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This paper proposes an admittance control scheme for
robots equipped with joint-level position controllers
involving deadtime. Its main feature is an elabo-
rate discrete-time jerk limiter, which limits the third
derivative of the position command sent to the con-
troller. The jerk limiter is designed to suppress unde-
sirable oscillation especially when the robot is in con-
tact with stiff environments. The controller is designed
as a differential inclusion involving normal cones in
the continuous-time domain, and its discrete-time al-
gorithm is derived by the implicit Euler discretization.
The presented controller was validated with experi-
ments using a collaborative robot UR3e of Universal
Robots, which has the deadtime of 6 ms in the velocity-
command mode.
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1. Introduction

teriorate the responsiveness against the external forces.
Some strategies have been proposed to adaptively vary
the viscosity and inertia parameters of admittance con-
trol [2–11]. The trade-off between stability and respon-
siveness, however, is still inevitable in these methods.
Current velocity feedback [12], which injects additional
damping to the system, has been shown to be effective
to enhance the stablity, but it would also deteriorate the
responsiveness.

It has been known [13–15] that the feedforward of
the target acceleration in the position controller enhances
the stability. It is however not applicable to most
commercially-available manipulators because they usu-
ally do not provide access to the internal algorithms
of their position controllers. Some researchers [16–18]
employed fractional-order dynamics for admittance con-
troller. It has been reported [16] that it contributes to
better stability in comparison to the integer-order coun-
terparts. Its efficacy, however, is still theoretically un-
clear and its physical interpretation is complicated, pos-
sibly leading to difficulties in the parameter tuning.

There have also been approaches to reduce the risk of
instability and vibration by limiting the actuator torque
[14] and the commanded acceleration [13–15]. They
are also strongly coupled with the internal position con-
trollers, and are not very straightforward to use with com-
mercial position-controlled robots. An approach to alter
the commanded acceleration to enhance the stability has
been studied [19], but it is also coupled with the internal
position controller and its effectiveness in the presence of
the time delay is unclear. Imposing limits to the com-
manded velocity and acceleration has also been studied
in [20], but it is primarily intended for enhancing safety,
not for the stability.

This paper proposes an admittance control scheme with
a jerk limiter for position-controlled robots. The novelty
of the proposed admittance controller is that it has a jerk
limiter, which limits the third derivative of the position
command sent to the robot. The jerk limiter is shown
to be effective in suppressing the vibration that happens
when the robot is in contact with stiff environments. It
has a structure that adjusts the jerk limit according to the
velocity and the acceleration in order not to sacrifice the
responsiveness to external forces. The vibration caused
by the instability is suppressed by limiting the first, sec-
ond, and third derivatives of the position command. One
of its practical benefits is that it suppresses the vibrations

Robots subject to physical contact with external envi-
ronments need appropriate controllers to regulate the con-
tact forces. Most industrial robots are controlled by dedi-
cated position controllers that force the robots to track po-
sition commands from upper-level controllers. To enable 
such a robot to respond to external forces, an additional 
controller is needed to modify the position commands ac-
cording to the contact forces.

Admittance control is a control scheme that is suited 
for position-controlled robot manipulators. It is often re-
ferred to as position-based impedance control, and it can 
be implemented as an outer feedback loop attached to a 
position-controlled system. In an admittance controller, a 
virtual object having desired inertia, viscosity, and stiff-
ness is considered, and its motion is simulated accord-
ing to the external force that is obtained by a force sensor 
or some estimation methods. The robot is then position-
controlled to track the motion of the virtual object.

One problem of admittance control is instability. The 
robot may become unstable, especially when it is in con-
tact with a stiff environment and when the time delay in 
the controller is large [1]. It is known [1] that admittance 
control can be stabilized by setting high values to the vis-
cosity and inertia of the virtual object, but it would de-

1
corresponding author: Ryo Kikuuwe (kikuuwe@ieee.org)



even if the virtual viscosity and virtual inertia are set low. 
The effectiveness of the proposed method is verified by 
some experiments using a collaborative robot UR3e.

