
The maximum number of legal moves of1

Othello in reachable positions is 332

Hiroki Takizawa1
3

1Preferred Networks, Inc., Chiyoda-ku, Tokyo, Japan4

Corresponding author:5

Hiroki Takizawa1
6

Email address: contact@hiroki-takizawa.name7

ABSTRACT8

We prove that the maximum number of moves among all reachable positions in a game of Othello is 33.
We also construct a game record to achieve such a position. Additionally, including positions that are not
reachable from the initial position, we prove that this maximum is 34 and construct such a position. We
utilized Satisfiability (SAT) and Satisfiability Modulo Theories (SMT) solvers to obtain these computational
proofs. These new findings not only clarify properties of the game of Othello, but also provide hints for
the efficient and robust implementation of Othello software, and also present practical examples of using
SAT and SMT solvers.

9

10

11

12

13

14

15

Keywords: Othello, Branching factor, SAT Solver, SMT Solver16

INTRODUCTION17

Othello is a well-known game, and the development of Othello software has continued for many years.18

One of the earliest superhuman-strength programs, Logistello, trained through self-play and overpowered19

the human world champion, Takeshi Murakami, in 1997 (Buro, 1999). Even after Othello software20

surpassed human performance, efforts to develop even stronger software have persistently progressed,21

with Edax serving as a prime example (Delorme, 2021).22

In order to enhance Othello software, it is essential to optimize search efficiency and achieve highly23

efficient implementation. In alpha-beta search (Abramson, 1989), move ordering is pivotal to the efficiency.24

Therefore, a technique is widely adopted that involves enumerating legal moves, quickly evaluating the25

potential of each move, and then conducting the search in descending order of each move’s potential. If26

the number of legal moves, often referred to as the out-degree or branching factor in technical terms, is 3227

or fewer in any given position, the array to store them can be set to a length of 32. This can potentially28

speed up the software. However, until now, the maximum number of legal moves in Othello has been29

unknown.30

In this paper, we prove that the maximum number of legal moves in all position of Othello that are31

reachable from the initial position is 33. We also prove that this number increases to 34 if we do not32

restrict ourselves to positions that are reachable from the initial position. We utilize Satisfiability (SAT)33

and Satisfiability Modulo Theories (SMT) solver to generate these proofs. Additionally, we reconstruct34

a game record from our proof, which transitions from the initial position to one with 33 legal moves35

shown in Figure 1. To the best of our knowledge, these discoveries and computational proofs are novel36

contributions presented in this study.37

These findings not only offer the first clarification of one aspect of the nature of the game of Othello,38

but also represent successful practical applications of solvers for Satisfiability problems.39

RELATED WORKS40

The concept of computers playing board games can be traced back at least to Claude Shannon’s con-41

siderations in 1950 (Shannon, 1950). Even during the 20th century, superhuman-strength software had42

emerged for many popular board games, including Othello (Buro, 1999), Chess (Campbell et al., 2002),43



Figure 1. These are positions with 33 legal moves, which were outputted by the SAT solver kissat (Biere
and Fleury, 2022), and are reachable from the initial position. (a) A position in which it’s Black’s turn,
there are 33 legal moves, and there are 34 empty squares. The game record for this position is:
“F5D6C4F3C5B4B3E6C6G5F6C7C3D2C2B2F4G4G3G7G6E7D3G2H3B6”. (b) A position in which it’s
White’s turn and there are 33 legal moves with an equal number of empty squares. The game record for
this position is: “F5F6E6F4G7C6G3E7D6F3E3D3B7D7C2G2G1C3B2B3B4F7G5C4C7C8E2”.

and Checkers (Schaeffer et al., 1996). These were based on alpha-beta search algorithm (Abramson,44

1989), with their strength deriving from the ability to quickly search through a vast number of positions45

via efficient implementation. In recent years, thanks to improvements in computer performance and46

advancements of machine learning technology, software has achieved superhuman-strength in a wider47

range of games, including Go (Silver et al., 2016) and Shogi (Japanese chess) (Kaneko and Takizawa,48

