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Abstract

Researchers have struggled to understand the mechanism underlying the for-
mation of celestial magnetic fields. In some studies, the conception of this
mechanism, such as Cowling’s theorem, which posits that complex convection
is necessary to generate a magnetic field, constrains research. Research in this
field could progress through the discovery of a simple mechanism. To reveal a
possible simple mechanism, this paper addresses generating a magnetic field by
convection, which is a simple concept. Whether an axisymmetric poloidal mag-
netic field can be stably generated by the axisymmetric poloidal convection of
a conductive fluid depends on whether the induction term contains a source of
power generation. This problem can be solved by decomposing and examining
the induction term in detail. Cowling’s theory omits certain components (terms)
from this term; however, in this study, these components are found to be essen-
tial for axisymmetric magnetic field generation on the basis of calculations and
examination of the total amount of energy. This approach is a novel concept. In
addition, another claim of Cowling’s theorem concerning the neutral point is also
disputed. Consequently, even under simple axisymmetric convection, the possi-
bility of generating axisymmetric magnetic fields is demonstrated. These findings
will contribute to further elucidation of the mechanism of magnetic field forma-
tion. However, in this work, unresolved points are found in the maintenance of
the magnetic field and the deformation of the formula.

Keywords: Cowling’s theorem, dynamo theory, simple convection, neutral point

1 Introduction

Researchers have long struggled to understand the mechanism underlying the forma-
tion of celestial magnetic fields. The famous foundations for elucidating this mechanism
are the ω effect [1], the α effect [2], and Cowling’s theorem [3].
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Taking the Sun as an example, the magnetic field in the plane perpendicular to
its axis of rotation is called the toroidal magnetic field, and the magnetic field in the
plane parallel to its axis of rotation is called the poloidal magnetic field. The same is
true for convection.

According to Cowling’s theorem, axisymmetric convection does not generate a
stable axisymmetric magnetic field, either poloidal or toroidal.

In the ω effect, a toroidal magnetic field is generated from a poloidal magnetic field
with a gradient in angular velocity. Since the rotation of the Sun’s surface is faster
at the equator than at the poles, there is an angular velocity gradient. If the initial
magnetic field is poloidal, this field is stretched and wound up by the angular velocity
gradient, transforming the poloidal magnetic field into a toroidal magnetic field. If a
mechanism exists to convert the toroidal magnetic field to a poloidal magnetic field,
then the magnetic field can be amplified. However, no such effect has been found.
Thus, the results support Cowling’s theorem.

In the α effect, a velocity field that twists a magnetic field is assumed to exist.
The concept is that a toroidal magnetic field is twisted in some places and directed
in the poloidal direction. Therefore, if the α effect is added to the ω effect, then
mutual exchange of magnetic fields is possible, and the magnetic field can be amplified.
However, this approach is difficult because it must address complex convection that
causes the velocity field to twist in places. Researchers are nevertheless combining
these effects with complex convection to further elucidate the mechanism of magnetic
field generation.

From the above discussion, researchers must rely only on complex convection
without a simple magnetic field generation mechanism. The notion that a magnetic
field is generated by complex convection or that an axisymmetric magnetic field does
not occur constrains research. However, in the observations, the difference between
the axis of rotation and the magnetic axis is not large for the main celestial bodies
in the solar system, especially for Saturn[4]. If it can be clarified that a magnetic
field can be generated by simpler convection, then research in this field will further
advance. To reveal a simpler mechanism, this paper addresses the possibility of gen-
erating a magnetic field by convection, which is a simpler concept.

We compare our theory with Cowling’s theorem and its interpretations, as pre-
sented in well-known and authoritative texts. The problem of whether axisymmetric
poloidal convection can lead to the formation of stable magnetic fields can be solved
by decomposing and examining the induction term in detail. In the original text of
Cowling’s theorem, components corresponding to the r and z components of convec-
tion and magnetic fields are presented, but they do not contain the minute components
that should have emerged when the components are decomposed in cylindrical coordi-
nates. However, in this study, these minute components are essential for axisymmetric
magnetic field generation on the basis of calculations and examinations of the total
amount of energy. This approach is a novel concept. To illustrate these differences,
we present the original interpretation of Cowling’s theorem and compare it with our
new interpretation. The meaning and properties of these minute components (equiv-
alent to self-excited power generation) are described by calculating the total amount
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of regional energy. In addition, another claim of Cowling’s theorem, the neutral point,
is also disputed.

However, our theory does not fully explain the stable generation of a magnetic
field. In addition, the deformation of the formula contains unresolved points. The
limitations of our theory are addressed in the Discussion section. Although definitive
evidence for these findings is lacking, we believe that our theory is valuable and outline
our expectations in the Conclusion section.