The remainder of this paper is organized as follows. 
Section 2 provides some mathematical preliminaries. 
Section 3 details the proposed admittance controller. Sec-
tion 4 presents the experimental results obtained by im-
plementing the proposed controller on a UR3e robot. Sec-
tion 5 concludes this paper.

2. Mathematical Preliminaries

Let a, b, and x are real numbers and a ≤ b. This paper
uses the following functions:

proj[a,b](x)≜

 b if b < x
x if a ≤ x ≤ b
a if x < a

(1)

dzn[a,b](x)≜ x−proj[a,b](x) (2)

N[a,b](x)≜


(−∞,0] if x = a
0 if a < x < b
[0,∞) if x = b
/0 if x > b ∨ x < a.

(3)

The functions proj and dzn can be referred to as the pro-
jection and deadzone functions, respectively. The func-
tion N is called the normal cone [21]. The following rela-
tion exists between the projection function and the normal
cone:

y ∈ x−N[a,b](y) ⇐⇒ y = proj[a,b](x), (4)

which has been shown in previous publications (e.g., [22,
Proposition 2], [23, Section A.3], and [24, Proposition
6.47]).

3. proposed method

3.1. CONVENTIONAL Admittance Controller
Fig. 1(a) is an example of the structure of an admittance

controller. The controller comprises a virtual object, often
referred to as a proxy, and the robot is position-controlled
(or velocity-controlled) to track the proxy position. The
proxy moves according to a predetermined equation of
motion, of which a typical example can be described as
follows:

M(q̈− p̈d)+B(q̇− ṗd)+K(q− pd) = f + fd . (5)

Here, q is the proxy position and f is the force acting on
the robot, which is obtained by a force sensor or other
means. The quantities pd and fd are the desired position
and the desired force, respectively, given as inputs to the
controller, and M, B, and K are positive constants repre-
senting the inertia, viscosity, and stiffness, respectively.
As long as the position controller is accurate enough, the
robot ’s response to the external force f is close to the
proxy dynamics described by (5).
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Fig. 1. System controlled with admittance controller. (a)
Typical admittance controller. (b) A physical interpretation
of the proxy dynamics (5). (c) A physical interpretation of
the proxy dynamics (5) with K = 0 and ṗd ≡ 0.

One interpretation of the proxy dynamics (5) can be il-
lustrated in Fig. 1(b). Here, the proxy can be considered
as a massless object, and it is connected to the desired
position pd through a parallel spring-damper-inerter ele-
ment1. The forces f and fd act on the proxy. The proxy
dynamics of this form can be used when, e.g., the robot
should track the desired position pd with a certain level of
compliance against the external force f , by deviating from
the desired position pd . In such an application, the desired
force fd should usually be set to be constantly zero, and
also, the parameters should be set to satisfy B2 > 4KM to
prevent overshoots.

One variation of the controller can be obtained by set-
ting K = 0 and ṗd ≡ 0 with the proxy dynamics (5). In
such a case, the proxy dynamics reduces to the one il-
lustrated in Fig. 1(c), in which the proxy is a point mass
combined with a damper subject to the forces f and fd .
Such a controller can be used when, e.g., the robot should
yield to the external force, such as the one applied by a
human user in case of direct teaching, or when the robot
should apply the force fd to an external object in case of
grinding or assembly tasks.

It is well known that admittance-controlled systems are
prone to instability, especially when the robot is in con-
tact with an external object. As has been discussed in
previous work, e.g., [14, 15], the cause of the instabil-

1. This paper uses the term inertia to mean an element that produces the
force proportional to the relative acceleration between its two ends.

2



Fig. 2. Illustration of the three-dimensional region within
which [q̇, q̈, ...q ]T satisfies the constraint (8). (a) Three-
dimensional plot of the region. (b) The cross-section of the
region at ...q = 0. (c) The cross-section of the region at q̇ = 0.
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3.2. Proposed Admittance controller
As an extension of the typical admittance controller (5),

this paper proposes an admittance controller that can be
written as follows:

M(q̈− p̈d)+B(q̇− ṗd)+K(q− pd)

∈ f −NV(q̇+Pq̈)−NA(q̈)−NJ(q̈)(
...q ). (6)

where

V≜ [−V,V ] (7a)

