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Abstract—This paper proposes a position controller for com-
mercial hydraulic excavators. It is constructed by combining a
proportional-derivative (PD) controller and a sliding-mode con-
troller as a differential algebraic inclusion and also is integrated
with a recently-proposed hydraulic actuator model. The use of
the PD control is intended to make the controller insensitive to
the deadtime in the hydraulic system, which is typically 0.1 s
to 0.6 s in commercial excavators. The use of the sliding-mode
controller combined with the actuator model is for handling the
saturation of the actuator force, which may happen when the
target position is not close enough to the current position and
when the relief valves open. Moreover, this paper extends the
controller to deal with the effect of the regenerative pipelines,
which are embedded in commercial excavators to realize efficient
operations but act as a source of disturbance on the controller.
This paper also shows an analysis that can be used for tuning
the controller parameters. The proposed controller was validated
with simulations and experiments using a 13-ton class excavator,
in which some set-point control tasks and trajectory-tracking
tasks were performed.

Note to Practitioners—This paper proposes a position con-
troller for hydraulic excavators. The controller was validated
with the boom and arm actuators of a 13-ton class commercial
excavator, with trajectory-tracking and set-point control tasks.
Most of the controller parameters can be set referring to available
specifications of the hydraulic circuit, such as the set pressures
of the relief valves and the cross-sectional areas of the chambers.
There are three parameters (the proportional gain, the derivative
gain, and the time constant of the convergence) that should be
carefully tuned, but their physical interpretations are relatively
straightforward, and they can also be tuned along our guideline
using pole locations of a particular transfer function. It has been
shown that the proposed controller properly works despite the
existence of the deadtime in the hydraulic systems, which are
typically 0.1 s to 0.6 s. An extended version of the proposed
controller handles the effects of the regenerative pipeline, which
exists in some hydraulic systems, e.g., the arm actuator, for
efficient operation and is not accounted for in the original version
of the controller. The accuracy of the proposed controller will be
further improved by combining it with better means to estimate
external forces by using additional sensors, such as pressure
sensors installed to actuator chambers.

Index Terms—Position control, Hydraulic system, Time delay.

I. INTRODUCTION

Precise position control technology for hydraulic excavators
is a prerequisite for future automation in construction sites.
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Fig. 1. Block diagram of the proposed controller. The sliding surface is
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The actuators used in commercial excavators are composed of
many valves and pipelines, which cause strong nonlinearity
in the response characteristics of the actuators. Specifically,
the check valves and the relief valves in the hydraulic circuit
act as on-off switches of the oil flow, and thus result in
non-differentiability or discontinuity in the velocity-force and
flowrate-pressure relations. Such features of hydraulic systems
pose difficulty in the control of excavators.

One approach for the control of hydraulic systems is
employing a locally linearized model of the system. Some
controllers [1]-[4] with linearized models are reported to
achieve tracking tasks with smooth position commands. An-
other approach is combining gain-tuning methods with linear
controllers [5]-[8] in which the control gains are optimized in
metaheuristic algorithms, such as particle swarm optimization
and genetic algorithms. Some researchers [9], [10] employ
neural networks to approximate the actuator characteristics,
but the actuator force saturation, which frequently happens
and discontinuously alters the response characteristics, has not
been taken into account.

Another problematic factor in the control of hydraulic
systems is the deadtime, which is typically 200-300 ms or
more [2], [4], [11] in commercial hydraulic excavators. Kim et
al. [4] modeled a hydraulic plant as a second-order system with
a deadtime, which is measured in preliminary experiments, and
designed a position controller based on p-synthesis. Chang et
al. [2] proposed a position controller with an additional linear
controller based on chamber pressures to compensate for the
deadtime. These controllers require the identification of the
deadtime in the hydraulic system, and the control performance
depends on the precision of the identification.

Recently, the authors proposed a set-point position con-
troller [11] for hydraulic excavators. It fully considers the
circuit structure, composed of various valves and pipelines,
by employing a quasistatic actuator model [12]. It can be seen



as a particular type of a sliding-mode controller combined with
a deadtime compensation based on the dynamics model of the
excavator. One of its problems is that its control performance
depends on the accuracy of the state prediction, employing the
plant dynamics model, for the deadtime compensation.

