in the
equation. In addition, a necessary term was added to the relational equation based on
the concept of external energy replenishment. As a result, even under relatively simple
convection, the possibility of generating certain magnetic fields is demonstrated. This is
a novel idea, and we believe that these findings will contribute to further elucidation of
the mechanism of the formation of celestial magnetic fields.
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1. Introduction
Researchers have long struggled to understand the mechanism underlying the forma-

tion of celestial magnetic fields. The famous foundations for elucidating the mechanism
of the formation of celestial magnetic fields are the ω effect (Levy 1976), the α effect
(Parker 1955), and Cowling’s theorem (Cowling 1933).

Taking the sun as an example, the magnetic field in the plane perpendicular to the
axis of rotation of the sun is called the toroidal magnetic field, and the magnetic field in
the plane parallel to the axis of rotation is called the poloidal magnetic field. The same
is true for convection.

According to Cowling’s theorem, axisymmetric convection does not generate a stable
axisymmetric magnetic field either poloidal or toroidal.

The ω effect is the effect of generating a toroidal magnetic field from a poloidal magnetic
field where there is a gradient in angular velocity. Since the rotation of the surface of the
Sun is faster at the equator than at the poles, there is an angular velocity gradient. If there
is a poloidal magnetic field as the initial magnetic field, the magnetic field is stretched
so that it is wound up by the angular velocity gradient, and the poloidal magnetic field
becomes the toroidal magnetic field. If the toroidal magnetic field is changed to a poloidal
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magnetic field, the magnetic field may be amplified. However, no such effect was found.
In the end, the result was in favor of Cowling’s theorem.

The α effect assumes a velocity field that twists a magnetic field. The idea is to twist the
toroidal magnetic field in some places and direct it in the poloidal direction. Therefore,
if an α effect is added to the ω effect, mutual exchange of magnetic fields is possible,
and the magnetic field may be amplified. However, this approach is not as easy to use
as described above. Researchers are combining these effects with complex convection to
further elucidate the mechanism of magnetic field generation. To our knowledge, few
papers have argued for the generation of magnetic fields by simple convection.

The notion that a magnetic field is generated by complex convection or that an
axisymmetric magnetic field does not occur limits the study. If it is clarified that a
magnetic field can be generated by simpler convection, research in this field will further
advance. This paper explores the possibility of generating a magnetic field by convection,
which is simpler.

Hereafter, unless otherwise stated, the paper by Cowling (1933) is referred to as Cowl-
ing’s paper. The argument presented in Cowling’s paper indicates that it is impossible for
an axially symmetric field to be self-maintained (hereinafter also referred to as Cowling’s
theorem).

This research aims to address this key issue. While we were studying to understand
Cowling’s paper, we noted a potential issue in Cowling’s theory (Cowling 1933). Although
the magnetic field must increase during the formation process of the magnetic field, this
phenomenon is discussed only in a state where the magnetic field is stable, while cases
with unstable magnetic fields are neglected. With further research, we discovered that a
mechanism for generating a magnetic field has not been described in Cowling’s theory.

This theorem is problematic, as indicated by passage following Cowling’s paper (pp.
40–43): The first-order partial derivative of the streamfunction of the magnetic field is
zero, but the second-order partial derivative is not zero. These values should match;
therefore, applying these results to the magnetic maximum or minimum points (here-
inafter referred to as the poles) leads to a contradiction in the electromagnetic induction
equation.

This explanation depends on Ohm’s law (Reall 2022) (p. 13), which does not include
the electromotive force (Reall 2022)(p. 65) due to the vector potential. In Cowling’s
theory, these conditions are used for the magnetic field to remain stable. However, we
believe that there are other ways to pursue a stable magnetic field.

In the method examined in our paper, a term for the electromotive force due to vector
potential was added to the electromagnetic induction equation to allow fluctuations in
the magnetic field. To facilitate this understanding, we examined the induction term
energetically. Then, the concept of external energy replenishment was adopted in the
equation. We have found the electromagnetic induction equation by which the generation
of the poloidal magnetic field holds. Even if the magnetic field is allowed to rise once, it
can be stabilized by a mechanism not described in Cowling’s theory as a result. Therefore,
an axisymmetric magnetic field may be generated by simple axisymmetric convection.
This novel idea conflicts with Cowling’s theorem.