A≜ [−A,A] (7b)

J(q̈)≜ [proj[−J,−Jy](−Js −Hq̈),

proj[Jy,J](Js −Hq̈)] (7c)

Here, P,V,A,J,Js,H, and Jy are positive constants. The
last three terms of the right-hand side of the differential in-
clusion (6) constrain the vector [q̇, q̈, ...q ]T within the three-
dimensional region illustrated in Fig. 2, which represents
the intersection of the following three constraints:

q̇+Pq̈ ∈ V, q̈ ∈A,
...q ∈ J(q̈). (8)

As long as [q̇, q̈, ...q ]T is within the region in Fig. 2, (6)
reduces to a spring-damper-inerter system illustrated in
Fig. 1(b). As will be detailed in the next Section 3.3, P and
H should be set so that (6) has a solution in the discrete-
time domain. A block diagram of the proposed controller
(6) is shown in Fig. 3.

The second term of the right-hand side of (6) is for lim-
iting the velocity, and it is mainly for safety reasons. The
term +Pq̈ is for realizing the exponential convergence to
the velocity limits ±V . As has been pointed out in [20], a
simple velocity limiter without such a term as +Pp̈ would
cause an abrupt change in the acceleration at the time of
reaching the velocity limit, which would not be favorable.

The third and fourth terms of the right-hand side of (6)
aim to reduce the amplitude of the robot’s vibration by
limiting the commanded jerk ...q . This is motivated by
our preliminary observation that an admittance-controlled
robot with a few milliseconds of deadtime generated high-
frequency vibration in contact with an external object.
Limiting the commanded acceleration q̈ was somewhat
effective for suppressing the vibration, but it resulted in
poor responsiveness of the robot to the external force. In
contrast, limiting both the commanded jerk ...q and the
commanded acceleration q̈ was rather effective in realiz-
ing both smaller vibration and better responsiveness.

Our observation showed that the vibration could not be
sufficiently suppressed only by the adjustment of the up-
perbounds A and J, which are for the commanded acceler-
ation and the commanded jerk, respectively. Specifically,
when J/A is large, high-frequency oscillations could not
be eliminated, but when J/A is small, low-frequency and
high-amplitude oscillations took place. The design of the
acceleration-dependent jerk limits illustrated in Fig. 2 is
motivated by this observation. The basic idea is that,
when the acceleration is high, the jerk limit should be low-
ered to suppress the high-frequency vibration, but when

Fig. 3. System controlled with proposed admittance controller.

ity is the phase lag or the deadtime in the closed loop. 
One approach to compensate for the phase lag is to use 
phase-leading and acceleration feedforward techniques in 
the position controller [15]. The effect of instability can 
be attenuated by imposing limits on the actuator torque 
[14]. These approaches need to alter the structure of the 
position controllers and thus are not applicable to com-
mercial robot manipulators equipped with proprietary po-
sition controllers. Moreover, it is questionable whether 
these methods are applicable to deadtime of more than a 
few milliseconds, which can exist in commercial position 
controllers.
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the acceleration is low, higher jerk values should be al-
lowed to prevent low-frequency, high-amplitude oscilla-
tion. As illustrated in Fig. 2, the parameters Js and Jy
should be chosen as Js < J and Jy > J. The values of Js,
Jy, and H need be chosen considering the trade-off be-
tween the vibration suppression and the responsiveness.
Specifically, a higher Jy, a higher Js, and a smaller H re-
sult in high responsiveness and larger vibration. While
definitive guidelines for tuning these parameter values are
currently unavailable, one can experimentally adjust them
through trial and error.

