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Abstract Researchers have struggled to understand the mechanism underlying the formation of celestial 

magnetic fields. Ideas in some studies, including Cowling’s theory, limit research. Complex convection is 

necessary to generate a magnetic field. Research in this field could progress through the discovery of a new 

underlying mechanism. We found a clue in Cowling’s paper. In Cowling’s theory, to verify the possibility of 

generating a stable magnetic field, a condition that does not allow the magnetic field to fluctuate is imposed. 

However, for the magnetic field to increase to a certain intensity, a fluctuating process is essential. Therefore, 

in this work, we propose a new idea related to this theory. In our theory, the magnetic field and convection are 

allowed to fluctuate once in the equation. In addition, a necessary term was added to the relational equation 

based on the concept of external energy replenishment. As a result, even under relatively simple convection, 

the possibility of generating certain magnetic fields is demonstrated. This is a novel idea, and we believe that 

these findings will contribute to further elucidation of the mechanism of the formation of celestial magnetic 

fields. 
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1.  Introduction 
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Researchers have long struggled to understand the mechanism underlying the formation 

of celestial magnetic fields. The famous foundations for elucidating the mechanism of the 

formation of celestial magnetic fields are the ω effect [1], the α effect [2], and Cowling’s 

theorem [3]. 

Taking the sun as an example, the magnetic field in the plane perpendicular to the axis of 

rotation of the sun is called the toroidal magnetic field, and the magnetic field in the plane 

parallel to the axis of rotation is called the poloidal magnetic field. The same is true for 

convection. 

According to Cowling’s theorem, axisymmetric convection does not generate a stable 

axisymmetric magnetic field either poloidal or toroidal. 

The ω effect is the effect of generating a toroidal magnetic field from a poloidal magnetic 

field where there is a gradient in angular velocity. Since the rotation of the surface of the 

Sun is faster at the equator than at the poles, there is an angular velocity gradient. If there is 

a poloidal magnetic field as the initial magnetic field, the magnetic field is stretched so that 

it is wound up by the angular velocity gradient, and the poloidal magnetic field becomes the 

toroidal magnetic field. If the toroidal magnetic field is changed to a poloidal magnetic 

field, the magnetic field may be amplified. However, no such effect was found. In the end, 

the result was in favor of Cowling’s theorem. 

The α effect assumes a velocity field that twists a magnetic field. The idea is to twist the 

toroidal magnetic field in some places and direct it in the poloidal direction. Therefore, if 

an α effect is added to the ω effect, mutual exchange of magnetic fields is possible, and the 

magnetic field may be amplified. However, this approach is not as easy to use as described 
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above. Researchers are combining these effects with complex convection to further 

elucidate the mechanism of magnetic field generation. To our knowledge, few papers have 

argued for the generation of magnetic fields by simple convection. 

The notion that a magnetic field is generated by complex convection or that an 

axisymmetric magnetic field does not occur limits the study. If it is clarified that a magnetic 

field can be generated by simpler convection, research in this field will further advance. 

This paper explores the possibility of generating a magnetic field by convection, which is 

simpler. 

 

Hereafter, unless otherwise stated, the paper by Cowling [3] is referred to as Cowling’s 

paper. The argument presented in Cowling’s paper indicates that it is impossible for an 

axially symmetric field to be self-maintained (hereinafter also referred to as Cowling’s 

theorem). 

This research aims to address this key issue. While we were studying to understand 

Cowling’s paper, we noted a potential issue in Cowling’s theory [3]. Although the magnetic 

field must increase during the formation process of the magnetic field, this phenomenon is 

discussed only in a state where the magnetic field is stable, while cases with unstable 

magnetic fields are neglected. With further research, we discovered that a mechanism for 

generating a magnetic field has not been described in Cowling’s theory. 

This theorem is problematic, as indicated by passage [3] following Cowling’s paper (pp. 

40–43): The first-order partial derivative of the streamfunction of the magnetic field is zero, 

but the second-order partial derivative is not zero. These values should match; therefore, 
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applying these results to the magnetic maximum or minimum points (hereinafter referred to 

as the poles) leads to a contradiction in the electromagnetic induction equation. 

This explanation depends on Ohm’s law [4] (p. 13), which does not include the 

electromotive force [4] due to the vector potential (p. 65). In Cowling’s theory, these 

conditions are used for the magnetic field to remain stable. However, we believe that there 

are other ways to pursue a stable magnetic field. 

In the method examined in our paper, a term for the electromotive force due to vector 

potential was added to the electromagnetic induction equation to allow fluctuations in the 

magnetic field. To facilitate this understanding, we examined the induction term 

energetically. Then, the concept of external energy replenishment was adopted in the 

equation. We have found the electromagnetic induction equation by which the generation 

of the poloidal magnetic field holds. Even if the magnetic field is allowed to rise once, it 

can be stabilized by a mechanism not described in Cowling’s theory as a result. Therefore, 

an axisymmetric magnetic field may be generated by simple axisymmetric convection. This 

novel idea conflicts with Cowling’s theorem. 

 

2.  Description of the Problem 

Cowling’s theory includes conditions in which the magnetic field must be kept stable. 

