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Abstract 

The contrast-based approach is one of the primary approaches in network meta-analysis. 

For statistical modeling in network meta-analysis and meta-regression models, within-

study covariance estimates are needed to adequately address the correlations among the 

multivariate outcomes. In this computational note, we present the formulas of covariance 

estimators for standard effect measures used in modern meta-analysis practice: risk 

difference, risk ratio, odds ratio, mean difference, and standardized mean difference 

(Cohen's d and Hedge's g). 

 

Key words: network meta-analysis; contrast-based approach; multivariate random-effects 

model; within-study covariance matrix; network meta-regression. 
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1. Introduction 

Contrast-based network meta-analysis using the multivariate meta-analysis and meta-

regression models is one of the primary approaches in network meta-analysis 

(Nikolakopoulou, White and Salanti, 2021; Salanti et al., 2008; White et al., 2012). For 

statistical modeling in network meta-analysis, within-study covariance matrices are 

usually assumed to be known and fixed to their adequate estimates based on study-

specific summary statistics, similar to conventional pairwise meta-analyses 

(DerSimonian and Laird, 1986; Higgins and Thomas, 2019). However, even though the 

within-study variance estimators are well known, which have been widely adopted in 

conventional pairwise meta-analyses (Whitehead, 2002), there are no literatures that 

explicitly present the formulas of within-study covariance estimators. In this 

computational note, we present the formulas of covariance estimators for standard effect 

measures used in the practice of modern meta-analysis. 

 

2. Network meta-analysis and meta-regression models 

We here discuss the contrast-based network meta-analysis and meta-regression models 

(White et al., 2012). The former is a special case of the latter; thus, we adopt the notation 

of the network meta-regression model without loss of generality. Here, we consider that 

𝑁  trials are synthesized and that 𝑝  1  treatments are compared. 𝑌  denotes an 

estimator of a treatment effect in contrast to a reference treatment (e.g., placebo) for the 

jth treatment in the 𝑖 th trial ( 𝑖 ൌ 1, 2, … ,𝑁; 𝑗 ൌ 1,2, … ,𝑝 ). Commonly used effect 

measures are risk difference, risk ratio, odds ratio, mean difference, and standardized 

mean difference; the ratio measures are usually transformed on a logarithmic scale 

(Whitehead, 2002). For the network meta-regression model, we assume the following 
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multivariate random-effects regression model for the outcome variable 𝒀 ൌ

൫𝑌ଵ,𝑌ଶ, … ,𝑌൯
்
: 

𝒀 ൌ 𝜽  𝒆        (1) 

𝜽 ൌ 𝑿
்𝜷  𝜺 

where 𝜽 ൌ ൫𝜃ଵ,𝜃ଶ, … ,𝜃൯
்
 and 𝜷 ൌ ൫𝜷ଵ

் , … ,𝜷்൯
்

. The regression function model 

𝑿
்𝜷 involves a design matrix: 

𝑿 ൌ ൮

𝒙ଵ 𝟎 ⋯ 𝟎
𝟎 𝒙ଶ … 𝟎
⋮ ⋮ ⋱ ⋮
𝟎 𝟎 ⋯ 𝒙

൲ 

where 𝒙  is a 𝑞 ൈ 1  covaraiate vector for 𝑌  (𝑞  is the number of the covariates) 

and 𝜷  is its 𝑞 ൈ 1  regression coefficient vector. In addition, 𝒆  and 𝜺  are 

independent random variation terms within and across studies (𝑝 ൈ 1 random vectors), 

assumed to be distributed as 𝒆~MVNሺ𝟎,𝑺ሻ  and 𝜺~MVNሺ𝟎,𝚺ሻ. Also, 𝑺  (a 𝑝 ൈ 𝑝 

matrix) is the within-study covariance matrix, 

𝑺 ൌ

⎝

⎜
⎛
𝑠ଵଵ
ଶ 𝑠ଵଶ ⋯ 𝑠ଵ
𝑠ଶଵ 𝑠ଶ

ଶ … 𝑠ଶ
⋮ ⋮ ⋱ ⋮

𝑠ଵ 𝑠ଶ ⋯ 𝑠
ଶ
⎠

⎟
⎞

 

which is usually assumed to be known and fixed to its valid estimate, as noted above. In 

addition, 𝚺 is the between-studies covariance matrix. For studies that do not include a 

reference treatment, the data augmentation approach of White et al. (2012) can be adopted, 

where a quasi-small dataset is added into the reference arm (e.g., 0.0001 events for 0.001 

patients for a binary outcome). Under these assumptions, we estimate the model 

parameters ሼ𝜷,𝚺ሽ  using valid estimating methods (e.g., the restricted maximum 

likelihood estimation; Noma et al., 2023a; White et al., 2012). Notably, most individual 
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clinical trials typically involve only two, three, or four arms; we therefore formally 

replace 𝒀, 𝑿, and 𝑺 with their subvectors and submatrices in the estimating functions. 