3.3. Discrete-time representation
The discrete-time representation of (6) and (7) are now

derived. Let T be the timestep size and k be the integer
representing the discrete-time index. By using the implicit
Euler discretization, (6) and (7) can be discretized as fol-
lows:

jk ∈ j∗k −NV(vk +Pak)−NA(ak)−NJ(ak)( jk). (9)

where

vk ≜ (qk −qk−1)/T (10)

ak ≜ (qk −2qk−1 +qk−2)/T 2 (11)

jk ≜ (qk −3qk−1 +3qk−2 −qk−3)/T 3. (12)

q∗k ≜ pd,k +
(2M+BT )(qk−1 − pd,k−1)

M+BT +KT 2

−
M(qk−2 − pd,k−2)−T 2 fk

M+BT +KT 2 (13)

j∗k ≜ (q∗k −3qk−1 +3qk−2 −qk−3)/T 3. (14)

Through the derivation detailed in Appendix Appendix
A, (9) can be written as follows:

jk ∈ j∗k −NLk( jk) (15)

where

V̄b,k ≜
−V − vk−1 − (T +P)ak−1

T 2 +PT
(16)

V̄t,k ≜
V − vk−1 − (T +P)ak−1

T 2 +PT
(17)

Āb,k ≜ (−A−ak−1)/T (18)

Āt,k ≜ (A−ak−1)/T (19)

J̄b,k ≜ proj[−J,−Jy]

(−Hak−1 − Js

1+HT

)
(20)

J̄t,k ≜ proj[Jy,J]

(−Hak−1 + Js

1+HT

)
(21)

Lk ≜ [max(V̄b,k, Āb,k, J̄b,k),min(V̄t,k, Āt,k, J̄t,k)]. (22)

By using the relation (4), (15) can be written as follow:

jk = projLk
( j∗k). (23)

In conclusion, the algorithm of the proposed controller (6)
and (7) can be written as follows:

q∗k := pd,k +
(2M+BT )(qk−1 − pd,k−1)

M+BT +KT 2

−
M(qk−2 − pd,k−2)−T 2 fk

M+BT +KT 2 (24a)

j∗k := (q∗k −3qk−1 +3qk−2 −qk−3)/T 3 (24b)

ak−1 := (qk−1 −2qk−2 +qk−3)/T 2 (24c)
vk−1 := (qk−1 −qk−2)/T (24d)

V̄b,k :=
−V − vk−1 − (T +P)ak−1

T 2 +PT
(24e)

V̄t,k :=
V − vk−1 − (T +P)ak−1

T 2 +PT
(24f)

Āb,k := (−A−ak−1)/T (24g)

Āt,k := (A−ak−1)/T (24h)

J̄b,k := proj[−J,−Jy]

(−Hak−1 − Js

1+HT

)
(24i)

J̄t,k := proj[Jy,J]

(−Hak−1 + Js

1+HT

)
(24j)

Lk := [max(V̄b,k, Āb,k, J̄b,k),min(V̄t,k, Āt,k, J̄t,k)] (24k)
jk := projLk

( j∗k) (24l)

qk := 3qk−1 −3qk−2 +qk−3 +T 3 jk. (24m)

Note that the algorithm (24) is something that can be di-
rectly implemented to control devices through translations
into appropriate programming languages. The computa-
tional load of the algorithm (24) is almost negligible since
it does not involve iterative computations.

The values for the parameters P and H should be cho-
sen so that the algorithm (24) always has a solution.
Specifically,

max(V̄b,k, Āb,k, J̄b,k)≤ min(V̄t,k, Āt,k, J̄t,k) (25)

is necessary and sufficient for the existence of the solu-
tion, assuring the non-emptiness of the set Lk appearing
in (24k). To verify the condition (25), one needs to check
nine (= 3 × 3) inequalities. One can easily see that, if
[vk−1,ak−1, jk−1]

T is included in the set defined by (8) and
illustrated in Fig. 2, the following inequalities are satis-
fied:

Āb,k ≤ 0 ≤ Āt,k, J̄b,k ≤ 0 ≤ J̄t,k, V̄b,k < V̄t,k. (26)

Among the nine inequalities required by (25), five are im-
plied by (26). The remaining four inequalities are:

V̄b,k ≤ Āt,k, V̄b,k ≤ J̄t,k, Āb,k ≤ V̄t,k, J̄b,k ≤ V̄t,k. (27)

Through tedious but straightforward derivations (with the
help of symbolic computation software programs such as
Mathematica), one can see that the following condition is
sufficient for the satisfaction of (27):

P ≥ A/J−T ∧ H ≥ 1/P. (28)
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That is, the values for the parameters P and H need to be 
chosen to satisfy (28) in the implementation of the algo-
rithm (24). More specifically, P needs to be set slightly 
larger than A/J − T because setting a larger P could lead 
to undesirable deceleration before reaching the velocity



limits ±V . Regarding H, as mentioned in Section III.B, it
should be smaller to achieve higher responsiveness, but it
must be large enough not only to suppress vibrations but
also to satisfy (28).