This paper proposes yet another position controller for
hydraulic actuators that is also a sliding-mode-like controller
but is free from explicit compensation for the deadtime.
The controller has a structure illustrated in Fig.l1. It is a
differential-algebraic combination of a sliding-mode controller
and a proportional-derivative (PD) controller, and employs the
quasistatic actuator model [12] to determine the control input.
The use of the PD controller is to realize a certain level of
robustness against the deadtime by tuning the gains (cf., e.g.,
[13, Chapter 4]). In addition, the controller is extended to
handle a regenerative pipeline in the hydraulic circuit, which
is not taken into account in the quasistatic actuator model.

It should be noted that the intention of employing the
sliding-mode structure is to handle the actuator saturation with
an explicit design of post-saturation behavior of the system.
Our previous controller for hydraulic excavators [11] and some
robot controllers proposed by Kikuuwe [14], [15] have also
been built on the same idea. It is in contrast to the majority
of previous studies, e.g., [1], [16], [17], using sliding modes
for ensuring the robustness.

The rest of this paper is organized as follows. Section II
provides some preliminaries regarding set-valued functions,
the hydraulic circuit, and the quasistatic actuator model [12].
Section III presents the proposed position controller and its
discrete-time algorithm. Section IV provides some analyses
on the controller. Sections V and VI show the results of sim-
ulations and experiments employing a 13-ton class excavator,
respectively. Section VII concludes this paper.

II. PRELIMINARIES
A. Mathematical Preliminaries

In this paper, R denotes the set of all real numbers and B
denotes the closed unit ball in R, i.e., B2 [-1,1] C R.
The following functions are used in this paper:

minX if x <minX
saty(z) £ 4 ifreX )]
max X if £ > maxX
A Ja/lz] fx#£0
) A 2
sgn(x) {[_17 1 i r=0 2

R(x) £ sgn(x)y/|zl. 3)

Here, X is a closed interval in R.
A function of one or more sets should be understood in the
following manner:

o(x) = | o) (4)
reX
o= |J @@y 5)
{z,ytexXxy

Here, ) is a closed interval in R.
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Fig. 2. Hydraulic actuator and its circuit.

B. Hydraulic Actuator and Its Circuit

The overall structure of the actuator discussed in this paper
is illustrated in Fig. 2. As can be seen in the figure, the
circuit has a pump, which supplies the oil in the circuit at a
flowrate @. In order to control the hydraulic flow, the circuit is
equipped with four main control valves and a bleed valve. The
head-side, rod-side, and pump relief valves are for securing
the oil outlet, of which the pressure limits are Ppas, Prar,
and Py, respectively. This circuit has three check valves to
prevent the backflow of the oil. The actuator is divided into
two chambers by a piston, of which cross-sectional areas and
internal pressures are denoted by A, and P, (x € {h,r}),
respectively (where h means head-side and r» means rod-side).
The actuator force is lower-bounded by —F,; & —A, P,
and upper-bounded by Fj,as £ A, Py due to the effects of
the head-side and rod-side relief valves.

The ratio of the opening area to its maximum of each of
five control valves (four main control valves and the bleed
valve) is denoted by u. € [0,1] (x* € {ph,pr,th,tr,b}).
The flowrates Q. of the valves satisfy the following flowrate-
pressure relations [18], [19]:

Q+« = csusR(AP,) (x € {ph,tr,th,pr,b}) (6)

where ¢, £ C,a, \/2/7, AP, is the pressure drop across the
valve, p is the mass density of the oil, a, is the maximum
opening area of the valve, and C, is its discharge coefficient
[20], which is a non-dimensional quantity. It has been known
[21], [22] that C, is typically around 0.6 or 0.7.