For the magnetic field to reach a certain intensity, it must increase. Therefore, considering 

only the stable state of the magnetic field is insufficient. Furthermore, if the magnetic field 

increases due to a factor explained later, the magnetic field may be stably maintained via a 

mechanism outside those considered in Cowling’s theory. 
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In other words, this process should be examined from a broad perspective that accounts 

for fluctuations in the magnetic field and convection. Therefore, elements that allow 

fluctuations (especially increases) in the magnetic field were added to Cowling’s theory. 

Specifically, a term for the electromotive force due to the vector potential was added to the 

equation. Since it is a typical electromotive force, it is a rather natural formula that 

considers time. In addition, this equation was examined and adapted to include the 

replenishment of external energy that causes an increase in the intensity of the magnetic 

field. We will explain this according to the history of our thinking and speculation, which 

led us to further improve the equation. 

Unless otherwise stated, the symbols or similar symbols with the same meaning as those 

used in Cowling’s paper were used here; these meanings have been transcribed almost 

verbatim in “”. Where there is no explanation, we provide a general interpretation.) 

“Let 𝜌 denote the density of the gas, and c its (vector) velocity at any point; also let H be 

the magnetic intensity.” 

The main problem with Cowling’s theorem is as follows. In Cowling’s theorem, the 

equation does not include an electromotive force term [4] (p. 65) due to the vector potential 

A and is calculated by using Ohm’s law [4] as follows: 

𝑗 𝜎 𝑐∧𝑯 grad 𝑉  (1) 

Here, “The electric force on the gas due to its motion in a magnetic field is, in E.M.U., 

given by 𝑐∧𝑯; the electrostatic force is -grad V, where V is the electrostatic potential, which 

we also suppose measured in E.M.U. Hence, if j is the electric current density and 𝜎 is the 

conductivity of the gas”, the operator ∧ is not explained in Cowling's paper. It seems to be a 
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wedge product, but we interpreted it as a vector product. 

Cowling’s theory describes the above formulation as a steady magnetic field under 

specific conditions. When the electromotive force term is added, (1) can be reformulated as 

follows: 

𝑗 𝜎 𝑐∧𝑯
𝑨

grad 𝑉  (2) 

“Let Oz be taken as the axis of symmetry and let 𝜛 denote the distance of any point from 

this axis, so that 𝜛 𝑥 𝑦 .” We then interpreted x, y and z to mean the value of 

Cartesian coordinates and their direction. By using the terms derived in Cowling’s paper, 

(2) can be reorganized into an electromagnetic induction equation as follows: 

 (3) 

Here, “There exists a generalisted Stokes stream function 𝜙, depending on z and 𝜛, such 

that the components of c parallel to and perpendicular to Oz. 𝜓 is a function of 𝜛 and z, 

analogous to Stokes’s function; it is such that the total magnetic induction across an area 

perpendicular to Oz bounded by a circle centered on Oz, which passes through a given 

point, is equal to the value of 2𝜋𝜓 at that point.” 

If we substitute 0, 0 and 0 into (3), the second term on the right 

side becomes zero, but the first term is not zero. Therefore, the right side is not zero, and 

the left side, which is zero and leads to contradiction in Cowling’s paper, fluctuates. Thus, 

even if there is a specific pole with a nonzero second-order partial derivative, (3) is satisfied. 

The first term on the right side of (3) is referred to as the attenuation term, and the second 

term is referred to as the induction term. This equation can be interpreted as follows: The 
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magnetic flux decreases due to attenuation according to the attenuation term. 

According to Cowling’s theorem, the left side of (3) is zero. This method assumes that 

the magnetic field does not decrease or increase before the study. If there is an initial 

magnetic field, even attenuation is not allowed because time is not accounted for in the 

equation. However, the strength of the magnetic field must decrease or increase during a 

transitional period until it reaches a certain intensity. Therefore, a formulation that does not 

allow this growth in a magnetic field is not appropriate. Therefore, in this paper, I introduce 

a term that permits fluctuations (increases) in the magnetic field on the left side, as shown 

in (3). 

However, the induction term is zero, as described above. There is still no element of 

power generation. We thought it was strange that there was no indication of power 

generation even though it was an induction term. Therefore, we examine this phenomenon 

with energetic consideration. The reasons for this are explained below. 

We investigated the energetics of this term. Multiplying the parentheses in the second 

term by 𝜓 yields: 

𝜓 𝜓 𝜓  (4) 

Then, when (4) is transformed by using partial integrals, the following expression can be 

obtained: 

𝜙 𝜓 𝜙 𝜓  (5) 

Furthermore, if we decompose (5), the following expression can be obtained: 

𝜙 𝜙𝜓 𝜙 𝜙𝜓   (6) 
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The first and third terms on the right side of (6) are both zero due to the conditions of the 

poles. The second and fourth terms have the same absolute value but opposite signs; these 

terms offset one another and become zero. If the output is positive, power generation 

occurs; if the output is negative, consumption occurs. Here, power generation means that 

convective energy is converted into electrical energy, and consumption means that 

convective energy is used to generate electricity. In other words, these are values that look 

at the same energy transfer from the standpoint of electricity and convection, so naturally, 

they are the same absolute values. The signs of these two terms may be inverted depending 

on conditions such as the 𝜛 and z locations, but the two terms are always canceled because 

they are symmetrically inverted. Therefore, in the above calculation, the induction term is 

always zero. 