3.4. Properties of the Controller
The behavior of the robot in contact with a stiff envi-

ronment is the main concern in force control applications.
The proposed controller (6), of which the discrete-time
representation is (24), is intended to alleviate the concern
in comparison to the conventional simple controller (5),
but it should be noted that the stability is not guaranteed
with the proposed controller. Recall that the proposed
controller (6) combines a linear controller (5) with some
limiters, making the controller nonlinear. It is obvious that
incorporating limiters, in principle, cannot alter an unsta-
ble system into a stable system, especially in the sense of
Lyapunov stability. The following discussion shows that
the limiters in the controller result in stable limit cycles in
the systems when it is divergent without the limiters.

The following discussion is based on the conventional
describing function method. The describing function of
the proposed controller (6), or its discrete-time represen-
tation (24), cannot be analytically obtained. It, however,
can be numerically obtained by providing sinusoidal in-
puts with different amplitudes and frequencies. Let us
consider the sequence { fk}k∈Z where

fk =U cos(kωT ), (29)

which is a sinusoidal signal with the amplitude U > 0 and
the frequency ω > 0. Let us assume that, with the input
sequence { fk}k∈Z, the algorithm (24) provides an output
sequence {qk}k∈Z. Based on these sequences, the describ-
ing function Ψ : R+×R+ → C of the algorithm (24) can
be numerically obtained as follows:

Ψ(U,ω)≜ ∑n+2π/ω
k=n qk(cos(kωT )− j sin(kωT ))

U ∑n+2π/ω
k=n cos(kωT )2

. (30)

With the algorithm (24), if the input amplitude U is
small enough, the jerk jk does not reach the upperbounds
in the algorithm and thus the output {qk}k∈Z becomes
equivalent to the output of the linear controller (5), which
is the algorithm (24) with the limits {V,A,J,Js,Jy} set to
be the infinity. Therefore, one can see that the function
Ψ(U,ω) has the following property:

lim
U→0

Ψ(U,ω) =
1

K −Mω2 + jBω
. (31)

Here, note that the right-hand side of (31) is the trans-
fer function of the linear controller (5) in the frequency
domain. In addition, when the input amplitude U be-
comes larger, the signal amplitude would more frequently
hit the upperbounds, and the ratio of the output amplitude
against the input amplitude U would decrease. Therefore,
Ψ(U,ω) also has the following property:

∂ |Ψ(U,ω)|
∂U

< 0. (32)

Fig. 4. Experimental setup (UR3e, Universal Robots) and
its joint numbers.

Recall that the output q of the algorithm (24) is sent
to the robot controller as the position command. Let
P(s) be the transfer function from the position command
q to the robot position p. Let Ke be the stiffness of
the environment in contact with the robot’s end-effector.
Then, the force f , which is used as the input to the algo-
rithm (24), satisfies f = −Ke p, and the open-loop trans-
fer function of the system in the frequency domain is
−KeP( jω)Ψ(U,ω). By using this, we can see that the
oscillation of the force f with the angular frequency ω
and the amplitude U persists if the following harmonic
balance equation [25] is satisfied:

KeP( jω)Ψ(U,ω) =−1+0 j. (33)

In addition, because of the property (32), if the magnitude
of the oscillation is larger or smaller than U satisfying
(33), it would decrease or increase, respectively, until it
reaches U . It means that the limit cycle with the angular
frequency ω and the amplitude U satisfying (33) is stable.
The existence of the limit cycle can also be explained in a
similar light as in [26, Section 5.4.3].