2. Description of the Problem
Cowling’s theory includes conditions in which the magnetic field must be kept stable.

For the magnetic field to reach a certain intensity, it must increase. Therefore, considering
only the stable state of the magnetic field is insufficient. Furthermore, if the magnetic field
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increases due to a factor explained later, the magnetic field may be stably maintained
via a mechanism outside those considered in Cowling’s theory.

In other words, this process should be examined from a broad perspective that
accounts for fluctuations in the magnetic field and convection. Therefore, elements that
allow fluctuations (especially increases) in the magnetic field were added to Cowling’s
theory. Specifically, a term for the electromotive force due to the vector potential was
added to the equation. Since it is a typical electromotive force, it is a rather natural
formula that considers time. In addition, this equation was examined and adapted to
include the replenishment of external energy that causes an increase in the intensity of
the magnetic field. We will explain this according to the history of our thinking and
speculation, which led us to further improve the equation.

Unless otherwise stated, the symbols or similar symbols with the same meaning as those
used in Cowling’s paper were used here; these meanings have been transcribed almost
verbatim in “”. Where there is no explanation, we provide a general interpretation.

“Let ρ denote the density of the gas, and c its (vector) velocity at any point; also let
H be the magnetic intensity.”

The main problem with Cowling’s theorem is as follows. In Cowling’s theorem, the
equation does not include an electromotive force term (Reall 2022) (p. 65) due to the
vector potential A and is calculated by using Ohm’s law (Reall 2022) (p. 13) as follows:

j = σ(c∧H− gradV) (2.1)

Here, “The electric force on the gas due to its motion in a magnetic field is, in E.M.U.,
given by c∧H; the electrostatic force is −gradV, where V is the electrostatic potential,
which we also suppose measured in E.M.U. Hence, if j is the electric current density and
σ is the conductivity of the gas”, the operator ∧ is not explained in Cowling’s paper. It
seems to be a wedge product, but we interpreted it as a vector product.

Cowling’s theory describes the above formulation as a steady magnetic field under
specific conditions. When the electromotive force term is added, (2.1) can be reformulated
as follows:

j = σ

(
c∧H− ∂A

∂t
− gradV

)
(2.2)

“Let Oz be taken as the axis of symmetry and let ϖ denote the distance of any point
from this axis, so that ϖ2 = x2 + y2.” We then interpreted x, y and z to mean the value
of Cartesian coordinates and their direction. By using the terms derived in Cowling’s
paper, (2.2) can be reorganized into an electromagnetic induction equation as follows:

∂A
∂t

=
1

4πϖσ

(
∂2ψ

∂ϖ2
+
∂2ψ

∂z2
− 1

ϖ

∂ψ

∂ϖ

)
− 1

ρϖ2

(
∂ϕ

∂ϖ

∂ψ

∂z
− ∂ϕ

∂z
∂ψ

∂ϖ

)
(2.3)

Here, “There exists a generalisted Stokes stream function ϕ, depending on z and ϖ,
such that the components of c parallel to and perpendicular to Oz. ψ is a function of ϖ
and z, analogous to Stokes’s function; it is such that the total magnetic induction across
an area perpendicular to Oz bounded by a circle centered on Oz, which passes through
a given point, is equal to the value of 2πψ at that point.”

If we substitute ∂ψ
∂z = 0, ∂ψ

∂ϖ = 0 and ∂2ψ
∂ϖ2 + ∂2ψ

∂z2 ̸= 0 into (2.3),the second term on the
right side becomes zero, but the first term is not zero. Therefore, the right side is not zero,
and the left side, which is zero and leads to contradiction in Cowling’s paper, fluctuates.
Thus, even if there is a specific pole with a nonzero second-order partial derivative, (2.3)
is satisfied.
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The first term on the right side of (2.3) is referred to as the attenuation term, and
the second term is referred to as the induction term. This equation can be interpreted
as follows: The magnetic flux decreases due to attenuation according to the attenuation
term.

