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Abstract

Researchers have struggled to understand the mechanism underlying the forma-
tion of celestial magnetic fields. To avoid constraints such as Cowling’s theorem,
several studies have set up complex convection and developed theories for mag-
netic field generation. Research in this field could progress through the discovery
of a simple mechanism. This paper pursues the power generation theory of a sim-
ple mechanism that generates a coaxial magnetic field by axisymmetric convection
in a conductive fluid. Whether this power generation can be stably maintained
depends on whether there is a source of power generation in the induction term.
This problem can be solved by decomposing and examining the induction term in
detail. Cowling’s theory omits certain components (additional terms) from this
term; however, in this study, these components are determined to be essential
for axisymmetric magnetic field generation based on calculations and examina-
tion of the total amount of regional energy. This approach is a novel concept.
In addition, another claim of Cowling’s theorem concerning the neutral point
is also disputed. Consequently, even under simple axisymmetric convection, the
possibility of generating axisymmetric magnetic fields is demonstrated. These
findings will contribute to further elucidation of the mechanism of magnetic field
formation.
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1 Introduction

Researchers have long struggled to understand the mechanism underlying the forma-
tion of celestial magnetic fields. The famous foundations for elucidating this mechanism
are the ω effect [1], the α effect [2], and Cowling’s theorem [3].

Taking the Sun as an example, the magnetic field in the plane perpendicular to
its axis of rotation is called the toroidal magnetic field, and the magnetic field in the
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plane parallel to its axis of rotation is called the poloidal magnetic field. The same is
true for convection.

According to Cowling’s theorem, axisymmetric convection does not generate a
stable axisymmetric magnetic field, either poloidal or toroidal.

In the ω effect, a toroidal magnetic field is generated from a poloidal magnetic field
with a gradient in angular velocity. Since the rotation of the Sun’s surface is faster
at the equator than at the poles, there is an angular velocity gradient. If the initial
magnetic field is poloidal, this field is stretched and wound up by the angular velocity
gradient, transforming the poloidal magnetic field into a toroidal magnetic field. If a
mechanism exists to convert the toroidal magnetic field to a poloidal magnetic field,
then the magnetic field can be amplified. However, no such effect has been found.
Thus, the results support Cowling’s theorem.

In the α effect, a velocity field that twists a magnetic field is assumed to exist.
The concept is that a toroidal magnetic field is twisted in some places and directed
in the poloidal direction. Therefore, if the α effect is added to the ω effect, then
mutual exchange of magnetic fields is possible, and the magnetic field can be amplified.
However, this approach is difficult because it must address complex convection, which
causes the velocity field to twist in places. Researchers are nevertheless combining
these effects with complex convection to further elucidate the mechanism of magnetic
field generation.

The notion that a magnetic field is generated by complex convection or that an
axisymmetric magnetic field does not occur constrains research. However, in the
observations, the difference between the axis of rotation and the magnetic axis is
not large for the main celestial bodies in the solar system, especially for Saturn[4].
If it can be clarified that a magnetic field can be generated by simpler convection,
then research in this field will further advance. To reveal a simpler mechanism, this
paper1 addresses the possibility of generating a magnetic field by convection, which
is a simpler concept.

We compare our theory with Cowling’s theorem and its interpretations, as pre-
sented in well-known and authoritative texts. The problem of whether axisymmetric
poloidal convection can lead to the formation of stable magnetic fields can be solved by
decomposing and examining the induction term (up ×Bp described below) in detail.
In the original text of Cowling’s theorem, components corresponding to the r and z
components of convection and magnetic fields are presented, but they do not con-
tain the additional components (hereinafter also referred to as additional terms) that
should have emerged when the components are decomposed in cylindrical coordinates.
However, in this study, these additional components are essential for axisymmetric
magnetic field generation based on calculations and examinations of the total amount
of regional energy. This approach is a novel concept. To illustrate these differences, we
present the original interpretation of Cowling’s theorem and compare it with our new
interpretation. The meaning and properties of these additional components (equiva-
lent to self-excited power generation) are described by calculating the total amount of

1An earlier version of our original manuscript is available on a preprint server[5].
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regional energy. In addition, another claim of Cowling’s theorem, the neutral point, is
also disputed.

However, this paper does not use the conversion formula in the Curl calculation of
vectors, but the objections and others will be discussed in the Discussion section.