The obtained conclusion is that the admittance con-
troller without limiters may be unstable and divergent,
while the one combined with the limiters results in sta-
ble limit cycles and does not diverge. Whether the limit
cycle is practically acceptable or not would depend on its
amplitude and frequency and also on the application. The
parameters should be chosen so that at least the amplitude
of the limit cycle is small enough, although tuning guide-
lines of parameters are still unclear. Experiments in the
next section empirically show that the oscillation can be
made acceptably small with a robot with 6-ms deadtime
by careful tuning of parameters.
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4. Experiment

4.1. Experimental Setup
The six-DOF collaborative robot UR3e (Universal 

Robots) shown in Fig. 4 was used in the experiments. 
Its payload capacity is 3 kg, and its maximum reach is 
500 mm from the center of Joint 0. Universal Robots pro-
vides an API named Real-Time Data Exchange (RTDE) 
to allow communication between the dedicated robot con-
troller and user programs running on a PC through TCP/IP 
at the cycle of T = 0.002 s. This study used the RTDE 
function speedJ to send the velocity command v (= q̇) 
to the robot. (The second argument A∗, the maximum 
acceleration, of speedJ was set as A∗ = 5 rad/s2.) We 
did not use the position command q directly because the 
function servoJ, which is to send position commands, 
caused significant latency between the sent command q 
and the measured position ps, which resulted in low sta-
bility of admittance control.

We estimated the external force f , which is necessary 
for admittance controllers, using the motor current and 
precalibrated weight distribution of the robot. Specifi-
cally, we computed the input force f in the following pro-
cedure:

f̂c := k̂cc (34a)

f := dzn[−F,F ](− f̂c + fg(ps)). (34b)

Here, f̂c is the estimated torque generated by the mo-
tor, k̂c is the estimated torque constant of the mo-
tor, c is the motor torque obtained by the function
getActualCurrent, ps is the joint angle obtained
by the function getActualQ, and fg(p) is the torque
caused by the gravity. The use of the deadzone function
in (34) is to attenuate the influence of the noise and the in-
ertia. The parameters needed to calculate fg(p) were cho-
sen through some preliminary experiments. The torque
constants k̂t were estimated as {k̂t0, k̂t1, k̂t2, k̂t3, k̂t4, k̂t5}=
{18,18,9.5,4,4,4} Nm/A.

For the purpose of comparison, we used the following
two controllers:

• cP: Proposed controller (24).

• cN: Controller cP with a simple jerk limiter, J =
[−J,J].

Unless otherwise specified, the parameters were set as
shown in Table 1.

4.2. Preliminary: Identification of Deadtime
We performed a set of preliminary experiments to

identify the deadtime in the robot controller. The
robot controller receives the velocity command v from
the PC through TCP/IP through an RTDE function
speedJ. The function receives another argument, which
is an acceleration limit A∗. It then produces the mo-
tor current c, which can be monitored by the function
getActualCurrent, and the resultant joint velocity

Table 1. Parameters used in the experiments.

symbols physical meaning value and units
M the virtual inertia 0.0625 kg·m2

(= B2/(4K))
B the virtual viscosity 0.5 Ns/rad
K the virtual stiffness 1 N/rad
V the velocity limit 1.5 rad/s
A the acceleration limit 5 rad/s2

J the jerk limit 300 rad/s3

P the time constant for the
velocity limit

0.015 s

H the slope of the jerk
limit shown in Fig. 2(c)

3000 s−1

Js the intercept of the jerk
limit shown in Fig. 2(c)

500 rad/s3

Jy the jerk limit at high ac-
celeration

30 rad/s3

robot controller

acceleration

limiter

velocity

controller
robot

Fig. 5. Relation among the velocity command v, the mod-
ified ’target velocity’ vr subject to the acceleration limit A∗,
the motor current c, and the measured velocity vs in the ex-
perimental setup. Relevant RTDE functions are also shown.

is obtained by the function getActualQd. In addition,
there is a function getTargetQd to monitor a“ target
velocity,”which we hereafter refer to as vr. It is presum-
ably a modified velocity command used within the con-
troller. The relations among v, vr, c, and vs are inferred to
be as illustrated in Fig. 5.