According to Cowling’s theorem, the left side of (2.3) is zero. This method assumes
that the magnetic field does not decrease or increase before the study. If there is an initial
magnetic field, even attenuation is not allowed because time is not accounted for in the
equation. However, the strength of the magnetic field must decrease or increase during a
transitional period until it reaches a certain intensity. Therefore, a formulation that does
not allow this growth in a magnetic field is not appropriate. Therefore, in this paper, we
introduce a term that permits fluctuations (increases) in the magnetic field on the left
side, as shown in (2.3).

However, the induction term is zero, as described above. There is still no element
of power generation. We thought it was strange that there was no indication of power
generation even though it was an induction term. Therefore, we examine this phenomenon
with energetic consideration. The reasons for this are explained below.

We investigated the energetics of this term. Multiplying the parentheses in the second
term by ψ yields:

ψ

(
∂ϕ

∂ϖ

∂ψ

∂z
− ∂ϕ

∂z
∂ψ

∂ϖ

)
=

∂ϕ

∂ϖ
ψ
∂ψ

∂z
− ∂ϕ

∂z
ψ
∂ψ

∂ϖ
(2.4)

Then, when (2.4) is transformed by using partial integrals, the following expression
can be obtained:

= −ϕ ∂

∂ϖ

(
ψ
∂ψ

∂z

)
+ ϕ

∂

∂z

(
ψ
∂ψ

∂ϖ

)
(2.5)

Furthermore, if we decompose (2.5), the following expression can be obtained:

= −ϕ ∂ψ
∂ϖ

∂ψ

∂z
− ϕψ

∂2ψ

∂ϖ∂z
+ ϕ

∂ψ

∂z
∂ψ

∂ϖ
+ ϕψ

∂2ψ

∂z∂ϖ
(2.6)

The first and third terms on the right side of (2.6) are both zero due to the conditions
of the poles. The second and fourth terms have the same absolute value but opposite
signs; these terms offset one another and become zero. However, each term has its own
meaning. Since the polarity of the energy is inverted depending on the condition, it
is hereinafter referred to as positive or negative energy corresponding to the effect on
the left side of (2.3). At the positive pole, a positive effect on the left side of (2.3)
indicates power generation, and a negative effect indicates consumption. To be slightly
more specific, power generation (the left side of (2.3) increases) consumes convection
energy and electromotion that moves convection consumes electrical energy (the left side
of (2.3) decreases). In other words, the same value of energy flows only back and forth at
the same time. However, over time, the energy should not come and go forever. Therefore,
there is a sense of discomfort associated with this negative energy. Here, we speculated
that there is still something missing in (2.3). This will be discussed later. The signs of
these two terms may be inverted depending on conditions such as the ϖ and z locations,
but the two terms are always offset because they are symmetrically inverted. Therefore,
in the above calculation, the induction term is always zero.

Here, we present new ideas about this negative energy. ϕ is a variable similar to ψ, and it
fluctuates if time is accounted for in the equation. If this induction term does not account
for energy exchange with the environment, both ψ and ϕ decrease over time. However, in
reality, convection energy is replenished because if convection continues, the energy must
be replenished from the external environment. There is no need for electrical energy to be
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consumed and converted into convective energy. Therefore, the energy to be replenished
should be considered. Thus, the equation should express how power generation occurs
without a lack of energy. This negative energy refers to the consumption of energy or the
energy used to generate the force that opposes power generation. In the induction term,
the replenishment energy is expressed as a force.

The power generation mechanism can be explained by considering the influence of the
energy from the environment added to the induction term in (2.3).

∂A
∂t

=
1

4πϖσ

(
∂2ψ

∂ϖ2
+
∂2ψ

∂z2
− 1

ϖ

∂ψ

∂ϖ

)
− 1

ρϖ2

(
∂ϕ

∂ϖ

∂ψ

∂z
− ∂ϕ

∂z
∂ψ

∂ϖ
+ ϕ

∂2ψ

∂ϖ∂z

)
(2.7)

Specifically, the value of the force obtained by dividing the replenishment energy,
+ϕψ ∂2ψ

∂ϖ∂z , equivalent to the negative energy (term 2 in (2.6)) by ψ, +ϕ ∂2ψ
∂ϖ∂z , in the

parentheses of the induction term in (2.3) is used to obtain (2.7). As a result, even at
the poles, the induction term does not become zero, and power can be generated while
convection receives a supply of energy. Depending on the ϖ and z positions of the poles,
the magnetic field strength increases.

