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Abstract 

Consistency is an important assumption to justify evidence synthesis in network meta-

analysis. Sidesplitting is a representative method used to evaluate inconsistency; it 

decomposes the overall estimate of network meta-analysis on a specific treatment pair to 

those of direct and indirect comparisons and assesses their concordance. A relevant issue 

in sidesplitting is that adequate adjustments are needed in multi-arm trials (≥3 arms) to 

prevent biases. In existing methods, sidesplitting requires several restrictions on model 

parameters or additional parameter modeling and the computations are complicated. In 

this article, we show that sidesplitting involving the adjustments of multi-arm trials can 

be uniformly treated within a network meta-regression framework, especially via the 

modeling method of Noma et al. (2017; Stat Med 36:917-927), which introduces 

additional free parameters to adjust the biases caused by multi-arm trials. The proposed 

approach can be interpreted as a specific version of the design-by-treatment interaction 

model, and any inference methods for the network meta-regression can be applied 

involving higher-order asymptotic approximations. The proposed method is applied to 

two network meta-analyses of hypertensive drugs. 

 

Key words: network meta-analysis; contrast-based approach; sidesplitting; inconsistency; 

design-by-treatment interaction. 
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1. Introduction 

Consistency is a relevant assumption to justify evidence synthesis in network meta-

analysis (Nikolakopoulou, White and Salanti, 2021; Salanti, 2012). Conventionally, 

consistency refers to the agreement between evidence of direct and indirect comparisons 

(Salanti, 2012; Strom, Kimmel and Hennessy, 2013); however, Higgins et al. (2012) and 

Jackson et al. (2016) showed that this concept is rigorously explained as design-by-

treatment interactions on the network. "Design" refers to the combination of treatments 

compared in the corresponding studies (although this word is generally used with broader 

meaning). Inconsistency means a disagreement of treatment effects across different 

combinations of treatment comparisons on the network. 

   Sidesplitting (Dias et al., 2010; Noma et al., 2017) is a representative method to 

evaluate inconsistency and is used as a standard analysis tool in many standard statistical 

packages of network meta-analysis, e.g., network (White, 2015) of Stata and gemtc 

(van Valkenhoef et al., 2016; van Valkenhoef et al., 2012) and netmeta (Balduzzi et al., 

2023) of R. This method decomposes the overall estimate of network meta-analysis on a 

specific treatment pair to those of direct and indirect comparisons and assesses their 

concordance (i.e., the inconsistency). From a modern viewpoint, it can be interpreted as 

a design-by-treatment interaction assessment for specific studies involving the 

corresponding treatment pair. Originally, Dias et al. (2010) proposed a back-calculation 

and node-splitting approach under a Bayesian framework. Noma et al. (2017) suggested 

an alternative frequentist approach for the contrast-based model (White et al., 2012) using 

Lindsay's composite likelihood method (Lindsay, 1988). One of the drawbacks of the 

approach of Dias et al. (2010) is that their methods do not address possible biases caused 

by the consistency restrictions of the other treatment pairs in multi-arm (≥3 arms) trials 

(Noma et al., 2017; White, 2015). Noma et al. (2017) proposed adding the design-by-
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treatment interaction parameters to the corresponding treatment pairs, and White (2015) 

provided a "symmetric" assumption of the remaining treatment pairs to adjust the 

potential bias. The simulation studies of Noma et al. (2017) showed that these adjustments 

are necessary to provide valid inference results. 

   Although these methods provide effective solutions, they cannot be easily handled by 

current standard computational tools. In this article, we show that the sidesplitting can be 

uniformly treated within the framework of a network meta-regression model via a 

contrast-based approach (White et al., 2012). We also show that the bias adjustments for 

multi-arm trials can also be handled within this framework, especially when Noma et al. 

(2017)'s adjustment method is used. These methods enable effective computations for the 

sidesplitting, and various inference methods can be applied using the network meta-

regression framework (Jackson and Riley, 2014; Jackson, White and Riley, 2013; Noma 

et al., 2023; Noma et al., 2018). 