Conventionally, there is no simple generation of a stable axisymmetric poloidal
magnetic field from axisymmetric poloidal convection. The theory presented in this
paper is a novel concept that challenges conventional thinking.

2 Description of the Problem

This paper proposes that the mechanism by which axisymmetric magnetic fields are
generated from axisymmetric convection should be considered among the fundamental
processes for understanding the formation of celestial magnetic fields. We highlight the
differences between our findings and conventional theories and explain the key points
elucidated in this study. Cowling’s theorem, which is the origin of the conventional
theorem, has been interpreted by several researchers. For example, [5] and [6] are books
that contain these interpretations. These books are cited in the following discussions
because the notation of their mathematical formulas is newer and easier to understand.

2.1 Components and Functions of the Induction Term

To identify the components of interest within the electromagnetic induction equation,
we decompose the relevant term. We also present the regional integral of energy to
investigate the properties of these components. This analysis allows us to describe the
potential for generating a simple axisymmetric magnetic field. The electromagnetic
induction equation [5] [6] for the poloidal component of a velocity field and a magnetic
field, which often serves as the starting point for axisymmetric discussions, is as follows:

∂Bp

∂t
= ∇× [up ×Bp] + η∇2Bp, (1)

where up is the flow velocity of the conductive fluid, Bp is the magnetic field, η is
the magnetic diffusivity (some researchers use λ) and t is the time. Some researchers
use wedge products ∧ for cross-products ×, but in this paper, we interpret them as
cross-products. The subscript p at the bottom right of a symbol indicates the poloidal
component. The magnetic field equation, Bp = ∇×Aϕ (A is the vector potential of
the magnetic field [7]), is substituted into (1) on the left side as follows:

∇× ∂Aϕ

∂t
= ∇× [up ×Bp]−∇× η∇×Bp.

Here, the Laplacian of the second term on the right side of (1) is treated in cylin-
drical coordinates. In addition, Gauss’s law for the magnetic field, ∇·B = 0, is applied.
The subscript ϕ at the bottom right of a symbol indicates the toroidal component. By
uncurling this expression, the following equation is obtained:
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∂Aϕ

∂t
= [up ×Bp]− η∇×Bp. (2)

Equations similar to (2) are derived and are often used as the basis for arguments
[5] [6]. Since the left-side and right-side second terms (hereinafter referred to as the
attenuation term) of (2) are not the main points here, only the first term on the right
side (in this paper, referred to as the induction term) (3) is extracted and examined:

up ×Bp. (3)

By decomposing this term into components in detail, the important components
can be identified. The components are decomposed by converting up and Bp into
descriptions through rotation of the vector potentials. This process is performed in
cylindrical coordinates. In other words, each ∇ is treated in cylindrical coordinates.
Hereafter, the component directions in the coordinate system are as follows: when
the axis of symmetry is called Oz, the direction of distance from Oz is called r, the
direction of rotation around Oz is called ϕ, and the direction parallel to Oz is called
z. The subscripts at the bottom right of a symbol indicate the directional component.
The fundamental vectors in each direction are er, eϕ and ez. Furthermore, the electric
circuit to which (2) applies circularly orbits Oz in the ϕ direction. Hereafter, it is called
a ‘ring’, and its image corresponds to an annular circuit with a thin cross-sectional
area. The component decomposition of up is as follows:

up = ∇× Peϕ = −∂P
∂z

er +
1

r

∂

∂r
(rP ) ez = −∂P

∂z
er +

(
1

r
P +

∂P

∂r

)
ez. (4)

Here, if the divergence of the flow velocity vector up is zero (incompressible),
then the vector P (= Peϕ)

1 is the vector potential of the flow velocity. Since we are
addressing a poloidal flow, P only has a ϕ component. Notably, the 1

rP term is the
minute component. When the components are decomposed by Cartesian coordinates,
the 1

rP term in (4) does not appear.
The component decomposition of Bp is as follows:

Bp = ∇×Aeϕ = −∂A
∂z

er +
1

r

∂

∂r
(rA) ez = −∂A

∂z
er +

(
1

r
A+

∂A

∂r

)
ez. (5)

Here, the divergence of the magnetic field vector Bp is zero; then, the vector
A (= Aeϕ) is the vector potential of the magnetic field Bp. Since we are addressing
a poloidal magnetic field, A only has a ϕ component. Notably, the 1

rA term is the
minute component. When the components are decomposed by Cartesian coordinates,
the 1

rA term in (5) does not appear. (4) and (5) are substituted into (3) as follows:

1Note that distinguishing the difference between P and P in printing is difficult: P in the equation is a
scalar and Peϕ is the ϕ component vector. The same applies to A and A below.

4



up ×Bp =

[
−∂P
∂z

er +

(
1

r
P +

∂P

∂r

)
ez

]
×
[
−∂A
∂z

er +

(
1

r
A+

∂A

∂r

)
ez

]
.