2019; Silver et al., 2018).49

METHODS50

The use of terms ply and move51

In chess, there is a convention whereby a pair of consecutive moves, one by white and one by black, is52

referred to as a “move” or “full-move”, while a single move is termed a “ply” or “half-move”. However,53

for clarity in this paper, we do not employ the term “ply” and consistently use the term “move” to denote54

a single move.55

Preliminary56

Here, as a preliminary step, we will elucidate the methods for implementing several functions that form57

the components of the Othello software, in a manner that is conducive to input into an SMT solver.58

Bitboard59

In this study, an arbitrary Othello position is represented by two 64-bit unsigned integers. Specifically,60

• Each bit of the 64-bit integer is bijectively mapped to each square on the Othello board. The61

least significant bit corresponds to A1, with the A row mapped in sequence to the lowest 8 bits,62

and the most significant bit corresponds to H8. Generally, when i = 8 j + k (where 0 ≤ i < 6463

and 0 ≤ j,k < 8), the i-th bit corresponds to the square whose name is the concatenation of the64

( j+1)-th letter of the alphabet with the number (k+1).65

2/8



• In one of the 64-bit integers, the standing bits correspond to the squares where black stones are66

located. In the other 64-bit integer, the bits stand in the same manner, but correspond to the squares67

where white stones are located.68

Function to Generate Moves69

Assuming that the position is represented by the aforementioned two 64-bit integers, we designate70

the bitboard of the side whose turn it is as “player”, and the bitboard of the opposing side as “oppo-71

nent”. The “get moves” function shown in Figure 2 returns a bitboard wherein the set bits correspond72

to all squares where a stone can be legally placed. This “get moves” function is implemented us-73

ing only arithmetic operations, bit operations, and logical shifts. This code is available at GitHub:74

https://github.com/eukaryo/reversi33 .)75

Figure 2. A C++ implementation of a function to generate moves. This is based on Edax 4.4 (Delorme,
2021) with modifications by the author. Edax 4.4 is licenced under GNU General Public License v3.0
(Free Software Foundation, 2007).

Function for Population Count76

A function that counts the number of set bits in a 64-bit integer can be implemented using only arithmetic77

and bit operations, as exemplified by the “bit count” function in Figure 3. In Figure 3, 64-bit integer78

multiplication is utilized. This choice is motivated by the fact that some recent CPUs have very low79

latency for integer multiplication. This calculation has been known for a long time, and an implementation80

without using integer multiplication is also feasible (Reingold et al., 1977). This code is also available at81

GitHub: https://github.com/eukaryo/reversi33 .)82

Function to Identify the Positions of Stones to Be Flipped83

The function that takes the bitboards representing the current player’s stones (where “player” denotes the84

one whose turn it is) and the opponent’s stones, along with an integer specifying the move coordinates,85

and generates the bitboard corresponding to the stones that will be flipped (hereafter referred to as the “flip86

function”), is esesential for Othello software. The efficiency of the flip function significantly influences87

the overall computation speed of the search algorithm. In Edax, an array of flip functions is implemented,88

allowing the appropriate function to be selected via compilation options. It is worth noting that all of the89

flip functions implemented in Edax require index access to precomputed tables (except for the most naı̈ve90

implementation using slow for-loops), making them unsuitable for direct transcription into SMT solvers.91

3/8



Figure 3. A C++ implementation of a function to population count. This is based on Edax 4.4 (Delorme,
2021) with modifications by the author. Edax 4.4 is licenced under GNU General Public License v3.0
(Free Software Foundation, 2007).