2 Description of the Problem

This paper proposes that the mechanism by which axisymmetric magnetic fields are
generated from axisymmetric convection should be considered among the fundamental
processes for understanding the formation of celestial magnetic fields. We highlight the
differences between our findings and conventional theories and explain the key points
elucidated in this study. Cowling’s theorem, which is the origin of the conventional
theorem, has been interpreted by several researchers. For example, [6] and [7] are books
that contain these interpretations. These books are cited in the following discussions
because the notation of their mathematical formulas is newer and easier to understand.

2.1 Components and Functions of the Induction Term

To identify the components of interest within the electromagnetic induction equation,
we decompose the relevant term. We also present the regional integral of energy to
investigate the properties of these components. This analysis allows us to describe the
potential for generating a simple axisymmetric magnetic field. The electromagnetic
induction equation [6] [7] for the poloidal component of a velocity field and a magnetic
field, which often serves as the starting point for axisymmetric discussions, is as follows:

∂Bp

∂t
= ∇× [up ×Bp] + η∇2Bp, (1)

where up is the flow velocity of the conductive fluid, Bp is the magnetic field, η is
the magnetic diffusivity (some researchers use λ) and t is the time. Some researchers
use wedge products ∧ for cross-products ×, but in this paper, we interpret these
symbols as cross-products. The subscript p at the bottom right of a symbol indicates
the poloidal component. The magnetic field equation, Bp = ∇×Aϕ (A is the vector
potential of the magnetic field [8]), is substituted into (1) on the left side as follows:

∇× ∂Aϕ

∂t
= ∇× [up ×Bp]−∇× η∇×Bp.

Here, the Laplacian of the second term on the right side of (1) is treated in cylin-
drical coordinates. In addition, Gauss’s law for the magnetic field, ∇·B = 0, is applied.
The subscript ϕ at the bottom right of a symbol indicates the toroidal component. By
uncurling this expression, the following equation is obtained:

∂Aϕ

∂t
= [up ×Bp]− η∇×Bp. (2)

Equations like (2) are derived and are often used as the basis for arguments [6] [7].
Since the left-side and right-side second terms (hereinafter referred to as the attenu-
ation term) of (2) are not the main points here, only the first term on the right side
(in this paper, referred to as the induction term) (3) is extracted and examined:
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up ×Bp. (3)

By decomposing this term into components in detail, the important components
can be identified. The components are decomposed by converting up and Bp into
descriptions through rotation of the vector potentials. This process is performed in
cylindrical coordinates. In other words, each ∇ is treated in cylindrical coordinates.
Hereafter, the component directions in the coordinate system are as follows: when
the axis of symmetry is called Oz, the direction of distance from Oz is called r, the
direction of rotation around Oz is called ϕ, and the direction parallel to Oz is called
z. The subscripts at the bottom right of a symbol indicate the directional component.
The fundamental vectors in each direction are er, eϕ and ez. Furthermore, the electric
circuit to which (2) applies circularly orbits Oz in the ϕ direction. Hereafter, it is called
a ‘ring’, and its image corresponds to an annular circuit with a thin cross-sectional
area. The component decomposition of up is as follows:

up = ∇× Peϕ = −∂P
∂z

er +
1

r

∂

∂r
(rP ) ez = −∂P

∂z
er +

(
1

r
P +

∂P

∂r

)
ez. (4)

Here, if the divergence of the flow velocity vector up is zero (incompressible), then
the vector P (= Peϕ) is the vector potential of the flow velocity. Since we address a
poloidal flow, P has only a ϕ component. Notably, the 1

rP term is the additional term.
The component decomposition of Bp is as follows:

Bp = ∇×Aeϕ = −∂A
∂z

er +
1

r

∂

∂r
(rA) ez = −∂A

∂z
er +

(
1

r
A+

∂A

∂r

)
ez. (5)

Here, the divergence of the magnetic field vector Bp is zero; then, the vector
A (= Aeϕ) is the vector potential of the magnetic field Bp. Since we address a poloidal
magnetic field, A has only a ϕ component. Notably, the 1

rA term is the additional
term. (4) and (5) are substituted into (3) as follows:

up ×Bp =

[
−∂P
∂z

er +

(
1

r
P +

∂P

∂r

)
ez

]
×
[
−∂A
∂z

er +

(
1

r
A+

∂A

∂r

)
ez

]
.