The following equation is derived:

up ×Bp = −
[(

1

r
P +

∂P

∂r

)
∂A

∂z
− ∂P

∂z

(
1

r
A+

∂A

∂r

)]
eϕ. (6)

If (6) is substituted into (2), the direction component of the induction term can be
seen in detail. In the original text of Cowling’s theorem, the components corresponding
to the r and z components of convection and magnetic fields are presented, but the
method of derivation is not shown. Furthermore, the components corresponding to the
1
rP and 1

rA terms of (6) that should appear when the components are decomposed in
cylindrical coordinates are not shown. However, in this study, these terms are found to
be essential for axisymmetric magnetic field generation on the basis of calculations and
examinations of the total amount of energy. These terms are referred to as additional
terms and can be inferred to possibly be the ‘source’ of power generation.

The functions and properties of these additional terms are described below. The
question is whether this ’source’ contributes to power generation. To determine this
value, not only one ring but also the rings contained in the entire area must be consid-
ered. The total amount of energy in these additional terms is calculated and examined.
To determine the power generation capacity over the total area, (6) is multiplied by
A to convert it into energy.

The − 1
rP

∂A
∂z term in (6) is multiplied by A and partially integrated in the z

direction as follows (in the middle of the calculation, − 1
r is omitted):∫

∂A

∂z
PAdz = [APA]−

∫
A

(
∂P

∂z
A+ P

∂A

∂z

)
dz

= −
∫
∂P

∂z
A2dz −

∫
PA

∂A

∂z
dz.

Here, P and A in the surface term are zero at z = ±∞. Since the second term on
the right side is the same as that on the left side,∫

∂A

∂z
PAdz = −1

2

∫
∂P

∂z
A2dz. (7)

Since the integration over ϕ is uniform at the circumference, this equation is
multiplied by 2πr. Adding − 1

r back in and integrating it over r yields∫∫∫
−1

r
PA

∂A

∂z
dV =

1

2
2πr

∫∫
1

r

∂P

∂z
A2drdz = πr

∫∫
1

r

∂P

∂z
A2drdz, (8)

where V denotes the total volume. Consider what happens to this energy.
Suppose that a torus-like fluid, as shown in Fig. 1, rotates in the U direction.

Then, −∂P
∂z (the flow velocity ur in the r direction) is nonzero above and below the

r-axis (the line connecting P0 and Pc), the velocity is symmetric about this axis, and
the polarity is opposite on the two sides of this axis. If A2 is also symmetric about
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Fig. 1 Conceptual diagram of the flow velocity and magnetic field arrangement on the z-r surface
This figure shows that the value A of the vector potential is not linearly symmetric about the r-
axis, and the neutral point is outlined. Here, the r-axis is a line in the r direction connecting P0 and
Pc. Convection is the flow of a torus-shaped (doughnut-like) fluid, and this figure shows one side of
the cross-section containing the Z-axis, which is the axis of the torus. The convection is drawn in a
circle around Pc. A torus-shaped fluid with a convection radius (distance from Pc to the convection
surface) of size R0 rotates in the flow velocity U direction. The surrounding curves represent the
path of a magnetic field. The neutral point is considered the location where the main current (power
generation) is generated and is convex.

this axis, it will cancel out and become zero. However, if the magnetic field (also in A)
is asymmetric about this axis, the region’s integration of (8) will not be zero. Thus,
energy is generated. The magnetic field in Fig. 1 is an imaginary diagram based on the
current (eigenvector) data from the preprint [8] provided as a numerical calculation
example of the fluid magnetic field.

The ∂P
∂z

1
rA term in (6) is multiplied by A and integrated over the total area as

follows: ∫∫∫
∂P

∂z

1

r
AAdV = 2πr

∫∫
1

r

∂P

∂z
A2drdz, (9)

Here, since the integration over ϕ is uniform at the circumference, this equation is
multiplied by 2πr.

In (9), since A2 is asymmetric about the r-axis, as described above, energy is also
generated during the integration of this term.

Therefore, the region integral of (8) and (9) is nonzero and can be the ‘source’ of
power generation. However, this ‘source’ does not indicate the stability of the mag-
netic field but rather an increase in power generation. However, if power generation
is greatly increased, convection energy should be consumed, and the flow velocity
should decrease. Therefore, it may be stabilised at a certain magnetic field strength.
Another factor that stabilises the magnetic field (power generation) is considered. If
the current intensifies, the Lorentz force generates a force that opposes convection. It
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is thought that the increase in power generation is suppressed and settles at a cer-
tain level. However, the behaviour of convection is not accurately considered in (4).
Convection behaviour must be considered to confirm these maintenance mechanisms
of the magnetic field, but this issue is beyond the scope of this paper.