As shown in Figure 4, We found an algorithm in a separate GitHub repository (primenumber, 2016)92

that does not use index access to tables at all. This can be easily transcribed for use with SMT solvers.93

The code shown in Figure 4 is also available at GitHub: https://github.com/eukaryo/reversi33 .)94

Definition of the Othello Variant95

We defined the rules for the Othello variant as follows.96

• The game does not end even in the case of two consecutive passes.97

• The game ends after the 42nd move, including passes.98

• The value of the game record equals to the maximum number of legal moves in all observed board99

positions, including the final position at game’s end.100

• Excluding the above stipulations, the rules align with those of traditional Othello.101

Given the above definition, for n = 33 and n = 34, we can assert that a game record with a value of n102

or greater exists if and only if there is a position that is reachable from the initial position and offers n103

legal moves. The reasons for this are as follows.104

As a preliminary experiment, we conducted an exhaustive search during the opening phase and105

confirmed that up to 2 passes can occur by the time the number of stones on the board increases from 17106

to 18. Consequently, the maximum number of passes that can occur while the number of stones on the107

board increases from 30 to 31 is 15.108

In order to achieve 33 legal moves, the total number of stones must not exceed 31. Consequently, the109

value must reach 33 at the latest immediately following a pass after the placement of the 31st stone. As110

such, consideration of 42 moves (comprising 26 stone placements, a maximum of 15 interspersed passes,111

and a final pass) is sufficient. Similarly, for cases where there are 34 legal moves, consideration of 42112

moves is sufficient.113

RESULTS114

Proven to be 34 Under Unrestricted Conditions115

Initially, we disregarded the constraint regarding whether a position is reachable from the initial position.116

Assuming that the central four squares (namely D4, D5, E4, and E5) always contain stones, we proceeded117

to derive a proof for the maximum number of legal moves.118

We used SMT solver z3 (De Moura and Bjørner, 2008) version 4.12.2 for our proof. In z3, it is119

possible to perform arithmetic operations on bitvectors, as well as bit manipulation and logical shifts. To120

input the problem into z3, the function to generate moves and the function to perform population count121

(described in Methods section above) were implemented using only the operations available in z3.122

As a result, the maximum number of legal moves was determined to be 34. We proved that it is123

unsatisfiable to have 35 or more legal moves, regardless of the number of empty squares. This value can124

4/8



Figure 4. A C++ implementation of the flip function (using Intel intrinsics for AVX2). This is based on
issen (primenumber, 2016) with modifications by the author. The GitHub repository is licenced under
GNU General Public License v3.0 (Free Software Foundation, 2007).

be considered as the upper bound for the maximum number of legal moves that can be achieved from the125

initial position through a series of legal moves.126

Another discovery was that among the positions with 33 legal moves, the maximum number of empty127

squares was 38 (for example, in the position shown in Figure 5a). For positions with 34 legal moves, the128

maximum was 37 (for example, in the position shown in Figure 5b). We proved that if a value exceeding129

these maximums is given as a constraint, it becomes unsatisfiable. (As declared in the data availability130

section below, the source codes and the outputs of analyses in this subsection are available at GitHub:131

https://github.com/eukaryo/reversi33 .)132

The Generated Positions Were Found to Be Unreachable from the Initial Position133

Next, we investigated whether the generated positions could be legally reached from the initial position.134

We implemented a function that takes a position as input and enumerates all positions that could directly135

precede the given position, followed by conducting a depth-first search.136

To enhance computational efficiency, we pre-enumerated all positions reachable from the initial137

position that contain 15 stones and have at least one legal move (19,785,690 variations when considering138

symmetric positions as identical), storing them in a hash table. When the aforementioned backward139

depth-first search arrives at a position with 15 stones, we can conclude that the original position is140

reachable from the initial position if and only if that position exists in the hash table.141

It is worth noting that a pruning technique can be applied to the aforementioned backward depth-first142

search. If a position is reachable from the initial position, the graph formed by treating the stones as143

nodes and connecting stones that exist within a Moore neighborhood (i.e., differences in x-coordinate144

and y-coordinate are either one or zero) will always yield a connected graph. Therefore, during the145

aforementioned backward depth-first search, pruning can be performed immediately once such a graph146

becomes disconnected.147

As a result, we determined that the generated positions were unreachable from the initial position. By148

iteratively adding a constraint that prevented the generation of identical positions, we produced over 1000149