The actuators of excavators may have an additional pipeline,
referred to as the regenerative pipeline, which is also included
in the diagram of Fig. 2. This pipeline is for making the
extending motion faster when the actuator is subjected to
the tensile external force. Typically, excavators’ arm actuators
(as opposed to the boom or bucket actuators) possess this
architecture to accelerate the arm lowering action. The flowrate
through the regenerative pipeline @, can be given as follows:

Qreg = CreglUreg maX(R(Pr - Ph)7 O) (7)
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where c¢y.cq ES Cregamg\/Q/ip, Ureq denotes the ratio of the
opening area to its maximum, @,y is the maximum opening
area of the valve, and C).., is the discharge coefficient [20] of
the valve.

C. Quasistatic Actuator Model

Let us now focus on the actuator illustrated in Fig.2 with
the regenerative pipeline being excluded. The previous study
[12] presented a quasistatic model of such an actuator. The
model is represented by a set-valued function I" that connects
the actuator force f € R, the rod velocity v € R, and the
control input v € B in the following form:

feT(v,u). (8)

Here, the control input u means the signal that determines the
valve opening ratios in the following manner:

Uph, = Uy = max(0, ), up, = wy, = —min(0,u).  (9)

The exact analytical form of the set-valued function IT' is
presented in [12].

For the use of the model in control and simulation, the
function I needs to be transformed into some different forms.
First, as detailed in [23], we need to have the inverse function
O of the function I' with respect to its second argument, which
satisfies the following:

u€ O, f) < fel(v,u). (10)

Here, note that © is also a set-valued function. In addition, we
need two single-valued functions ©4 and 'y, which satisfy the
following relations:

f=Ts(mv,u) <= fel(v+nf,u) (1)

Os(v, f) € O (v, satr, 5)(f))

where 17 > 0. The analytical forms of the functions Iy, O,
and O are provided in [11] and [23, Theorem 3]. Fig. 3 shows
graphs of O, with the parameter values of the boom actuator,
which are shown in Table I. As can be seen from Fig.3, the
function Oy is single-valued at all {v, f} € R?.

The circuit including the generative pipeline is also modeled
in [12] in the quasistatic manner. The actuator model can be
written in the following form:

(12)

f=F,—F; (13a)
FyeTh (v - QTeg,u) (13b)
Ap
F. €T, (v - Qf;:g,u> (13¢)
F. F,
Qreg = Creglreg Max (R (AT - Ah) ,0> . (13d)

Here, the functions I';, and I',., which are detailed in [12],
give the forces generated by the head- and rod-side chambers,
respectively, and they satisfy T'(v,u) = Ty (v,u) — Ty (v, u).
The quantities Qreq, Fr, and Fj are determined by the
algebraic constraints (13b), (13c), and (13d), and the algorithm
of iterative computation to provide the solutions has been
provided in [12]. This paper does not attempt to directly use
it because of its high computational cost for the iterative com-
putation. Instead, this paper uses an approximate, simplified
form of the model inspired by the representation (13), which
will be presented in Section III-D.

III. PROPOSED CONTROLLER
A. Continuous-time Representation

We intend to develop a controller for the class of plants that
are described as follows:

Mio=f+g (14a)
p=v (14b)
feTl(v,u) (14¢)

where M > 0 is the mass of the controlled object, p € R
and v € R are the position and the velocity of the object,
respectively, f € R is the actuator force and g € R is the
external force acting to the object. The function I' is the
quasistatic actuator model discussed in Section II-C, and its
second argument u € B is the control input that should be
given from a controller.

This paper proposes a controller whose continuous-time
representation can be written as follows:

f=Kp,—p)+Blp —p) —§ (15a)
f € T(pr,sen(pa — p+ H(pg — pr))) (15b)
u € O(pr, f). (15¢)

The inputs to the controller are the target position pg, the
measured position p, and the estimated external force §. The
output from the controller is the control input v € B. The
controller possesses a state variable p,., which can be seen as
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Fig. 4. Block diagram of the proposed controller. The set-valued functions I and © are determined according to the structure of the hydraulic circuit.

a reference position. The variable f can be interpreted as the
intended actuator force, which is not a state variable but a
function of the state variable and the inputs.