However, there is one more problem: if the current (power generation) position
continues to move along the convection path due to magnetic field freezing [9], power
generation may not be possible because of insufficient power generation time in regions
where power generation is active. Magnetic field freezing occurs when a magnetic field
constrains a fluid with high conductivity. In this case, the above explanation of the
‘source’ of power generation cannot be given.

However, the magnetic field arrangement in Fig. 1 is considered stable without
movement. This thought is held because electromagnetic induction [7] occurs between
the rings that move along the convection path. Its function is explained on the basis
of Lenz’s law[7] as follows: suppose that power generation occurs in a ring at a certain
position and that there is a current vertex. Owing to convection, the ring moves along
an upwards slope towards its vertex and a downwards slope away from the vertex.
On the upwards slope, the current increases, causing the magnetic field to increase.
According to Lenz’s law, an electric current is generated towards a decreasing magnetic
field in parts of the rings. This phenomenon is called electromagnetic induction. Addi-
tionally, on the downwards slope, the current decreases, leading to a reduction in the
magnetic field. According to Lenz’s law, an electric current is generated towards the
increasing magnetic field in parts of the rings. Consequently, electromagnetic induc-
tion mutually occurs. Then, so that the effects on both sides are commensurate to
some extent, the current in the ring moving along the downwards slope acts as if it
were transferred to the ring moving along the upwards slope, causing a certain amount
of current to remain at a specific position. In this way, neither the power generation
position nor the magnetic field moves from a specific position.

The conventional concept that there is no ‘source’ of magnetic field generation
in the induction term is shown in Appendix A (Conventionally, No Source of Power
Generation).

Therefore, additional terms are found when the induction term is decomposed in
detail. When examined in terms of the regional integration of energy, it is demonstrated
that they are the ‘source’ of power generation. In other words, these terms simply
generate a stable axisymmetric magnetic field.

2.2 On the Neutral-point Claim

The original text of Cowling’s theorem and its interpretative studies not only deny
the source of power generation but also examine the local poloidal magnetic field
arrangement (N-point) and deny the existence of axisymmetric magnetic fields. If
this paper affirms the source of power generation, it must also be able to affirm the
existence of an axisymmetric magnetic field in the N-point claim. Let us start with
the conventional theory.

If a poloidal magnetic field exists on a z-r surface, then a vortex centre of the
magnetic field must be somewhere, known as the neutral point, or the N-point. The
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vortex can be imagined as an inverted cone with a magnetic field moving towards zero
as it approaches the centre. This description is explained in textbooks [5] [6]. Note that
in the original text of Cowling’s theorem, the name of this claim, the symbols used,
and the method of explanation are different. (2) serves as the basis for calculations.
Since the magnetic field arrangement of the stable magnetic field is discussed, the left
side of (2) is zero, and since a certain area on the poloidal surface is addressed, both
terms are multiplied by the area Sε on the z-r surface and deformed as follows:∫

Sε

(up ×Bp) · dS =

∫
Sε

η (∇×Bp) · dS. (10)

If we apply Stokes’ theorem [7] to the right side of (10), then∫
Sε

(up ×Bp) · dS =

∮
Cε

ηBp · dx. (11)

Here, Sε is the area inside the line integral on the right side of (11), and Cε is the
circle of the line integral. The approximate values on the left side of (11) are as follows:∣∣∣∣∫

Sε

(up ×Bp) · dS
∣∣∣∣ ≤ UBεSε. (12)

Here, the average magnetic field in the line integration on the right side of (11) is
Bε. The area of each integral is the same. U is the maximum flow velocity in the area.
Since the magnetic field is zero in the centre of the N-point, the mean magnetic field
within Sε is smaller than Bε (whether the N-point is concave or convex; see Appendix
B), but at (12), it is estimated to be Bε. Then, the relationship between the magnitude
of the values on the right side and the left side of (11) is ηNεBε ≤ UBεSε or

ηNε ≤ USε, (13)

where ε on the left side is the perimeter of the N-point area. (To contrast (13)
with (11), it may be easier to understand if the left and right sides are reversed, i.e.,
USε ≥ ηNε.) However, since ε → 0 results in Sε → O(ε2), (13) is not compatible for
any finite values U

ηN
. Therefore, it is conventionally thought that this magnetic field

arrangement is contradictory, so an axisymmetric magnetic field does not occur.
However, for the following fundamental reasons, this paper refutes the N-point

claim, which is unrelated to the claim in Section 2.1. First, the right side of (11) is
the right side of (10) according to Stokes’ theorem. That is, (11) is an area integral
on the left and right sides. (11) shows that the left and right sides are always the
same. Applying different order changes to the areas on the left and right sides is
incorrect and misleading. Therefore, the N-point claim is invalid.