5/8



Figure 5. Positions with 33 or more legal moves that the SMT solver z3 outputted, without considering
whether they are reachable from the initial position. Both of the following are positions with black to
move. (a) A position with 33 legal moves and 38 empty squares. (b) A position with 34 legal moves and
37 empty squares.

positions, none of which were reachable from the initial position (data not shown).150

Conversion of Problems to SAT Solver-Compatible Format and Their Resolution151

Building on the results above, we sought to enable the SAT solver to simultaneously identify positions152

reachable from the initial position that feature 33 or more legal moves, along with the corresponding153

game records. As a preparatory step, we defined the rules for the Othello variant as described in Methods154

section.155

First, we implemented the entire aforementioned Othello variant for the z3 SMT solver. However, the156

solution did not complete within 24 hours. Furthermore, to the best of our knowledge, z3 does not have a157

feature that permits the export of problem input in a format compatible with an external SAT solver, nor158

does it allow for the input of solutions provided by an external SAT solver.159

Therefore, we developed software that, given a problem setting, converting it into Conjunctive Normal160

Form (CNF) which is equivalent to the original problem in terms of satisfiability, and outputs it in161

DIMACS CNF format. In addition, for the case that the solution was found to be satisfiable, we also162

developed software to reconstruct the game record from the assignment of Boolean values to variables of163

the original problem. This approach enabled us to solve the aforementioned Othello variant using the164

latest SAT solvers.165

We utilized the SAT solver kissat (Biere and Fleury, 2022), which demonstrated superior performance166

in the SAT Competition 2022, to solve the problem. The solver features a “target” option. It accepts167

the assumption whether the solution is satisfiable or unsatisfiable, and the solver will solve the problem168

efficiently if the assumption is correct; even if the assumption is incorrect, it will still reach the correct169

conclusion, albeit potentially taking more time than when not using this option. In this experiment, both170

assumptions were tried in parallel on a Ryzen 5950X CPU.171

As a result, we obtained a position where there were 33 legal moves (as shown in Figure 1b) and the172

game record from the initial position. When we imposed a constraint that the number of legal moves must173

be 34 or more, we found this constraint to be unsatisfiable. Additionally, we introduced an extra rule to174

the aforementioned Othello variant that only considers the game record when it’s Black’s turn to move.175

As a result, we obtained a position where there were 33 legal moves for Black (as shown in Figure 1a) and176

the game record from the initial position. All three solutions were acquired within a 24-hour timeframe.177

6/8



(As declared in the data availability section below, the source codes and the outputs of analyses in this178

subsection are available at GitHub: https://github.com/eukaryo/reversi33 .)179

DISCUSSION180

In this study, we proved that among the positions reachable from the initial position in Othello, there181

exists a position with 33 legal moves, and that 33 is the maximum number of legal moves. Additionally,182

we also proved that, without considering whether the position is reachable from the initial position, the183

maximum number of legal moves increases to 34. This study not only elucidates of one aspect of Othello184

but also provides valuable information for the development of memory-safe and robust Othello software.185

In the course of this study, we successfully constructed positions that fulfilled the specified conditions,186

thereby demonstrating that the maximum numbers act as a lower bound. Conversely, we verified that these187

maximum numbers also act as a tight upper bound by demonstrating that an increment by one results in188

the SAT solver returning “unsatisfiable”. To validate this proof, it is crucial to ensure the absence of bugs189

both in the code we developed to convert the Othello problem to CNF for the SAT solver and within the190