 

2. Network meta-regression model for contrast-based approach 

We here consider the contrast-based network meta-regression model (Noma et al., 2023; 

White et al., 2012). We consider synthesizing 𝑁  trials and a comparison of 𝑝 ൅ 1 

treatments. 𝑌௜௝  denotes an estimator of a treatment effect in contrast to a reference 

treatment (e.g., placebo) for the jth treatment in the 𝑖 th trial ( 𝑖 ൌ 1, 2, … ,𝑁; 𝑗 ൌ

1,2, … ,𝑝). Commonly used effect measures are the mean difference, standardized mean 

difference, risk difference, risk ratio, odds ratio, and the hazard ratio; the ratio measures 

are usually transformed on a logarithmic scale (Higgins and Thomas, 2019). For the 

multivariate meta-regression, we consider the following multivariate random-effects 

model for the outcome variable 𝒀௜ ൌ ൫𝑌௜ଵ,𝑌௜ଶ, … ,𝑌௜௣൯
்
: 

𝒀௜ ൌ 𝜽௜ ൅ 𝒆௜        (1) 
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𝜽௜ ൌ 𝑿௜
்𝜷 ൅ 𝜺௜ 

where 𝜽௜ ൌ ൫𝜃௜ଵ,𝜃௜ଶ, … ,𝜃௜௣൯
்
 and 𝜷 ൌ ൫𝜷ଵ

் , … ,𝜷௣்൯
்

. The regression function model 

𝑿௜
்𝜷 involves a design matrix, 

𝑿௜ ൌ ൮

𝒙௜ଵ 𝟎 ⋯ 𝟎
𝟎 𝒙௜ଶ … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝒙௜௣

൲ 

where 𝒙௜௝  is a 𝑞௝ ൈ 1  covaraiate vector for 𝑌௜௝  (𝑞௝  is the number of the covariates) 

and 𝜷௝  is its 𝑞௝ ൈ 1  regression coefficient vector. Also, 𝒆௜  and 𝜺௜  are independent 

random variation terms within and across studies (𝑝 ൈ 1 random vectors), assumed to be 

distributed as 𝒆௜~MVNሺ𝟎,𝑺௜ሻ  and 𝜺௜~MVNሺ𝟎,𝚺ሻ. 𝑺௜ (a 𝑝 ൈ 𝑝 matrix) is the within-

study covariance matrix: 

𝑺௜ ൌ

⎝

⎜
⎛

𝑠௜ଵ
ଶ 𝜌௜ଵଶ𝑠௜ଵ𝑠௜ଶ ⋯ 𝜌௜ଵ௣𝑠௜ଵ𝑠௜௣

𝜌௜ଶଵ𝑠௜ଶ𝑠௜ଵ 𝑠௜ଶ
ଶ … 𝜌௜ଶ௣𝑠௜ଶ𝑠௜௣

⋮ ⋮ ⋱ ⋮
𝜌௜௣ଵ𝑠௜௣𝑠௜ଵ 𝜌௜௣ଶ𝑠௜௣𝑠௜ଶ ⋯ 𝑠௜௣

ଶ
⎠

⎟
⎞

 

which is usually assumed to be known and fixed to its valid estimate. In addition, 𝚺 is 

the between-studies covariance matrix: 

𝚺 ൌ 𝜏ଶ𝑷 ൌ 𝜏ଶ ൮

1 1 2⁄ ⋯ 1 2⁄
1 2⁄ 1 … 1 2⁄
⋮ ⋮ ⋱ ⋮

1 2⁄ 1 2⁄ ⋯ 1

൲  

for 𝜏ଶ ൐ 0. Notably, the correlation structure of 𝚺 can be assumed to be unstructured; 

however, there are rarely a sufficient number of studies for all of the variance–covariance 

parameters to be identified. Thus, most network meta-analyses adopt the equal-variance 

assumption for the 𝑝 components of 𝜺௜; all the pairwise correlation coefficients should 

then be equal to 0.50 because of the consistency restriction (Higgins and Whitehead, 

1996; Lu and Ades, 2009). In the present work, similar to the approach of Jackson et al. 
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(2014), we adopt the equal-variance assumption as a standard assumption of this model. 