Examining the properties of the additional terms demonstrates that they can be
a ‘source’ of power generation. Considering these additional terms, the problem was
solved because the induction equation contains the mechanism by which axisymmetric
magnetic fields are generated from axisymmetric convection. Thus, the convection
and magnetic fields are axisymmetric, leading to simple magnetic field generation. In
addition, it was separately demonstrated that the N-point claim was invalid.
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3 Discussion

We have shown that an axisymmetric magnetic field can be generated by axisym-
metric convection and that magnetic field generation occurs through simple poloidal
convection. However, this demonstration does not fully explain the stable generation
of a magnetic field. In addition, the deformation of the formula contains unresolved
points. Here, the problems and supplements of this paper are described.

For the reasons shown in the previous section, related fields can be studied from
the perspective of including the ideas of this paper in Cowling’s theorem. However,
(4) does not fully represent convection, which is difficult to model accurately. Convec-
tion behaviour is important for discussing the maintenance of a magnetic field, but
this topic is beyond the scope of this paper. Therefore, whether convection further
contributes to or interferes with the maintenance of the magnetic field is uncertain.

In one peer review, it was suggested to transform (5) via the following formula
(hereinafter referred to as the deformation):

∇× (Aϕeϕ) = ∇× (rAϕ∇ϕ) (14)

where eϕ is the unit vector along ϕ, r is the cylindrical radius and∇ϕ is the gradient
of the angle ϕ

eϕ = r∇ϕ , ψ = rAϕ (15)

∇× (Aϕeϕ) = (∇ψ)× (∇ϕ) (16)

There was an example of a website[10] that was transformed by a similar formula.
Deformation is not used in this paper. It is considered but unresolved (see Appendix
C), and this paper may not have sufficient evidence in this regard.

In the previous section, to explain the ‘source’ of magnetic field generation, Fig. 1
is used as an example of an asymmetric magnetic field arrangement bordered by the
r-axis. Moreover, this figure is discussed as an example of the location and shape of N-
points. This figure is a hypothetical illustration based on preprint data. Furthermore,
this preprint discusses the growth magnetic field rather than the stable magnetic field.
In other words, the argument part using this figure has weak evidence. However, there
is at least a possibility that a source of power generation will emerge. This possibility
exists because, as shown in Fig. 1, the flow velocity is reversed bordered by the r-
axis, so the magnetic field is bent asymmetrically because of magnetic field freezing.
Even if the magnetic field arrangement in Fig. 1 is inaccurate, this arrangement is
asymmetrically bordered by the r-axis. Therefore, the vector potential of the magnetic
field is also asymmetric, and the existence of the ‘source’ of power generation can be
demonstrated.

Here, we describe the trend of power generation. In the previous formulas, such
as (2) and (6), if the scale of these dimensions (r, ϕ, z) is arbitrarily changed,
a similar result is obtained. Here, we consider the dimensions of the ring. Since
(6) is a unit quantity in the ϕ direction, the circumference value is multiplied
by 2πr, so this term increases proportionally as the scale increases. In contrast,
if Aϕ = Φez

2πr

(
Φez =

∮
C
Aϕ · dl = 2πrAϕ

)
[7] is substituted into the decay term’s

Bp (= ∇×Aϕ) of (2), the attenuation term decreases in inverse proportion to the
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increase in scale because the denominator r is multiplied by the electrical conductiv-

ity σ contained in η
(
= 1

σµ

)
, and the resistance value decreases in inverse proportion.

Here, Φez is a magnetic flux linkage occurring inside the circumference C of the line
integral. When combined, it becomes easier to generate electricity in proportion to the
square of the scale increase. In contrast, if the scale is reduced, generating electricity
becomes difficult. However, if the convection velocity is appropriate, electricity should
be generated.

The information presented in the previous section is a novel concept. Combining
the results of this study with conventional research methods in this field will expand
the scope of research on fluid magnetic fields. A theory where axisymmetric magnetic
fields are stably generated by simple convection may change the research conditions
in related fields and lead to discoveries.

4 Conclusion

This paper presents a theory in which axisymmetric magnetic fields are stably
generated by simple convection. We believe that this theory provides clues for
related research. However, its application is limited; for example, it does not include
calculations of convection behaviour. However, we demonstrate the possibility of
axisymmetric magnetic fields on the basis of a novel concept, so we believe that this
theory will be useful in certain situations. Even if the scale is small, electricity can be
generated if the flow velocity is appropriate, as mentioned in the Discussion section.
We believe that creating arbitrary convection is more feasible in an artificial plasma
experimental facility than in the natural world, so the results of this research may be
useful when aiming to strengthen magnetic fields. In this way, this paper has poten-
tial applications in the field of magnetohydrodynamics, and we expect that it will be
useful not only for research on astronomical bodies but also for research conducted in
plasma furnaces and sodium experimental facilities.