SAT solver itself. Although we carefully checked our code for bugs, the potential introduction of formal191

verification to heighten certainty may be considered. This represents a limitation of our study. However,192

the primary aim of our study was to determine the existence of a position that is reachable from the initial193

state and in which the number of legal moves exceeds 32. Therefore, this was deemed beyond the scope194

of our study.195

CONCLUSIONS196

This study presented a scenario where a problem that proved intractable with the SMT solver z3 was solved197

within a reasonable time frame by converting it to CNF format and utilizing the latest SAT solver kissat198

(Biere and Fleury, 2022). Given the rapid advancements in SAT solvers through annual competitions, this199

case appears to support a perspective that challenges the design of SMT solvers closely integrated with200

older SAT solvers. However, further research is warranted on this matter.201

We hope this research proves beneficial to readers endeavoring to develop Othello software, understand202

the nature of Othello and other games, and those working towards the enhancement of SAT solvers and203

other theoretical solvers.204

ADDITIONAL INFORMATION AND DECLARATIONS205

Competing Interests206

The author declares that there are no competing interests.207

Author Contributions208

Hiroki Takizawa conceived and designed the research, implemented and performed the computational209

experiments, analyzed the data, prepared figures, authored drafts of the paper, and approved the final draft.210

Data Availability211

The source codes and the outputs of analyses are available at GitHub: https://github.com/eukaryo/reversi33212

.213

Funding214

The author has received no funding for this study.215

REFERENCES216

Abramson, B. (1989). Control strategies for two-player games. ACM Comput. Surv., 21(2):137–161.217

Biere, A. and Fleury, M. (2022). Gimsatul, IsaSAT and Kissat entering the SAT Competition 2022. In218

Balyo, T., Heule, M., Iser, M., Järvisalo, M., and Suda, M., editors, Proc. of SAT Competition 2022 –219

Solver and Benchmark Descriptions, volume B-2022-1 of Department of Computer Science Series of220

Publications B, pages 10–11. University of Helsinki.221

Buro, M. (1999). How machines have rearnea to play othello. IEEE intelligent systems & their applications,222

14(6):12–14.223

7/8



Campbell, M., Hoane, A., and hsiung Hsu, F. (2002). Deep blue. Artificial Intelligence, 134(1):57–83.224

De Moura, L. and Bjørner, N. (2008). Z3: An efficient smt solver. In International conference on Tools225

and Algorithms for the Construction and Analysis of Systems, pages 337–340. Springer.226

Delorme, R. (2021). edax-reversi. https://github.com/abulmo/edax-reversi. Last retrieved 2023-07-07.227

Free Software Foundation, I. (2007). Gnu general public license, version 3.228

http://www.gnu.org/licenses/gpl.html. Last retrieved 2020-01-01.229

Kaneko, T. and Takizawa, T. (2019). Computer shogi tournaments and techniques. IEEE Transactions on230

Games, 11(3):267–274.231

primenumber (2016). issen/src/move generator.cpp. https://github.com/primenumber/issen/blob/232

72f450256878094ffe90b75f8674599e6869c238/src/move generator.cpp. Last retrieved 2023-07-07.233

Reingold, E. M., Nievergelt, J., and Deo, N. (1977). Combinatorial algorithms: theory and practice.234

Prentice Hall College Div.235

Schaeffer, J., Lake, R., Lu, P., and Bryant, M. (1996). Chinook the world man-machine checkers champion.236

AI magazine, 17(1):21–21.237

Shannon, C. E. (1950). Xxii. programming a computer for playing chess. The London, Edinburgh, and238

Dublin Philosophical Magazine and Journal of Science, 41(314):256–275.239

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., Schrittwieser, J.,240

Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner,241

N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., and Hassabis, D. (2016).242

Mastering the game of go with deep neural networks and tree search. nature, 529(7587):484–489.243

Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran,244

D., Graepel, T., Lillicrap, T., Simonyan, K., and Hassabis, D. (2018). A general reinforcement learning245

algorithm that masters chess, shogi, and go through self-play. Science, 362(6419):1140–1144.246

8/8