 

3. Estimating the within-study covariances 

3.1 General results 

In this computational note, we discuss the estimators of the within-study covariances 

𝑠 's (𝑖 ൌ 1, 2, … ,𝑁; 𝑗, 𝑘 ൌ 1,2, … , 𝑝). These quantities are defined as 

𝑠 ൌ Covሺ𝑌 ,𝑌ሻ 

and indicate that the outcome variables 𝑌 and 𝑌 are defined as contrast measures 

compared with a common reference treatment. Thus, these variables are correlated. For 

all possible effect measures discussed below, these quantities are expressed as differences 

of arm-specific outcome measures (e.g., the difference of log odds of the binomial 

probabilities for odds ratio). Without loss of generality, we denote these arm-specific 

outcome measures as 𝑍  ( 𝑗 ൌ 0,1,2, … ,𝑝 ) (i.e., 𝑌 ൌ 𝑍 െ 𝑍 , where 𝑍  is the 

outcome measure of the reference treatment group). The covariance is then expressed as 

Cov൫𝑌 ,𝑌൯ ൌ Cov൫𝑍 െ 𝑍,𝑍 െ 𝑍൯ ൌ Varሺ𝑍ሻ 

because 𝑍 and 𝑍 are independent (𝑗 ് 𝑘). Therefore, the within-study covariance 

estimator is provided as the variance estimator of the group-specific outcome variable 

𝑍. The variance estimator is simply provided by adequate probability models for types 

of effect measures. In the following sections, we present the concrete formulas. 

 

3.2 Dichotomous outcome 

For a dichotomous outcome, the binomial probability model is generally adopted. For 

simplicity, we adopt a somewhat different notation in Sections 3.2–3.3. Without loss of 

generality, we consider a three-arm trial in which the outcome variable follows 
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𝑋~𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙ሺ𝑁 , 𝑝ሻ 

where 𝑖 indicates the group (𝑖 ൌ 0, 1, 2). We formally regard group 0 as the reference 

group. For trials with more than three arms, the same formulas can be adapted. 

 

3.2.1 Risk difference 

A commonly used effect measure is the risk difference (RD), 

RD ൌ 𝑝 െ 𝑝 

and the empirical estimator is RD ൌ 𝑋 𝑁⁄ െ 𝑋 𝑁⁄  (𝑖 ൌ 1, 2). Using the results from 

Section 3.1, we can express the covariance estimator between RDଵ and RDଶ as 

Cov൫RDଵ, RDଶ൯ ൌ Var 
𝑋
𝑁
൨ ൌ

𝑋ሺ𝑁 െ 𝑋ሻ
𝑁
ଷ  

Note that this estimator is an exact estimator that does not use large sample 

approximations. 

 

3.2.2 Risk ratio 

The risk ratio (RR) is another representative effect measure that can express a relative 

risk: 

RR ൌ 𝑝 𝑝⁄  

In modeling for the network meta-regression model (1), this measure is usually 

transformed to a logarithm-scale, 

LRR ൌ logሺ𝑝ሻ െ logሺ𝑝ሻ 

and the empirical estimator is LRR  ൌ logሺ𝑋 𝑁⁄ ሻ െ logሺ𝑋 𝑁⁄ ሻ  ( 𝑖 ൌ 1, 2 ). The 

covariance estimator is then provided as 

Cov൫LRR ଵ, LRR ଶ൯ ൌ Var log ൬
𝑋
𝑁
൰൨ ൌ

1
𝑋

െ
1
𝑁
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3.2.3 Odds ratio 

Another representative measure is the odds ratio (OR), although this measure cannot be 

directly interpreted as an effect measure except in cases where it becomes a good 

approximation of the risk ratio under the event frequency (Greenland, 1987; Higgins and 

Thomas, 2019): 

OR ൌ 𝑝ሺ1 െ 𝑝ሻ ሼሺ1 െ 𝑝ሻ𝑝ሽ⁄  

In modeling for the network meta-regression model (1), this measure is also transformed 

to a logarithm-scale, 

LOR ൌ logሺ𝑝ሻ െ logሺ1 െ 𝑝ሻ  logሺ1 െ 𝑝ሻ െ logሺ𝑝ሻ 

and the empirical estimator is LOR  ൌ logሺ𝑋 𝑁⁄ ሻ െ logሼሺ𝑁 െ 𝑋ሻ 𝑁⁄ ሽ 

logሼሺ𝑁 െ 𝑋ሻ 𝑁⁄ ሽ െ logሺ𝑋 𝑁⁄ ሻ (𝑖 ൌ 1, 2). The covariance estimator is given as 

Cov൫LOR ଵ, LOR ଶ൯ ൌ Var log ൬
𝑁 െ 𝑋
𝑁

൰ െ log ൬
𝑋
𝑁
൰൨ ൌ

1
𝑋


1

𝑁 െ 𝑋
 

 