The main parts (15a) and (15b) of the controller constitute a
set of differential-algebraic constraints that determines p,. and
f . This set of differential-algebraic constraints appears as an
algebraic loop in the block diagram of Fig. 4. The obtained
values are used in (15¢) to determine the control input wu.
The controller algorithm to solve these constraints is derived
through the implicit-Euler discretization as detailed in the next
Section III-C.

In the proposed controller (15), the components (15a) and
(15b) can be seen as a PD controller and a sliding-mode-
like controller, respectively. The PD controller (15a), with the
proportional gain of K and the derivative gain B, is intended
to make the position p track the reference position p,.. The
sliding-mode-like controller (15b) is to make the position p
exponentially converge to the target position pg with the time
constant H.

B. Properties of the Controller

Some properties of the controller (15) are now discussed.
By setting e £ p, — p, we can rewrite (15) as follows:

é=(f+y—Ke)/B (16a)
fel(p+eésgn(—o/H —é)) (16b)
weOp+e, f) (16¢)

where 0 £ p — pg + H(p — pa).
In the extreme case of B — oo, (16a) reduces to ¢ = 0,
and thus the whole controller (16) reduces to the following:

u € O(p, L(p,sgn(—o/H))). (17)

The controller (17) can be seen as a sliding mode controller
with the sliding surface o = 0, which is a variant of the one
discussed in [23, Section IV.A].

In our previous study [11], we implemented the controller
(17) to an excavator with the implementation scheme presented
in [23]. In the scheme in [11], [23], the controller (17) is
algebraically combined with the plant dynamics model (14),
while in the presented paper, the controller (17) is combined
with the PD controller (15a). The benefit of this difference
is that the presented controller is less dependent on the plant

dynamics model, which is not usually accurately available,
and that the influence of the deadtime can be reduced to a
certain level by appropriately tuning the PD gains, as has been
discussed in, e.g., [13, Section 4.2].

Similar approaches for the implementation of sliding-mode-
like controllers have been presented by Kikuuwe [14]. Their
controllers are originally intended for mechatronics systems
with electromagnetic actuators, to which the forces to be
generated can be directly commanded. The sliding surface in
[14] is approximated to pg — p, + H(ps — pr) = 0, while
pa —p+ H(pq — pr) = 0 in this paper. When dealing with
hydraulic actuators, the same approximation in [14] leads the
input u to be fixed at 0 because the reference velocity p,
becomes zero before the position p reaches the target position
pq. It results in large steady-state errors.

C. Discrete-time Implementation

Now we derive a discrete-time algorithm of the controller
(15) through the implicit Euler discretization. For the conve-
nience of derivation, let us rewrite (15) as follows:

f=Ke+Bé—g (18a)
f e T(v,,sgn(pa — p + H(va — v,))) (18b)
u € O(vy, f) (18¢c)
€=V, —V, Pr=7p, DPqd=Vq- (18d)

Its implicit Euler discretization can be obtained as follows:

fe=Key + Bley — ex—1)/T — i (19a)
fr € D(vyk,sgn(par + Hvax — pr — Hupx))  (19b)
u € O(vrk, fr) (19¢)
e = ex—1+ (Vrp —vK)T (19d)
v = (px — Pr—1)/T (19e)
Vak = (Pax — Pak—1)/T (191)

where 7' denotes the sampling interval of the controller and &
is the index of the discrete time.

We can rewrite (19b) as follows by eliminating v, ;, and ey,
by combining it with (19a) and (19d):

fr € D(wsp + fu/A sgn(ver — vpp — fu/A)  (20a)



where

vpe = op — (Kep—1 — i) /A (20b)
Vs = (Pak + Hvogr — pr)/H (20c)
A2 KT+ B. (20d)

It has been pointed out in [23] that the following relation holds
true:

f el (v +nf,sgn(ve —nf)) <=

[ =satr, 0,8 (va/n). 2D

By using (19), (20), and (21), we can obtain an algo-
rithm of the controller (15) to calculate uy from the inputs
{PksDPd.k, Gr} as follows:

v = (pr — pr—1)/T (22a)
Vi = (Pak — pak—1)/T (22b)
Vs k= (Pa,x — Pk + Hvar)/H (22¢)
vig = v — (Keg—1 — gx)/A (22d)

fr = satr (1740, 0.8 (A(vs e — v11)) (22¢)
Op g = Vs g + fr)A (22f)

er =ep—1+ (v — )T (22g)
up, = O (ks fr)- (22h)

Here, the single-valued function Oy is defined to satisfy (12)
and its specific form is presented in [11].