The following equation is derived:

up ×Bp = −
[(

1

r
P +

∂P

∂r

)
∂A

∂z
− ∂P

∂z

(
1

r
A+

∂A

∂r

)]
eϕ. (6)

In the original text of Cowling’s theorem, the components corresponding to the r
and z components of convection and magnetic fields are presented, but the method
of derivation is not shown. Furthermore, the components corresponding to the 1

rP
and 1

rA terms of (6) that should appear when the components are decomposed in
cylindrical coordinates are not shown. However, in this study, these additional terms
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are determined to be essential for axisymmetric magnetic field generation based on
calculations and examinations of the total amount of regional energy. These terms can
be inferred to possibly be the ‘source’ of power generation.

The functions and properties of these additional terms are described below. The
question is whether this ‘source’ contributes to power generation. To determine this
value, not only one ring but also the rings contained in the entire area must be con-
sidered. The total amount of regional energy in these additional terms is calculated
and examined. To determine the power generation capacity over the total area, (6) is
multiplied by A to convert it into energy.

The − 1
rP

∂A
∂z term in (6) is multiplied by A and partially integrated in the z

direction as follows (in the middle of the calculation, − 1
r is omitted):∫

∂A

∂z
PAdz = [APA]−

∫
A

(
∂P

∂z
A+ P

∂A

∂z

)
dz

= −
∫
∂P

∂z
A2dz −

∫
PA

∂A

∂z
dz.

Here, P and A in the surface term are zero at z = ±∞. Since the second term on
the right side is the same as that on the left side,∫

∂A

∂z
PAdz = −1

2

∫
∂P

∂z
A2dz. (7)

Since the integration over ϕ is uniform at the circumference, this equation is
multiplied by 2πr. Adding − 1

r back in and integrating it over r yields∫∫∫
−1

r
PA

∂A

∂z
dV =

1

2
2πr

∫∫
1

r

∂P

∂z
A2drdz = πr

∫∫
1

r

∂P

∂z
A2drdz, (8)

where V denotes the total volume.
The ∂P

∂z
1
rA term in (6) is multiplied by A and integrated over the total area as

follows: ∫∫∫
∂P

∂z

1

r
AAdV = 2πr

∫∫
1

r

∂P

∂z
A2drdz, (9)

Here, since the integration over ϕ is uniform at the circumference, this equation is
multiplied by 2πr.

2.2 Significance of the Regional Integration of Energy

Fig. 1 is a conceptual diagram showing how the initial magnetic field moves due to
convection. The convection flows in the Z and Ra directions (parallel to the Z axis
and radial direction from the Z axis, respectively) in an axisymmetric manner, with
the Z axis as the axis of symmetry in the range indicated by the convection zone. The
convection is roughly torus shaped with a flow velocity |U| to orbit around P0 in the
direction of the arrow. P0 is a position in which a line is drawn perpendicular to the
Z axis from Pc. The long arrow in (a) and the lattice-like dots in (b) and (c) in Fig. 1
indicate the initial magnetic field. In conductive fluids, the magnetic field moves with
the flow of the fluid due to magnetic field freezing[9]. (a) Diagram of convection and
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Fig. 1 Conceptual diagram showing how a magnetic field moves due to convection
The convection flows in the Z and Ra directions in an axisymmetric manner, with the Z axis as the
axis of symmetry in the range indicated by the convection zone. Convection is roughly torus shaped
with a flow velocity |U | to orbit around Pc in the direction of the arrow. P0 is a position where Pc
intersects perpendicular to the Z axis. (a) Diagram in which the existing magnetic field bends on the
poloidal surface of Z-Ra, (b) diagram in which the magnetic field moves above the P0-Pc line, and (c)
diagram in which the magnetic field moves below the P0-Pc line. Since convection is an axisymmetric
poloidal flow, this convection converges towards the Z axis in (b) and disperses from the Z axis in (c).
The magnetic field also converges and discrete, due to magnetic field freezing. That is, the magnetic
flux density increases in (b) and decreases in (c).

the magnetic field of the poloidal surface of Z-Ra, (b) diagram in which convection
and the magnetic field move together like a short arrow above the P0-Pc line, and
(c) diagram in which convection and the magnetic field move together like a short
arrow below the P0-Pc line. Since convection is an axisymmetric poloidal flow, this
convection converges towards the Z axis in (b) and disperses from the Z axis in (c).
Since the magnetic field also converges and disperses due to magnetic field freezing,
the magnetic flux density increases in (b) and decreases in (c).