3.3 Continuous outcome 

For a continuous outcome, the normal distribution model is generally adopted. In this 

section, we also consider a three-arm trial without loss of generality, where the outcome 

variable follows a normal distribution 𝑁ሺ𝜇 ,𝜎
ଶሻ. We denote the empirical estimators of 

the means and variances as ሼ𝑀 , 𝑆
ଶሽ  reported in the individual studies, where 𝑖 

indicates the group (𝑖 ൌ 0, 1, 2). Also, we denote the sample size of the group i as 𝑁. We 

formally regard group 0 as the reference group. 

 

3.3.1 Mean difference 

The mean difference (MD) is a commonly used effect measure, 

MD ൌ 𝜇 െ 𝜇 
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and the empirical estimator is MD  ൌ 𝑀 െ 𝑀 (𝑖 ൌ 1, 2). Using the results from Section 

3.1, we express the covariance estimator between MD ଵ and MD ଶ as 

Cov൫MD ଵ, MD ଶ൯ ൌ Varሾ𝑀ሿ ൌ
𝑆
ଶ

𝑁
 

Note that, if 𝑆
ଶ is constructed on the basis of the sample unbiased variance estimator, 

this estimator is an exact estimator that does not use large sample approximations. 

 

3.3.2 Standardized mean difference 

The standardized mean difference (SMD) is a standardized measure of MD  by the 

common standard deviation between the groups: 

SMD ൌ
𝜇 െ 𝜇
𝜎ଶ

 

When this measure is adopted, we assume equal variances between the corresponding 

two groups, 𝜎ଶ ൌ 𝜎
ଶ ൌ 𝜎

ଶ (𝑖 ൌ 1, 2). We denote an empirical estimator of 𝜎 as 𝑆ଶ 

(the pooled sample variance estimator used in the Student’s t-test (Student, 1908) is 

usually adopted). The empirical estimator of SMD  is 𝑑 ൌ ሺ𝑀 െ𝑀ሻ 𝑆⁄  , which is 

known as Cohen's d (Hedges, 1981; Hedges and Olkins, 1985). Similar to the case of 

mean difference, a straightforward covariance estimator is given as 

Covሺ𝑑 ,𝑑ሻ ൌ Var 
𝑀

𝑆
൨ ൌ

1
𝑁

 

In addition, in practice, an alternative adjusted estimator (Hedge’s g; Hedges, 1981; 

Hedges and Olkins, 1985) is widely used: 

𝑔 ൌ 𝑑𝐽ሺ𝜈ሻ 

where 𝜈 ൌ 𝑁  𝑁 െ 2 and 

𝐽ሺ𝜈ሻ ൌ
Γሺ𝜈 2⁄ ሻ

ඥ𝜈 2⁄ Γሺሺ𝜈 െ 1ሻ 2⁄ ሻ
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Γሺ. ሻ is the gamma function. White (2015) has provided a covariance estimator between 

𝑔ଵ and 𝑔ଶ using the large sample approximations of White and Thomas (2005), 

Covሺ𝑔ଵ,𝑔ଶሻ ൌ 𝐽ሺ𝜈ଵଶሻଶ ൜
𝜈

ሺ𝜈 െ 2ሻ𝑁
 𝑔ଵ𝑔ଶ𝑉ሺ𝜈ଵଶሻൠ 

where 

𝑉ሺ𝜈ሻ ൌ
𝜈

𝜈 െ 2
െ

1
𝐽ሺ𝜈ሻଶ

 

In the work of White (2015), 𝜈ଵଶ is noted as "the degrees of freedom used to estimate 

the pooled standard deviation." However, there are two degrees of freedom in the 

quantities used in defining 𝑔ଵ and 𝑔ଶ. If the sample sizes 𝑁ଵ and 𝑁ଶ are similar, the 

two degrees of freedom are similar and White's estimator can be straightforwardly 

adopted using an appropriate intermediate value of the two degrees of freedom. Otherwise, 

because Cohen's d and Hedge's g are asymptotically equivalent, the asymptotic 

covariance estimator based on Cohen's d could be used as an alternative adequate choice. 

 

4. Concluding remarks 

The covariance estimators provided in Section 3 can be directly used in 𝑺  of the 

network meta-analysis and meta-regression models (1). Existing evidence obtained via 

simulation studies has shown that the plug-in-type estimating methods provide valid 

inference and prediction results under various settings (Noma, 2023; Noma et al., 2023ab; 

Noma, Nagashima and Furukawa, 2020; Noma et al., 2018). These computational notes 

will be useful in future software development and applications. 
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