D. Extension for Regenerative Pipeline

When the circuit includes a regenerative pipeline as in
Fig. 2, the function I' in the plant model does not match
the quasistatic property of the actual plant, and thus the use
of the functions I'y and ©, in the controller needs to be
reconsidered. As discussed in Section II-C, the previous study
[12] provided a version of I" with the regenerative pipeline, but
it is computationally costly and its correspondent ©4 function
is not yet available. Thus, we here present a controller with
an approximated model.

Assuming that the ratio A,./Aj, is close to 1 and the pressure
drop F,./A, — F,/Ap across the two chambers is caused by
the external force g, we approximate (13), which represents
quasistatic characteristics of an actuator with a regenerative
pipeline, by the following form:

f S F(p - vT@g(p; uregvg)vu) (23)

where

Ureg ('U7 Ureg, g) £ Sat[O,O.Qv] (CreguregR(g/A3))7 (24)

A2 (A, + Ap)/2, and g is the tensile external force applying
to the actuator. The function v,., involves a saturation, of
which range is [0, 0.9v], in order to satisfy the condition 0 <
Ureg(V, Ureq, g) < v, which is derived in [12].

One can see that the extended model (23) is the one in
which v is replaced by v — v,.¢4(-) in the original use (8) of
the function I'. The same idea can be applied to the usages
of the functions O, I's, and ©4. Thus, the proposed controller

(15) with the extension considering the regenerative pipelines
can be obtained as follows:

f=K@-—p)+ B —p) -3 (252)

f S F(p'f - Ureg(pm Ureg, g)a sgn(pd —Pp + H(pd - pr)))
(25b)

U € OPy — Vyeg(Dry Ureg, ), f)- (25¢)

We here assume that u,.4, the valve opening ratio of the
regenerative pipeline, is determined by the internal, built-in
controller of the excavator, and thus cannot be manipulated
by our controller. We however assume that u,., is readable
from our controller. We also assume that the estimated tensile
external force ¢ is available by some estimation methods, such
as those based on the gravity calculated from the nominal
masses of the links.

In a similar manner as we derived (22) from (15), one can
obtain a discrete-time implementation of (25) as follows:

v = (pr — pr—1)/T (26a)
vk = (Pak — Pdk—1)/T (26b)
Vkyreg = Vreg(Ur k—1, Ureg,k, Gk ) (26¢)
Vs k= (Pak — Pk + Hvgp)/H (26d)
vig =vgp — (Keg—1 — i) /A (26e)
Fio = satr,(1/4,0; 0 —vp ey ) (A(Vsp = vpr))  (266)
Uk = Vf gk + fr/A (262)
er =¢ep—1+ (U —v)T (26h)

U, = Og(Vr — Vkregy fr)- (261)

Note that the only difference of the algorithm (26) from the
algorithm (22) is the subtraction of vy ¢y from vy in (26f)
and (261), and when vy, .4 is set zero, (26) reduces to (22).

IV. SOME ANALYSES
A. Stability Analysis

This section shows a stability analysis of the proposed con-
troller (15) applied to the plant (14). Recall that the controller
(15) can be equivalently rewritten as (16). The closed-loop
system composed of the plant (14) and the controller (16) can
be written as follows:

o=p—pq+ Hw—pa) (27a)
é=(f+§—Ke)/B (27b)
b= (f+9)/M (27¢)
v =0+ € (27d)
f € T(v,0(v, f)) (27¢)
f e (v, sgn(—c/H — ¢)). (271)
Here, we introduce the following functions I and 5:

L(b, v, f) £ T (v, = b,0(vr, f) = f (28)

F(bzf) if b0

B )24 ( i DO f) L Ty, f))

b—0+ b " b—0- b
otherwise.