However, if self-excited power generation occurs, these two terms can have different 

values. In other words, power generation and consumption may occur at the same time. 

Moreover, a magnetic field is generated. This is because while these terms cancel, a current 

is generated by the power generation and consumption processes. Since there is this current, 

a magnetic field is generated even if the inductive term is zero. Here, we present our new 

ideas about this negative energy. 

As mentioned above, negative energy is energy that is lost by moving to electrical energy 

from the standpoint of convection. 𝜙 is a variable similar to 𝜓, and it fluctuates if time is 

accounted for in the equation. If this induction term does not account for energy exchange 

with the environment, the streamfunction 𝜙  decreases over time. However, in reality, 

convection energy is replenished because if convection continues, the energy must be 
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replenished from the external environment. Therefore, the energy to be replenished should 

be considered. Thus, the equation should express how power generation occurs without a 

lack of energy. This negative energy refers to the consumption of energy or energy used to 

generate the force that opposes power generation. In the induction term, the replenishment 

energy is expressed as a force. 

The power generation mechanism can be explained by considering the influence of the 

energy from the environment added to the induction term in (3). 

𝜙  (7) 

Specifically, the value of the force obtained by dividing the replenishment energy, 

𝜙𝜓 , equivalent to the negative energy (term 2 in (6)) by 𝜓 , 𝜙 , in the 

parentheses of the induction term in (3) is used to obtain (7). As a result, even at the poles, 

the induction term does not become zero, and power can be generated while convection 

receives a supply of energy. Depending on the 𝜛 and z positions of the poles, the magnetic 

field strength increases. 

Furthermore, when the magnetic field increases, convection energy is converted to 

electrical energy, and power generation should decrease and stop due to the lack of 

convection energy. However, since convection energy should always be replenished from 

the external environment, this process will never stop. However, power generation is 

suppressed when energy is replenished to some extent. In the meantime, the flow velocity 

decreases. In the end, the energy of power generation and convection is balanced 

somewhere, and the magnetic field stabilizes. Thus, the magnetic field can be maintained at 
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a certain level. 

This result was obtained from a new approach based on the concept of external energy 

replenishment, with the magnetic field and convection allowed to fluctuate once in our 

equation. We determined that axisymmetric magnetic fields remain stable at certain 

intensities. 

 

3.  Discussion 

For relevant research to progress, a new mechanism underlying the generation of 

magnetic fields in conductive fluids must be identified. We find that axisymmetric 

magnetic fields remain stable at certain intensity levels. In addition, convection is required 

only in the 𝜛 and z directions. In other words, magnetic field generation occurs by simple 

poloidal convection. Cowling’s paper discusses equations that do not account for changes 

in magnetic field and convection in time, so it is not possible to think that the magnetic 

field stabilizes once it rises. 

Furthermore, by adding a term for the force corresponding to the replenishment energy, 

as shown in (7), it was found that the energy suitable for power generation can be satisfied, 

but the flow velocity decreases further as power generation increases. In addition, in the 

above discussion, neither convection nor magnetic fields require changes due to the 

direction of rotation of the axis of symmetry. If the convection is uniform in direction and 

only poloidal, the magnetic field is expected to be uniform in direction and only poloidal. 

However, whether the magnetic field is completely stable has not been determined. This 

is because of the effect of convection deformation due to the force against convection. 
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If an axisymmetric magnetic field can be generated by simple convection, the conditions 

for research in related fields may change, which may lead to new research results. 

In this study, we examined only the equations for poloidal convection and poloidal 

magnetic fields, but it is also necessary to consider other cases. In addition, it is desirable to 

conduct relational research using the results of this theory in various approaches and to 

verify this theory. 

 

4.  Conclusion 

Thus, an axisymmetric magnetic field can be generated from simple poloidal convection. 

We believe that this will provide a great clue to related research. 

However, [5] reported results similar to those of this paper. However, the methods and 

claims are different. The following are some points of concern about the differences from 

this paper. 

First, they searched for the most efficient magnetic Reynolds number Rm for power 

generation with dipole symmetry. Rm contains a component of flow velocity. In other words, 

this method obtains a specific flow rate with the highest efficiency. On the other hand, in 

our theory, the flow velocity fluctuates, and the strength of the magnetic field is determined 

accordingly. 

The other is that there is some difference in convection depending on the azimuth. In 

addition, the generated magnetic field contains components other than poloidal components, 

and the value changes depending on the azimuth. On the other hand, according to our 

theory, convection and magnetic fields are uniform in direction and only poloidal. 
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It remains to be seen how to interpret these differences. However, additional research is 

needed. 

In any case, we believe that the results of this paper will be of great help in further 

elucidating the mechanism of the formation of celestial magnetic fields. 
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