Fig. 6 shows the results of some preliminary experi-
ments. Fig. 6(a) shows the results of a trial where v was a
sinusoidal wave with A∗ = 0.1 rad/s2 and Fig. 6(b) shows
the results of a trial where v = min(0.5,(t −1)2/40) rad/s
with A∗ = 0.1 rad/s2. It can be seen that the measured
joint velocity vs follows the modified velocity vr, not the
original velocity command v, and that vr tracks v as |v̇| is
smaller than A∗. Figs. 6(c) and (d) show the result of trials
with A∗ = 10 rad/s plotted in different time scales. They
show that there is a time delay of approximately 6 ms be-
tween v and vr. It means that the deadtime of approxi-
mately 6 ms exists in the robot controller.

4.3. Experiment I: moved by hand
In the first set of experiments, the experimenter moved

the robot by pushing the end-effector by hand. The con-
trollers cN and cP were implemented to Joint 0. The pa-
rameter F was set as F = 28 Nm. The desired position
was set as pd = 0 throughout the experiments.

In the beginning, the robot was stationary at pd = 0 as

6



Fig. 6. Velocity command v sent to the robot controller, the
‘target velocity’ vr obtained from the robot controller, and
the measured joint velocity vs. (a) A sin wave was com-
manded by v with the acceleration limit of speedJ set as
A∗ = 0.1 rad/s2. (b) A parabola (t − 1)2/40 with an upper
bound 0.5 rad/s was commanded by v with A∗ = 0.1 rad/s2.
(c) The command v was changed from 0 rad/s with A∗ =
10 rad/s2. (d) An enlarged version of (c).

pole

moving

direction

moving

direction

Fig. 7. Configurations for (a) Experiment I and (b) Experi-
ment II.

pd =−2.67 rad, and from t = 1 s, pd was varied with the
velocity ṗd =−0.01 rad/s. The end-effector contacted the
pole at around t = 1.6 s, and after that, the robot contin-
ued applying the force on the pole. The parameters were
set as the same as in Experiment I, except that F was set
as F = 6 Nm.

The results are shown in Fig. 9. The controller cN re-
sulted in bouncing when the end-effector contacted the
pole. In contrast, the controller cP maintained contact
with the surface of the pole. Even with the controller cP,
the force f̂c vibrated with a small amplitude during the
contact with the pole as shown in Fig. 9(b). No noisy
sound, however, was heard from the actuator and the con-
tact surface.

4.5. Experiment III: moved by hand with 6-DOF
control

In the third set of experiments, the controller cN and
cP were implemented in all joints of the robot with the
setting K = 0. The experimenter grasped the end-effector
and moved it in a circle. Because of the setting K = 0,
the controller was supposed to behave as a mass-damper
system illustrated in Fig. 1(c). The parameter F were set

shown in Fig. 7(a). Then, the experimenter pushed the 
robot by hand on the end-effector for a while (Period A). 
After that, the experimenter stopped and firmly grasped 
the end-effector (Period B). Finally, the experimenter put 
his hand away from the end-effector.

The results are shown in Fig. 8. In Periods A, the 
robot was being moved by the external force, the gen-
erated torque f̂c and the commanded acceleration a vi-
brated, but the amplitude was smaller with cP than with 
cN. This can be seen as the effect of cP bounding the 
commanded jerk j. The difference was more distinct in 
Periods B, in which the vibrations are much smaller with 
cP than with cN, especially in the commanded accelera-
tion a. In fact, the actuator generated a noisy sound with 
cN but not with cP, and the experimenter did not feel the 
vibration with cP while he was grasping the robot. Af-
ter Period B, the experimenter released the robot, and the 
robot position p converged to pd smoothly with both con-
trollers, as intended by the setting of the values of M, B, 
and K resulting in the critical damping.

Although it is not shown in the figures, when J was 
chosen larger, the vibration amplitude became larger, and 
the teaching pendant of UR3e displayed an error message.