In any case, we believe that the results of this paper will contribute considerably
to further elucidating the mechanism of magnetic field formation.
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Appendix A Conventionally, No Source of Power
Generation

Below, the total amount of energy is calculated for the part of (A1) excluding the
additional terms of (6), which becomes zero:

−
[(

∂P

∂r

)
∂A

∂z
− ∂P

∂z

(
∂A

∂r

)]
eϕ. (A1)

(A1) is multiplied by A to obtain the energy and subjected to partial integration.
First, the first term of (A1), −∂P

∂r
∂A
∂z , is multiplied by A and integrated over r as

follows:

−
∫
∂P

∂r
A
∂A

∂z
dr = −

[
PA

∂A

∂z

]
+

∫
P
∂

∂r

(
A
∂A

∂z

)
dr =

∫
P
∂

∂r

(
A
∂A

∂z

)
dr. (A2)

Here, P and A in the surface term are zero at r = 0 and r = ∞. Since the
integration over ϕ is uniform at the circumference, this equation is multiplied by 2πr.
Integrating it over z yields∫∫∫

−∂P
∂r

A
∂A

∂z
dV = 2πr

∫∫
P
∂

∂r

(
A
∂A

∂z

)
drdz. (A3)

Next, the second term of (A1), ∂P
∂z

∂A
∂r , is multiplied by A and integrated over z as

follows:

∫
∂P

∂z
A
∂A

∂r
dz =

[
PA

∂A

∂r

]
−
∫
P
∂

∂z

(
A
∂A

∂r

)
dz = −

∫
P
∂

∂z

(
A
∂A

∂r

)
dz. (A4)

Here, P and A in the surface term are zero at z = ±∞. Since the integration over
ϕ is uniform at the circumference, this equation is multiplied by 2πr. Integrating it
over r yields ∫∫∫

∂P

∂z
A
∂A

∂r
dV = −2πr

∫∫
P
∂

∂z

(
A
∂A

∂r

)
drdz. (A5)

Then, adding (A3) and (A5),

2πr

∫∫
P
∂

∂r

(
A
∂A

∂z

)
drdz − 2πr

∫∫
P
∂

∂z

(
A
∂A

∂r

)
drdz

= 2πr

∫∫
P

[
∂

∂r

(
A
∂A

∂z

)
− ∂

∂z

(
A
∂A

∂r

)]
drdz. (A6)

The square brackets of (A6) are further decomposed as follows:

∂

∂r

(
A
∂A

∂z

)
− ∂

∂z

(
A
∂A

∂r

)
=
∂A

∂r

∂A

∂z
+A

∂

∂r

(
∂A

∂z

)
− ∂A

∂z

∂A

∂r
−A

∂

∂z

(
∂A

∂r

)
. (A7)
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The first and third terms on the right side of (A7) offset each other. Since partial
derivatives do not depend on the order, the second and fourth terms also cancel each
other. Therefore, in terms of power generation, (A1) becomes zero regardless of the
poloidal position before integration.

Appendix B Whether the N-point is Concave or
Convex

Please note that this explanation is supplementary to understanding conventional
theory, not the plot of the argument of this paper.

The concavity or convexity of the N-point is considered. The results are the same in
both cases, but the results of both methods are described here to aid in understanding
Fig. 1. In conventional N-point theory, the magnetic field is assumed to be smaller
than Bε on average within Sε, so the N-point is assumed to be concave. However,
since the N-point, such as that in Fig. 1, is orbited by a magnetic field, a current must
exist within that area. Therefore, considering the N-point as a convexity in which
the magnetic field increases towards the centre is reasonable. Then, the magnetic
field is larger than Bε on average within Sε. Therefore, in area integration, since the
approximate estimation is made by Bε, the direction of the inequality sign in (13) is
ηNε > USε. However, if the average magnetic field in Sε changes by ε → 0 and Sε

→ O(ε2), the direction of the inequality sign in this equation does not change, but
the ratio of the right and left sides changes. This magnetic field arrangement is not
compatible with any finite values of U

ηN
. Therefore, conventional theory argues that a

poloidal magnetic field arrangement is impossible, regardless of whether the N-point
is concave or convex.

Appendix C Notes on Transforming Formulas

The peer review suggestion and example website illustrate the deformation in (16).
The question of this is expressed below.