For trials that do not include a reference treatment, the data augmentation approach of 

White et al. (2012) was adopted, where a quasi-small dataset was added into the reference 

arm (e.g., 0.0001 events for 0.001 patients for a binary outcome). Also, we denote the 

inverse of the marginal covariance matrix of 𝒀௜ as 𝑾௜ ൌ ሺ𝚺 ൅ 𝑺௜ሻିଵ. 

The restricted maximum likelihood (REML) estimation is the standard method used 

to estimate the model parameters in practice. The REML log-likelihood function is 

ℓሺ𝜷, 𝜏ଶሻ ൌ const.െ
1
2
෍ሼlogሼdetሺ𝑾௜

ିଵሻሽ ൅ ሺ𝒚௜ െ 𝑿௜
்𝜷ሻ்𝑾௜ሺ𝒚௜ െ 𝑿௜

்𝜷ሻሽ
ே

௜ୀଵ

െ
1
2

log ൝det൭෍𝑿௜𝑾௜𝑿௜
்

ே

௜ୀଵ

൱ൡ 

Note that most individual clinical trials typically involve only two to three or four arms; 

thus, we formally replace 𝒀௜ , 𝑿௜ , and 𝑺௜  with their subvectors and submatrices. We 

denote the REML estimators of {𝜷, 𝜏ଶ} as {𝜷෡ , �̂�ଶ}; 𝜷෡ is given as the generalized least-

squares estimator (Noma et al., 2023; White et al., 2012), 

𝜷෡ ൌ ൭෍𝒀௜
்𝑾෢௜𝑿௜

்

ே

௜ୀଵ

൱൭෍𝑿௜𝑾෢௜𝑿௜
்

ே

௜ୀଵ

൱

ିଵ

 

where 𝑾෢௜ ൌ ൫𝚺෡ ൅ 𝑺௜൯
ିଵ

 and 𝚺෡ ൌ �̂�ଶ𝑷. The covariance matrix of 𝜷෡  is estimated by 

Vሾ𝜷෡ሿ ൌ ൫∑ 𝑿௜𝑾෢௜𝑿௜
்ே

௜ୀଵ ൯
ିଵ

. The resultant REML-based Wald-type tests and confidence 

intervals are assured to be valid and efficient under large sample settings. Notably, the 

other estimators are applicable for the proposed methods discussed in the following 

sections, such as Jackson's method-of-moment estimator (Jackson et al., 2013). 
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3. Sidesplitting using network meta-regression 

Sidesplitting factorizes the overall estimator of network meta-analysis on a specific 

treatment pair to those of direct and indirect comparisons (Dias et al., 2010; Noma et al., 

2017). In this section, we formally denote the treatments on the network as A, B, C,…, 

where A is set to the reference. Without loss of generality, we focus on the comparison 

between A and B and consider decomposing the treatment effect estimator into direct and 

indirect comparison estimators and assessing their inconsistency. In this section, we will 

show that the sidesplitting is implementable using the aforementioned network meta-

regression framework. 

 

3.1 Case 1: Only two-arm trials 

The simplest case is the network that does not involve multi-arm trials that include both 

A and B (i.e., only two-arm trials exist for this pair). In this case, we can model the 

possible inconsistency of the network meta-regression model by modeling the covariate 

vector 𝒙௜ଵ as a two-component vector, 

𝒙௜ଵ ൌ ൫𝑥௜ଵ,ୢ୧୰, 𝑥௜ଵ,୧୬ୢ൯
்
 

where 𝑥௜ଵ,ୢ୧୰ ൌ 1 and 𝑥௜ଵ,୧୬ୢ ൌ 0 if the corresponding trial design is A vs. B; otherwise, 

𝑥௜ଵ,ୢ୧୰ ൌ 0 and 𝑥௜ଵ,୧୬ୢ ൌ 1. This scenario is regarded as a special case of the design-by-

treatment interactions. The corresponding regression coefficients that constitute 𝜷𝟏, 

𝜷𝟏 ൌ ൫𝛽ଵ,ୢ୧୰,𝛽ଵ,୧୬ୢ൯
்
 

are then interpreted as the summaries of treatment effects of direct and indirect 

comparisons. In addition, for the other treatment contrasts, we set the covariate vector as 