If the energy integral of equations (8) and (9) has a positive polarity value, the
energy of the magnetic field is considered to increase. In other words, the energy
increases because a magnetic field in the same direction as the existing magnetic
field direction is added, which means self-excited power generation. Considering these
equations, ∂P

∂z and A2 are multiplied and integrated. The former is derived from the

velocity of convection in the Ra direction, ur = −∂P
∂z (see equation (4)). In Fig. 1

(b), ur is the negative direction of Ra (∂P∂z is positive polarity) above the P0-Pc line,

and in (c), it is the positive direction of Ra under the P0-Pc line (∂P∂z is negative
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polarity). The flow velocity is symmetrical and has a reverse polarity above and below
the P0-Pc line. If A2 is symmetrical above and below the P0-Pc line, then integrating
the multiplication with the flow velocity becomes zero, and there is no increase in
energy. However, (b) in Fig. 1 has a higher magnetic flux density (vector potential A
as well) than (c). Therefore, the positive polarity of ∂P

∂z A
2 of (b) becomes dominant,

and the positive energy is calculated. If the flow velocity up is sufficient, this energy
causes equation (6) (up × Bp) to overcome the attenuation term of equation (2) and
self-excited power generation occurs.

Therefore, the region integral of (8) and (9) is nonzero and can be the ‘source’ of
power generation. However, this ‘source’ does not indicate the stability of the mag-
netic field but rather an increase in power generation. If the current intensifies, the
Lorentz force generates a force that opposes convection. It is thought that the increase
in power generation is suppressed and settles at a certain level. However, the behaviour
of convection is not accurately considered in (4). Convection behaviour must be con-
sidered to confirm these maintenance mechanisms of the magnetic field, but this issue
is beyond the scope of this paper.

2.3 Causes of Power Generation

In equations (4) and (5), the terms 1
rP and 1

rA exist. That is, when handled in
cylindrical coordinates, the P and A terms are inversely proportional to the diameter
from the Z axis. Referring to the arrangement of (b) and (c) in Fig. 1, which is a
cylindrical coordinate, these terms seem to represent the change in density that occurs
when a fluid of a certain flow rate and a magnetic field of a certain number of magnetic
fluxes move poloidally between a narrow region close to the Z axis and a wide area
far from the Z axis. These density changes are thought to be important for electrical
phenomena. Therefore, it is necessary to confirm whether these terms contribute to
power generation. The energy integrals were shown earlier is because we assume that
these terms are important causes of power generation. If these terms are ignored, there
is no prospect of generating electricity. When performing axisymmetric and poloidal
verification, it is essential to treat it strictly in cylindrical coordinates and to not omit
these terms. The original text of Cowling’s theorem does not mention these terms.
Therefore, Cowling’s theorem led to the conclusion that an axisymmetric magnetic
field is not maintained from axisymmetric convection.

Therefore, additional terms are found when the induction term is decomposed in
detail. When examined in terms of the regional integration of energy, these terms
are demonstrated to be the ‘source’ of power generation. In other words, these terms
simply generate a stable axisymmetric magnetic field.

2.4 On the Neutral-point Claim

The original text of Cowling’s theorem and its interpretative studies not only deny
the source of power generation but also examine the local poloidal magnetic field
arrangement (N-point) and deny the existence of axisymmetric magnetic fields. If
this paper affirms the source of power generation, it must also be able to affirm the
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existence of an axisymmetric magnetic field in the N-point claim. Let us start with
the conventional theory.