Furthermore, when the magnetic field increases, convection energy is converted to
electrical energy, and power generation should decrease and stop due to the lack of
convection energy. However, since convection energy should always be replenished from
the external environment, this process will never stop. However, there should be a limit to
the energy supply capacity of convection, so if power generation increases further, energy
replenishment will be insufficient, and power generation will be suppressed. In the end,
the energy of power generation and supply is balanced somewhere, and the magnetic
field stabilizes. Thus, the magnetic field can be maintained at a certain level. The energy
supply capacity of convection is not the subject of this paper, and it does not describe
where it is balanced.

This result was obtained from a new approach based on the concept of external energy
replenishment, with the magnetic field and convection allowed to fluctuate once in our
equation. We determined that axisymmetric magnetic fields remain stable at certain
intensities.

3. Discussion
For relevant research to progress, a new mechanism underlying the generation of

magnetic fields in conductive fluids must be identified. We find that axisymmetric
magnetic fields remain stable at certain intensity levels. In addition, convection is required
only in the ϖ and z directions. In other words, magnetic field generation occurs by simple
poloidal convection. Cowling’s paper discusses equations that do not account for changes
in magnetic field and convection in time, so it is not possible to think that the magnetic
field stabilizes once it rises.

Furthermore, by adding a term for the force corresponding to the replenishment
energy, as shown in (2.7), it was found that the energy suitable for power generation
can be satisfied, but the flow velocity decreases further as power generation increases. In
addition, this additional term also has the side effect of indicating the meaning of the
phenomenon. The meaning, which is difficult to see in (2.6), of energy conversion is shown
as follows. The value of the second-order partial derivative in this term is determined
according to the strength of the magnetic field. This term, multiplied by this value and
the streamfunction ϕ, coincides with the characteristics of self-excited power generation,
which generates its own magnetic field using the initial magnetic field as a seed and
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strengthens power generation. Therefore, this term is considered to mean self-excited
power generation.

In addition, in the above discussion, neither convection nor magnetic fields require
changes due to the direction of rotation of the axis of symmetry. If the convection is
uniform in direction and only poloidal, the magnetic field is expected to be uniform in
direction and only poloidal.

However, whether the magnetic field is completely stable has not been determined. This
is because of the effect of convection deformation due to the force against convection.

If an axisymmetric magnetic field can be generated by simple convection, the conditions
for research in related fields may change, which may lead to new research results.

In this study, we examined only the equations for poloidal convection and poloidal
magnetic fields, but it is also necessary to consider other cases. In addition, it is desirable
to conduct relational research using the results of this theory in various approaches and
to verify this theory.

4. Conclusion
Thus, an axisymmetric magnetic field can be generated from simple poloidal convec-

tion. We believe that this will provide a great clue to related research.
However, J. J. Love (1996) reported results similar to those of this paper. We speculated

that it describes a mechanism that is fundamentally the same as ours. However, the
methods and claims are different. The following are some points of concern about the
differences from this paper.

First, they searched for the most efficient magnetic Reynolds number Rm for power
generation with dipole symmetry. Rm contains a component of flow velocity. In other
words, this method obtains a specific flow rate with the highest efficiency. On the other
hand, in our theory, the flow velocity fluctuates, and the strength of the magnetic field
is determined accordingly.

The other is that there is some difference in convection depending on the azimuth.
In addition, the generated magnetic field contains components other than poloidal
components, and the value changes depending on the azimuth. On the other hand,
according to our theory, convection and magnetic fields are uniform in direction and
only poloidal.

It remains to be seen how to interpret these differences. However, additional research
is needed.

In any case, we believe that the results of this paper will be of great help in further
elucidating the mechanism of the formation of celestial magnetic fields.
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