𝑥௜௝ ൌ 1  (for all 𝑖 ൌ 1, 2, … ,𝑁;  𝑗 ൌ 2, 3, … , 𝑝 ). When the consistency assumption is 

fulfilled for the other components on the network, the REML estimators 𝛽መଵ,ୢ୧୰  and 

𝛽መଵ,୧୬ୢ  are directly used as the summary estimators of direct and indirect comparison 
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evidence. Also, the REML estimators 𝛽መଵ,ୢ୧୰  and 𝛽መଵ,୧୬ୢ  accord to those of pairwise 

meta-analysis for the studies of direct comparison and a subgroup analysis that excludes 

the studies with direct comparisons. 

Notably, the REML estimators 𝛽መଵ,ୢ୧୰ and 𝛽መଵ,୧୬ୢ are orthogonal in the sense of Cox 

and Reid (1986). Thus, the inconsistency test for the null hypothesis H0: 𝛽ଵ,ୢ୧୰ ൌ 𝛽ଵ,୧୬ୢ 

is performed using the Wald statistic: 

𝑊 ൌ
𝛽መଵ,ୢ୧୰ െ 𝛽መଵ,୧୬ୢ

ට𝑉ൣ𝛽መଵ,ୢ୧୰൧ ൅ 𝑉ൣ𝛽መଵ,୧୬ୢ൧
 

where 𝑊 follows the standard normal distribution under H0. 

 

3.2 Case 2: Involving multi-arm (≥3 arms) trials 

In the case of multi-arm (≥3 arms) trials that include both A and B, additional adjustments 

are required. As a simple example, we consider three-arm trials that involve A, B, and C. 

In these cases, if the network meta-regression model in Section 3.1 is simply applied, the 

REML estimators 𝛽መଵ,ୢ୧୰  and 𝛽መଵ,୧୬ୢ  can be biased when 𝛽ଵ,ୢ୧୰ ് 𝛽ଵ,୧୬ୢ  because the 

other treatment contrasts of this design (A vs. B vs. C) assume the consistency restriction 

with the other components of the evidence network. Within the three-arm trials, the 

differences in treatment effects of B vs. C and A vs. C are expressed as 𝛽ଶ െ 𝛽ଵ,ୢ୧୰ and 

𝛽ଶ, respectively. However, for the other components of the network, the differences in 

treatment effects of B vs. C and A vs. C should be expressed as 𝛽ଶ െ 𝛽ଵ,୧୬ୢ and 𝛽ଶ, 

respectively. When 𝛽ଵ,ୢ୧୰ ് 𝛽ଵ,୧୬ୢ, they disagree and the regression function model is 

regarded as "misspecified." Under this condition, the regression parameter estimators are 

theoretically well known to be biased; Noma et al. (2017)'s simulation studies have also 

shown that the naïve approach explained in Section 3.1 (corresponding to the methods of 

Dias et al., 2010) produces biased estimators. 
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To address this issue, Noma et al. (2017) proposed a composite likelihood method 

that involves free parameters in the other contrasts in the multi-arm trials. This approach 

means introducing design-by-treatment interaction parameters into the other contrasts in 

the corresponding studies. White (2015) proposed a similar adjustment using a symmetric 

assumption of the other treatment contrasts. Although he discussed only three-arm trial 

cases, his method can be straightforwardly generalized to cases with more than three 

arms; however, if the symmetry assumption is not fulfilled, the regression function model 

is also misspecified and the REML estimators can be biased. 

To circumvent the model misspecification problems, we propose adding free 

parameters to all of the other contrasts in the corresponding studies, similar to the 

approach of Noma et al. (2017), within the network meta-regression model. As the 

simplest example, for the three-arm case that involves three-arm trials A vs. B vs. C, the 

remaining treatment involved in the design is C. We should then add a covariate 𝑥௜ଶ,ୟୢ୨ 

to 𝒙௜ଶ to adjust the consistency restriction on this study; we denote the corresponding 

regression parameter as 𝛽ଶ,ୟୢ୨. Parameter 𝛽ଶ,ୟୢ୨ is fundamentally a nuisance parameter, 

and its estimate is not reported in general; however, by adopting this regression modeling, 

we can effectively circumvent the model misspecification problems and obtain consistent 

estimators of 𝛽ଵ,ୢ୧୰ and 𝛽ଵ,୧୬ୢ. 