If a poloidal magnetic field exists on a z-r surface, then a vortex centre of the
magnetic field must be somewhere, known as the neutral point, or the N-point. This
description is explained in textbooks [6] [7]. Note that in the original text of Cowling’s
theorem, the name of this claim, the symbols used, and the method of explanation are
different. (2) serves as the basis for calculations. Since the magnetic field arrangement
of the stable magnetic field is discussed, the left side of (2) is zero, and since a certain
area on the poloidal surface is addressed, both terms are multiplied by the area Sε on
the z-r surface and deformed as follows:∫

Sε

(up ×Bp) · dS =

∫
Sε

η (∇×Bp) · dS. (10)

If we apply Stokes’ theorem [8] to the right side of (10), then∫
Sε

(up ×Bp) · dS =

∮
Cε

ηBp · dx. (11)

Here, Sε is the area inside the line integral on the right side of (11), and Cε is the
circle of the line integral. The approximate values on the left side of (11) are as follows:∣∣∣∣∫

Sε

(up ×Bp) · dS
∣∣∣∣ ≤ UBεSε. (12)

Here, the average magnetic field in the line integration on the right side of (11)
is Bε. The area of each integral is the same. U is the maximum flow velocity in the
area. Since the magnetic field is zero2 in the centre of the N-point, the mean magnetic
field within Sε is smaller than Bε, but at (12), it is estimated to be Bε. Then, the
relationship between the magnitude of the values on the right side and the left side of
(11) is ηNεBε ≤ UBεSε or

ηNε ≤ USε, (13)

where ε on the left side is the perimeter of the N-point area and where ηN is the η
around the N-point. (To contrast (13) with (11), it may be easier to understand if the
left and right sides are reversed, i.e., USε ≥ ηNε.) However, since ε → 0 results in Sε
→ O(ε2), (13) is not compatible for any finite values U

ηN
. Therefore, it is conventionally

thought that this magnetic field arrangement is contradictory, so an axisymmetric
magnetic field does not occur.

However, for the following fundamental reasons, this paper refutes the N-point
claim, which is unrelated to the claim in Section 2.1. First, the right side of (11) is
the right side of (10) according to Stokes’ theorem. That is, (11) is an area integral
on the left and right sides. (11) shows that the left and right sides are always the
same. Applying different order changes to the areas on the left and right sides is
incorrect and misleading. Therefore, the N-point claim is invalid.

2The centre of the vortex of the magnetic field should have an electric current and the magnetic field
becomes stronger towards the centre, it is convex rather than concave. However, the conclusion is the same
in both cases.
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3 Discussion

We have shown that an axisymmetric magnetic field can be generated by axisym-
metric convection and that magnetic field generation occurs through simple poloidal
convection. However, this demonstration does not fully explain the stable generation
of a magnetic field. In addition, this paper does not use the conversion formula in the
Curl calculation of vectors. These thoughts are described below.

The ‘source’ of power generation does not indicate the stability of the magnetic
field but rather an increase in power generation. However, if the current intensifies,
the Lorentz force generates a force that opposes convection. It is thought that the
increase in power generation is suppressed and settles at a certain level. However,
the behaviour of convection is not accurately considered in (4). Convection behaviour
must be considered to confirm these maintenance mechanisms of the magnetic field,
but this issue is beyond the scope of this paper.

Previously, one peer review included the proposal to convert (5) with the following
formula (hereinafter referred to as the conversion formula):

∇× (Aϕeϕ) = ∇× (rAϕ∇ϕ) (14)

where eϕ is the unit vector along ϕ, r is the cylindrical radius and∇ϕ is the gradient
of the angle ϕ

eϕ = r∇ϕ , ψ = rAϕ (15)

∇× (Aϕeϕ) = (∇ψ)× (∇ϕ) (16)

Moreover, there was an example of a website[10] that was converted by a similar
formula. For the following reasons, the conversion formula is not used in this paper.
Converting the left side of equation (16) to the right side is clearly different from
the treatment of Curl in cylindrical coordinates in vector mathematics. If you treat
it in Cartesian coordinates, this conversion formula can be derived. The theory of
axisymmetry must be discussed strictly in cylindrical coordinates. If the components
are decomposed directly with Curl in cylindrical coordinates, it is easy, and there are
no mistakes. The original text of Cowling’s theorem does not show this conversion.
Moreover, we are unable to find a source explaining the necessity and validity of this
conversion. As shown in Section 2.3, Causes of Power Generation, additional terms
are shown to be important. If this conversion formula is used, the change in density
due to convection and magnetic fields moving back and forth between a narrow and
large area is ignored, and an important electrical phenomenon is missed.

4 Conclusion

This paper presents a theory in which axisymmetric magnetic fields are stably gener-
ated by simple convection. In addition, another claim of Cowling’s theorem concerning
the neutral point is also disputed.
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