C.1 Cartesian and Cylindrical

It is important not to lose minute components when calculating the components of
rotP and rotA. However, in the original text of Cowling’s theorem, the components of
convection and magnetic fields presented are missing minute components. Moreover, no
method of decomposition into these components is shown. The problem lies in whether
to decompose the components in Cartesian coordinates or cylindrical coordinates. The
reason why a problem arises when decomposing rotP and rotA into components after
applying the formula corresponding to equation ∇ × (Aeϕ) ≡ ∇A × eϕ is explained
as follows. The following is a comparison of the cases using Cartesian coordinates and
cylindrical coordinates. Next, we explain why the components are decomposed directly
via the mathematical formula of cylindrical coordinates without deformation.

The mathematical formulas for some of the vectors involved are shown below. In
Cartesian coordinates (x, y, z), the rotation rotV of the vector V is as follows:
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∇×V =

(
∂Vz

∂y
− ∂Vy

∂z

)
x

+

(
∂Vx

∂z
− ∂Vz

∂x

)
y

+

(
∂Vy

∂x
− ∂Vx

∂y

)
z

. (C8)

The subscripts at the bottom right of the symbols and parentheses indicate the
components in these directions. In the following derivation, the vector V of ∇ × V
is separated and substituted into the scalar component f and the vector compo-
nent V (later, it is treated as a fundamental vector). To observe the components of
the equation, we derive (C10), which is the basis of the equation, from (C8). The x
component is as follows:

(∇× fV)x =
∂

∂y
(fVz)−

∂

∂z
(fVy)

=
∂f

∂y
Vz + f

∂Vz

∂y
− ∂f

∂z
Vy − f

∂Vy

∂z

=

(
∂f

∂y
Vz −

∂f

∂z
Vy

)
+ f

(
∂Vz

∂y
− ∂Vy

∂z

)
. (C9)

The other components are the same as those in (C9), and (C10) is derived.

∇× (fV) = ∇f×V+ f∇×V. (C10)

The following formula is commonly used in electromagnetism.

∇× (∇p) = 0. (C11)

If p is considered a scalar potential and V in (C10) is a vector of ∇p, the second
term on the right side of (C10) becomes zero, as shown in (C11). Then, an equation
equivalent to the formula used for formula deformation can be obtained as follows:

∇× (f∇p) = ∇f×∇p+ f∇×∇p,

= ∇f×∇p. (C12)

For ease of understanding, the symbol f∇p is changed to the vector potential
A = Aeϕ as follows:

∇× (Aeϕ) = ∇A× eϕ. (C13)

The problem, however, is that (C13) is derived from (C8), which is an equation
for Cartesian coordinates.

The component decomposition of rotV of the vector V by cylindrical coordinates
(r, ϕ, z) is as follows:

∇×V =

[
1

r

(
∂Vz

∂ϕ
− r

∂Vϕ

∂z

)]
r

+

(
∂Vr

∂z
− ∂Vz

∂r

)
ϕ

+

[(
1

r

∂

∂r
(rVϕ)−

∂Vr

∂ϕ

)]
z

. (C14)
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The subscripts at the bottom right of the symbols and parentheses indicate the
components in these directions. To observe the components of the equation, we derive
equations from (C14). The r component is as follows:

(∇× fV)r =
1

r

[
∂

∂ϕ
(fVz)− r

∂

∂z
(fVϕ)

]
=

1

r

[(
∂f

∂ϕ
Vz + f

∂Vz

∂ϕ

)
− r

(
∂f

∂z
Vϕ + f

∂Vϕ

∂z

)]
=

1

r

∂f

∂ϕ
Vz +

1

r
f
∂Vz

∂ϕ
− ∂f

∂z
Vϕ − f

∂Vϕ

∂z

=
1

r

∂f

∂ϕ
Vz −

∂f

∂z
Vϕ + f

(
1

r

∂Vz

∂ϕ
− ∂Vϕ

∂z

)
If ∇ is ∇′ = ( ∂

∂r ,
1
r

∂
∂ϕ ,

∂
∂z ), the r component is as follows:

(∇× fV)r = (∇′f×V+ f∇′ ×V)r . (C15)

The ϕ component is as follows:

(∇× fV)ϕ =
∂

∂z
(fVr) +

∂

∂r
(fVz)

=
∂f

∂z
Vr + f

∂Vr

∂z
− ∂f

∂r
Vz − f

∂Vz

∂r

=

(
∂f

∂z
Vr −

∂f

∂r
Vz

)
+ f

(
∂Vr

∂z
− ∂Vz

∂r

)
This result means the follwing:

(∇× fV)ϕ = (∇f×V+ f∇×V)ϕ . (C16)

The z component is as follows:

(∇× fV)z =
1

r

∂

∂r
(rfVϕ)−

∂

∂ϕ
(fVr)

=
1

r

[
∂r

∂r
fVϕ + r

∂

∂r
(fVϕ)