For trials designed with more than three arms, the same covariates that adjust the 

design-by-treatment interactions should be modeled for all remaining treatments similarly. 

Notably, however, if the corresponding treatment does not appear in the other designs on 

the network, these covariates should not be added because the overall model would 

become unidentifiable. In these cases, the corresponding regression parameters (for the 

remaining treatments) might not be interpreted as treatment effect measures; however, 

they are nuisance parameters for the sidesplitting analyses and are not reported generally. 
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In these cases, the inconsistency test for the null hypothesis H0: 𝛽ଵ,ୢ୧୰ ൌ 𝛽ଵ,୧୬ୢ is 

constructed using the same Wald statistic described in Section 3.1. The REML estimators 

𝛽መଵ,ୢ୧୰ and 𝛽መଵ,୧୬ୢ are also orthogonal in the sense of Cox and Reid (1986) in these cases. 

 

4. Applications 

4.1 Heart failure data 

Sciarretta et al. (2011) performed a network meta-analysis of antihypertensive drugs 

based on 26 randomized controlled trials (n = 223,313), which involved seven 

antihypertensive drug classes [α-blocker (AB), angiotensin-converting enzyme inhibitor 

(ACE), angiotensin II receptor blocker (ARB), β-blocker (BB), calcium channel blocker 

(CCB), conventional treatment (CT), and diuretic (DD)] and placebo. The incidence of 

heart failure was adopted as the outcome. The network plot for this network meta-analysis 

is presented in Figure 1(a). 

   We adopted the odds-ratio (OR) as the effect measure, in accordance with the original 

analysis of Sciarretta et al. (2011). We adapted two sidesplitting methods: (1) one that did 

not adjust the multi-arm trial issue (unadjusted method; calculated using the network 

routine in Stata (White, 2015)) and (2) the proposed network meta-regression approach. 

The results are presented in Table 1. Because most of the trials were two-arm trials and 

only two were three-arm trials (STOP-2 and ALLHAT), most of the results were similar. 

However, for several treatment pairs involved in multi-arm trials, the two methods 

provided substantially different results. Note that small discordances can occur because 

of differences in software platforms and computational modules. As explained in Section 

3, the unadjusted method might provide biased results and the proposed method could 

adjust the biases via the proposed simple network meta-regression modeling. 

Notably, the inconsistency test of treatment pair ARB vs. CT was significant, mainly 
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because this network involved the Jikei Heart Study, the main paper of which was 

retracted from Lancet because of misconduct (Mochizuki et al., 2007); some falsifications 

appeared in the published data, and the treatment effect of ARB might have been 

overestimated. Both of the sidesplitting results showed that, compared with the indirect 

comparison evidence, the direct comparison evidence indicated a significantly large 

treatment effect of ARB. The Jikei Heart Study was also detected as an outlying trial in 

the study of Noma et al. (2020). 

 

4.2 Diabetes data 

Elliott and Meyer (2007) reported a network meta-analysis that assessed the effects of 

antihypertensive drugs on incident diabetes. 22 clinical trials (total participants: 143,153) 

comparing five antihypertensive drug classes [ACE, ARB, BB, CCB, and DD] and 

placebo were involved. The network plot is presented in Figure 1(b). The outcome was 

incidence of diabetes and we adopted the OR as the effect measure, in accordance with 

the original analyses of Elliott and Meyer (2007). 