(29)



By employing the function (29) and the relation (21), we can
rewrite the system (27) as follows:

& =v—pa+ H(0 - pa) (30a)

é=(f+§—Ke)/B (30b)

b= (f+Be+g)/M (30¢)

f = sate, (/B (ke-g)/8,5)(~Bo/H + Ke = §). (30d)
where

B=pBv+eéf)

At present, although it is not very conclusive, we have
the following result in regard to properties of the closed-loop
system (30):

Theorem 1: With the system (30), the state [0, v — pg,e]”
is uniformly ultimately bounded [24, Definition 4.6] if there
exist § > 0 and « > 0 with which

3D

M < B(B+ HK) /K 32)
0B C Ty(1/B,pa+ /B, B) + 3§ (33)
lg— 9 — Mpa| < (34)

are satisfied, o is sufficiently small, and |B | is sufficiently
small. In addition, if g = ¢ and p; = 0 are satisfied as well,
the origin [0, v — pg, e]7 = 0 is asymptotically stable.

The proof of Theorem 1 is provided in Appendix A. The
requirement that | 6| should be sufficiently small may or may
not be restrictive and at least it hampers the completeness of
the result. The incompleteness stems from the fact that the
dynamics of 3 is not fully analyzed in the proof. It leaves the
possibility that some particular patterns of temporal changes
in $ might make the state diverge. It however does not seem
likely in practice considering that the term with 3 acts as a
damping term that dissipates the energy. A more thorough
proof considering the dynamics of 5 remains as an open
problem to be addressed.

B. Parameter Tuning

This section provides some analyses that can be used for
tuning the parameters {K, B, H} of the controller (15). We
employ another equivalent form (16) of the controller (15)
for discussing the parameter tuning. Let us consider the case
where the control input u is not saturated, i.e., the case where
—o/H — é = 0 is satisfied. In this case, the intended actuator
force f and the state variable p, of the controller (16) are
determined to satisfy both —o/H—¢é = 0 and (16a). Therefore,
in this case, we can rewrite the controller (16) as follows:

F = Ko(pa—p) + Blvg— ) + Lo /(pd _p)dt - § (35a)

vp =vq + (pa —p)/H (35b)
u € O(v,, f) (35¢)
Dr=vr, P=0, Pg=174 (35d)

where K, 2 K+B/H and L, £ K/H. The intended actuator
force f is determined by the PID controller (35a). The state
variable v, is determined by the positional error p; — p and
the target velocity pg.

We consider the closed-loop system composed of the con-
troller (35) and the plant (14) with deadtime 7T;; because the
hydraulic systems of commercial excavators are known to
involve some deadtime [2], [4], [11]. The closed-loop system
can be expressed as follows:

F = Ko(pa—p) + Blvg— ) + Lo /(pd _p)dt - § (36a)

v, = v+ (pa — p)/H (36b)
feT(w(t+Ty),0(v,, f)) (36¢)
Mi(t+Ty)=f+g. (36d)

Here, variables without arguments are functions of time ¢ but
the argument ¢ is omitted for brevity.

Let us assume that, with {v,., /} in (36¢), ©(v,., f) is single-
valued, and that ©(v,, f) € [~1,1] and f € [~F.ar, Fiua]
hold true. Then, from the first-order Taylor expansion of

I'(v, ©(vy, f)) with respect to v around v = v,, the following
approximation holds:

L(v,0(vr, ) = f + £(vr, f) (o, = 0) + O((vr = v)?)
(37)

where
s O (v, u)

v v:vr,u:@(vr,f)

K(vr, f) (38)
Due to the properties of the function I' discussed in [12],
k(vr, f) > 0 is always satisfied. Eliminating f and f from
(36) by using the approximation (37) and assuming § = g, we
can rewrite the system (36) as following:

Mo(t+Ty) = Ko(pa — p) + B(vg — v)+

L. / (Pa — P)dt + (v, ) (vr — v(t + Tu)).
(39)

Eq. (39) means that the controlled object is driven by a PID
controller with an additional viscosity-like term. Assuming
is constant, we can obtain the transfer function G(s) of the
system (39) as follows:

L[p]

G(s) = Zipal

(Hs+1)(s(k+ B) + K)
HMesTis3 + (kesTa + BYHs? + (k+ B+ HK)s + K
(40)

where L represents the Laplace transform.