]
−
(
∂f

∂ϕ
Vr + f

∂Vr

∂ϕ

)
=

1

r

[
fVϕ + r

(
∂f

∂r
Vϕ + f

∂Vϕ

∂r

)]
−
(
∂f

∂ϕ
Vr + f

∂Vr

∂ϕ

)
=

1

r
fVϕ +

∂f

∂r
Vϕ + f

∂Vϕ

∂r
− ∂f

∂ϕ
Vr − f

∂Vr

∂ϕ

=
1

r
fVϕ +

(
∂f

∂r
Vϕ − ∂f

∂ϕ
Vr

)
+ f

(
∂Vϕ

∂r
− ∂Vr

∂ϕ

)
This result means the following:
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Fig. C1 Diagram of cylindrical convection and vector potential
(a) Top view of convection. (b) Top view of the vector potential

(∇× fV)z =

(
1

r
fVϕ +∇f×V+ f∇×V

)
z

. (C17)

As described above, owing derivation by cylindrical coordinates, (C15) and (C17)
differ from the case of Cartesian coordinates because a term containing the coefficient
1
r appears in several places. Therefore, the deformation of the equation according to
(C13), which is based on Cartesian coordinates, cannot be used for examination in
cylindrical coordinates. To be clear, substituting (15) within the right-hand bracket of
(14) is not a problem. There is no problem if the rot on both sides of (14) and the rot
on the left side of (16) are treated in cylindrical coordinates. The problem arises when
the transformation of the right side of (14) into the right side of (16), (C12) or (C13),
which holds in Cartesian coordinates, is used. First, since (C14) strictly decomposes
the components in cylindrical coordinates, it is not considered necessary to transform
the equation according to (C13).

The conclusion of this paper depends on whether the deformation is used. However,
we have not found literature that shows why or how deformation is used. Therefore,
we cannot confirm at this time whether it is simply a convention, who proposed it,
what is a valid reason, or whether Cowling was aware of the deformation. Future
investigations are needed.

C.2 Illustration via Diagram

Additional terms for the axisymmetric flow velocity and magnetic field are illustrated
via diagrams to facilitate geometric understanding.

Observe Fig. C1. First, convection is described. (a) Top view from the top of
axisymmetric axis Z. The arrows indicated by wi, wm and wo are the inner, middle
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and outer channel widths, respectively. Consider the portion distributed at the angle
indicated by the arrow. The arrows indicated by ri, rm and ro are the distances from
the Z-axis to the inner, middle and outer channels, respectively. The circle is a line
indicating the distance of rm from the Z-axis. The width of the flow path thus varies in
cylindrical coordinates in proportion to the distance from the Z-axis. In other words,
the width of the flow path is increased by r. Then, for a certain amount of flow to
pass through these widths, flow needs to pass at a flow velocity of 1

r . However, the
flow velocity is determined by the setting of convection. The additional term is 1

rP
when P is constant within the range of settings, which is not always true in reality.
However, even if P is not constant, an additional term replaces 1

rP . Normally, P is a
function of r and z.

Next, the vector potential is described. (b) is a top view as above. Suppose that a
current I flows along the circle. Pi and Po indicate some positions inside and outside
the current path, resulting in vector potentials of Ai and Ao, respectively. Consider
the portion distributed at the angle indicated by the arrow. ri, rm and ro are the same
as above. The same is true for magnetic fields. If the length of the current source is
wm, the vector potentials Ai and Ao (within widths wi, and wo) are received from the
current for that length according to the distance from Pm. In addition, it is distributed
according to the widths wi and wo. However, if there is only one current path, as
shown in the figure, the additional term will not be 1

rA. The additional term is 1
rA

when A is constant within the range of settings, which is not always true in reality.
However, even if A is not constant, an additional term replaces 1

rA. Normally, A is a
function of r and z.

If (C13) is used, the terms 1
rA and 1

rP do not occur, so the flow velocity and
magnetic field equations are as follows:

up = −∂P
∂z

er +
∂P

∂r
ez. (C18)

Bp = −∂A
∂z

er +
∂A

∂r
ez. (C19)

Then the axisymmetric feature disappears. Even if the width of the flow path or the
length of the electric circuit differs from wi to wo, the flow velocity and magnetic field
are irrelevant to these widths or lengths. Therefore, since the property of axisymmetry
is excluded, the deformation will lead to a different result from the phenomenon of
axisymmetry. However, we think that the deformation is mentioned in a peer review
and on the website for a reason, but we have not been able to find this reason.

Additionally, if power is generated, the current is more complicated because it is
generated by a plurality of circles. To obtain the value accurately, numerical calcula-
tions must be relied on, which is beyond the scope of this paper. However, at least from
the viewpoint of cylindrical coordinates, an additional term is generated to replace
the term 1

rA, and this term is considered a source of power generation. We consider
that the conclusion is different from that of using (C13), which is based on Cartesian
coordinates.
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