Table 2 shows the results of sidesplitting; the same two methods with Section 4.1 

were applied to this network meta-analysis. This network involves 4 three-arm trials 

(AASK, ALLHAT, MRC-E, and STOP-2) and most of the six treatments (except for 

ARB) were included in any of these trials. Thus, the two methods provided substantially 

different estimates for the direct and indirect evidence and their differences for most of 

the treatment pairs. Especially, the differences of DD vs. BB and ACE vs. CCB were 

relatively large. Although the results of inconsistency tests were not altered, the possible 

biases should be carefully considered. For the inconsistency tests, those of ACE vs. BB 

and BB vs. placebo were significant (P < 0.05) for both of the two approaches. The 

reasons were not clear, but these results should be useful information to interpret the 

overall results. 
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5. Concluding remarks 

Network meta-analyses and their evidence have been widely utilized in public health, 

clinical practice, health technology assessment, and policy making. If misleading 

evidence has been reported and the checking methods have been inaccurate or insufficient, 

the impact might be enormous. Inconsistency evaluations are critical processes in good 

practices of these studies (Hutton et al., 2015). Sidesplitting has been one of the primary 

analysis tools, and the potential biases resulting from the adoption of inadequate modeling, 

as discussed in Section 3, should be carefully addressed. In this article, we provided an 

effective adjustment method based on the network meta-regression framework. It can be 

implemented using well-established multivariate meta-regression methods if the contrast-

based approach is adopted, and it can be similarly adapted to the arm-based approach by 

the same regression modeling (White et al., 2012). In network meta-analysis practice, the 

proposed method would be an effective tool for preventing misleading results and 

providing precise evidence. 
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Table 1. Results of the sidesplitting analysis for the network meta-analysis of heart failure data †. 

  
Unadjusted method  Network meta-regression approach 

Direct  Indirect Difference P-value  Direct Indirect Difference P-value 

Placebo vs. ACE −0.276 (0.143) −0.407 (0.131) 0.131 (0.194) 0.499  −0.276 (0.143) −0.407 (0.126) 0.131 (0.191) 0.491 
Placebo vs. ARB −0.155 (0.131) −0.440 (0.161) 0.284 (0.204) 0.163  −0.155 (0.131) −0.440 (0.137) 0.284 (0.189) 0.133 
Placebo vs. CCB −0.392 (0.180) −0.100 (0.093) −0.292 (0.202) 0.148  −0.394 (0.185) −0.103 (0.103) −0.291 (0.211) 0.168 
Placebo vs. DD −0.982 (0.261) −0.428 (0.094) −0.554 (0.277) 0.046  −0.982 (0.272) −0.426 (0.116) −0.556 (0.296) 0.060 

AB vs. DD −0.705 (0.120) −0.740 (2085.5) 0.035 (2085.5) 1.000  −0.705 (0.120) −1.848 (66.67) 1.143 (66.67) 0.986 
ACE vs. ARB 0.051 (0.145) 0.061 (0.113) −0.010 (0.184) 0.956  0.051 (0.145) 0.061 (0.112) −0.010 (0.184) 0.956 

ACE vs. BB −0.182 (0.458) 0.235 (0.125) −0.417 (0.475) 0.380  −0.182 (0.458) 0.235 (0.125) −0.417 (0.475) 0.380 
ACE vs. CCB 0.172 (0.099) 0.158 (0.105) 0.014 (0.132) 0.916  0.193 (0.127) 0.127 (0.133) 0.066 (0.184) 0.720 

ACE vs. CT 0.056 (0.123) 0.121 (0.141) −0.065 (0.180) 0.719  0.054 (0.144) 0.130 (0.155) −0.075 (0.212) 0.721 
ACE vs. DD −0.123 (0.094) −0.446 (0.188) 0.323 (0.202) 0.109  −0.089 (0.114) −0.465 (0.203) 0.376 (0.233) 0.106 
ARB vs. BB 0.057 (0.150) 0.252 (0.166) −0.195 (0.224) 0.384  0.057 (0.179) 0.238 (0.192) −0.182 (0.262) 0.488 

ARB vs. CCB 0.136 (0.147) 0.093 (0.106) 0.043 (0.182) 0.813  0.136 (0.147) 0.093 (0.105) 0.043 (0.181) 0.813 
ARB vs. CT 0.400 (0.192) −0.093 (0.112) 0.493 (0.224) 0.027  0.400 (0.181) −0.064 (0.081) 0.460 (0.199) 0.021 
BB vs. CCB −0.176 (0.149) 0.109 (0.160) −0.284 (0.219) 0.193  −0.176 (0.242) 0.149 (0.245) −0.325 (0.345) 0.345 
CCB vs. CT −0.123 (0.102) 0.029 (0.166) −0.151 (0.191) 0.428  −0.156 (0.110) 0.071 (0.170) −0.227 (0.202) 0.263 
CCB vs.DD −0.355 (0.106) −0.300 (0.181) −0.054 (0.199) 0.785  −0.361 (0.132) −0.304 (0.202) −0.057 (0.241) 0.814 