4.4. Experiment II: contact with environment
The second set of experiments was conducted to inves-

tigate the performance of the proposed controller in con-
tact with a rigid external object. As shown in Fig. 7(b), an 
aluminum pole was fixed to the robot ’s base, and Joint 0 
was controlled so that the end-effector gains contact with 
the pole. Specifically, pd of Joint 0 was initially set as
            

7



Fig. 8. Results of Experiment I. In Period A, the experi-
menter moved the robot by hand. In Period B, the experi-
menter held the robot and stopped its movement. After Pe-
riod B, the experimenter took his hand away from the robot.

as {F0,F1,F2,F3,F4,F5} = {4,6,3,1,0.5,0.4} Nm. The
values of F were determined so that the experimenter was
able to move the robot with a light hand and also | f̂e| does
not exceed F during the motion as long as no external
forces acted. Other parameters were set the same as in
Experiment I for all joints.

The results are shown in Fig. 10. With both controllers,
the experimenter was able to make the robot move along
a circle. With controller cP, the magnitudes of vibration
of f̂c were smaller than controller cN. With controller cN,
the experimenter heard a noisy sound from the actuators
and felt a vibration in his hand, but with cP, he did not
perceive sound or vibration.

Fig. 9. Results of Experiment II. The end-effector contacted
the pole at around t = 1.6 s and it kept pushing after that.

5. Conclusion

This paper has proposed an admittance control scheme
for joint-level position-controlled robots. The controller
has an elaborate discrete-time jerk limiter to limit the third
derivative of the position command sent to the robot con-
troller. It effectively suppresses the amplitude of oscilla-
tion presumably caused by the deadtime inside the robot
controller, especially when the robot is in contact with ex-
ternal environments. The controller was validated with a
UR3e robot, which has a 6 ms deadtime in the velocity-
command mode.

Future work should address the extension of the con-
troller to a task-space controller. In addition, the clarifica-
tion of guidelines for tuning the parameters would also be
necessary.
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Appendix A. Derivation from (9) to (15)

Eq. (15) can be derived from (9) as follows:

(9) ⇐⇒ jk ∈ j∗k −NV(T (T jk +ak−1)+ vk−1

+P(T jk +ak−1))

−NA(T jk +ak−1)

−NJ(T jk+ak−1)( jk) (35a)

⇐⇒ jk ∈ j∗k −NV( jk)−NA( jk)
−NJ(ak−1)

( jk) (35b)

⇐⇒ jk ∈ j∗k −NV∩A∩J(ak−1)
( jk) (35c)

⇐⇒ jk ∈ j∗k −NLk( jk) (35d)
⇐⇒ (15) (35e)

where V, A, and J(ak−1) are closed intervals defined as

V≜
[
−V − vk−1 − (T +P)ak−1

T 2 +PT
,

V − vk−1 − (T +P)ak−1

T 2 +PT

]
(36)

A≜
[
−A−ak−1

T
,

A−ak−1

T

]
(37)

J(ak−1)≜
[

proj[−J,−Jy]

(−Hak−1 − Js

1+HT

)
,

proj[Jy,J]

(−Hak−1 + Js

1+HT

)]
. (38)

Here, the derivation from (35a) to (35b) can be explained
by the following equivalences:

jk ∈ J(T jk +ak−1)
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⇐⇒ proj[−J,−Jy](−Js −Hak−1 −HT Jk)

≤ jk ≤ proj[Jy,J](Js −Hak−1 −HT Jk)

⇐⇒
(
(−J ≤ jk)∧

(
(−Jy ≤ jk)

∨ (−Js −Hak−1 −HT jk ≤ jk)
))

∧
(
(J ≥ jk)∧

(
(Jy ≥ jk)

∨ (Js −Hak−1 −HT jk ≥ jk)
))

⇐⇒
(
(−J ≤ jk)∧

(
(−Jy ≤ jk)

∨
(−Js −Hak−1

1+HT
≤ jk

)))
∧
(
(J ≥ jk)∧

(
(Jy ≥ jk)

∨
(Js −Hak−1

1+HT
≥ jk

)))
⇐⇒ proj[−J,−Jy]

(−Js −Hak−1

1+HT

)
≤ jk ≤ proj[Jy,J]

(Js −Hak−1

1+HT

)
⇐⇒ jk ∈ J(ak−1). (39)

The equivalence between (35c) and (35d) can be easily
seen by Lk = V∩A∩ J(ak−1) by the definitions in (22),
(36), (37), and (38).
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