 
† Estimates and standard errors are presented. Abbrebiations: α-blocker (AB), angiotensin-converting enzyme inhibitor (ACE), angiotensin II receptor blocker (ARB), β-blocker 

(BB), calcium channel blocker (CCB), conventional treatment (CT), and diuretic (DD). 
  



 
 
 

 

Table 2. Results of the sidesplitting analysis for the network meta-analysis of diabetes data †. 

  
Unadjusted method  Network meta-regression approach 

Direct  Indirect Difference P-value  Direct Indirect Difference P-value 

DD vs. ACE −0.439 (0.112) −0.376 (0.107) −0.063 (0.146) 0.663   −0.416 (0.118) −0.412 (0.113) −0.004 (0.163) 0.981 

DD vs. ARB −2.116 (1.072) −0.457 (0.103) −1.659 (1.077) 0.123   −2.116 (1.072) −0.457 (0.102) −1.659 (1.077) 0.123 

DD vs. BB 0.132 (0.150) −0.143 (0.096) 0.274 (0.173) 0.112   0.020 (0.150) −0.090 (0.089) 0.110 (0.175) 0.531 

DD vs. CCB −0.191 (0.110) −0.283 (0.104) 0.091 (0.143) 0.523   −0.204 (0.117) −0.267 (0.114) 0.064 (0.163) 0.697 

DD vs. Placebo −0.427 (0.132) −0.190 (0.105) −0.237 (0.164) 0.148   −0.412 (0.134) −0.203 (0.108) −0.209 (0.173) 0.226 

ACE vs. BB 0.186 (0.084) 0.461 (0.082) −0.274 (0.108) 0.011   0.163 (0.087) 0.496 (0.090) −0.333 (0.125) 0.008 

ACE vs. CCB 0.239 (0.103) 0.116 (0.086) 0.123 (0.118) 0.299   0.227 (0.120) 0.138 (0.103) 0.089 (0.158) 0.574 

ACE vs. Placebo 0.204 (0.085) −0.014 (0.110) 0.219 (0.140) 0.117   0.204 (0.084) −0.014 (0.110) 0.219 (0.139) 0.115 

ARB vs. BB 0.311 (0.151) 0.456 (0.113) −0.144 (0.189) 0.444   0.311 (0.151) 0.456 (0.112) −0.144 (0.188) 0.443 

ARB vs. CCB 0.242 (0.138) 0.229 (0.119) 0.012 (0.182) 0.946   0.242 (0.138) 0.229 (0.117) 0.012 (0.181) 0.945 

ARB vs. Placebo 0.224 (0.125) 0.152 (0.132) 0.071 (0.182) 0.694   0.224 (0.125) 0.152 (0.132) 0.071 (0.181) 0.694 

BB vs. CCB −0.215 (0.064) −0.066 (0.100) −0.149 (0.117) 0.203   −0.213 (0.067) −0.070 (0.109) −0.142 (0.128) 0.265 

BB vs. Placebo −0.862 (0.227) −0.150 (0.076) −0.712 (0.234) 0.002   −0.800 (0.260) −0.155 (0.077) −0.645 (0.271) 0.017 

CCB vs. Placebo −0.150 (0.161) −0.008 (0.090) −0.142 (0.185) 0.441   −0.150 (0.161) −0.008 (0.087) −0.142 (0.183) 0.437 

 
† Estimates and standard errors are presented. Abbrebiations: α-blocker (AB), angiotensin-converting enzyme inhibitor (ACE), angiotensin II receptor blocker (ARB), β-blocker 

(BB), calcium channel blocker (CCB), conventional treatment (CT), and diuretic (DD). 
  



 
 
 

 
 

 

Figure 1. Network plot for the network meta-analysis of (a) heart failure data, and (b) diabetes data. 
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