The pole locations of the transfer function G(s) in (40) can
be used for tuning the parameters {K, B, H} because they
represent the response characteristics of the system. In partic-
ular, for achieving smooth convergence without overshoots, the
poles should be located on the real axis in the left-half plane. In
order to obtain the poles, one needs to set an appropriate value
to x, which is the sign-reversed slope of the function I in the
v direction. As has been detailed in previous papers [11], [23],
the set-valued function I" satisfies I'(0, 0) = [—Fpar, Fras] and
it is monotonic with respect to —v. Therefore, to investigate
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Fig. 5. Simulation setup.

the system behavior around the equilibrium pg = p A v =0,
a possible choice of x can be given as follows:
Frpr + Fou

oM TSR 41
K Ao (41a)

where

min(FrM FhM)T
Av & ’ .
! M

Here, Av can be seen as the maximum velocity that can be
reached within the sampling interval 7" from v = 0, and thus
—k can be seen as an effective slope value of I'(v, ) around
v = 0 Au = 0 in the discrete-time domain. Section V-B
will present some numerical examples and simulation results
supporting this approach.

(41b)

V. SIMULATIONS
A. Setup

A realtime simulator of a 13-ton class hydraulic excava-
tor was employed to validate the proposed controller. The
simulator was constructed with Microsoft Visual C++ and
the controller was constructed with MATLAB/Simulink. They
were connected to each other as illustrated in Fig. 5 through
UDP/IP sockets at the cycle of 10 ms, i.e., the controller’s
sampling interval was 7' = 10 ms. The simulator’s timestep
size was 0.1 ms.

In the simulator, the links of the excavator, i.e., the boom,
the arm, and the attachment as shown in Fig. 6, were treated
as rigid bodies connected through virtual viscoelastic elements
and virtual beams as illustrated in the green circle in Fig. 6.
The stiffness and the viscosity of the virtual viscoelastic
elements were 5.0x 107 N/m and 3.0x10° N-s/m, respectively,
and the length of the virtual beams was 2.0 m. The frictions
in the joints were implemented by the technique presented in
[25].

Each of actuators in the simulator was driven by a hydraulic
circuit of the structure illustrated in Fig. 2. The circuit of the
arm actuator included the regenerative pipeline, while those
of the other three, the swing, the boom, and the attachment
actuators, did not. The forces of the actuators were calculated
based on the quasistatic actuator model [12]. Some parameters
of the actuators were as shown in Table I. The actuators
were connected to the links through a virtual viscoelastic
element with the stiffness 5.0x107 N/m and the viscosity
3.0x10° N-s/m as illustrated in the blue circle in Fig. 6,
employing the technique presented in [26].

virtual
viscoelastic
elements

\
1
1
1
\
\

]
1
I
I} \ <

! VN -

) ' ~——

1 \ ~—

[}

attachment

virtual
viscoelastic
element

actuator

Fig. 6. Connections among links and actuators in the simulator, through
virtual viscoelastic elements. The virtual viscoelastic elements emulate the
compressibility of the oil in the actuators and the compliance of the links.

TABLE 1
PARAMETERS OF THE HYDRAULIC ACTUATORS IN THE SIMULATOR.

symbols physical meanings boom arm

P pressure limit of the head- 35 MPa 35 MPa
side relief valves

P pressure limit of the rod-side 35 MPa 35 MPa
relief valves

Py pressure limit of the pump 35 MPa 35 MPa
relief valve

Q oil supply flowrate from the 3.7x1073 m3/s 2.0x1073 m?/s
pump

aph MA! of MCV? connected to 1.9x10~% m? 2.6x10~5 m?
the pump and the head-side
chamber

apr MA! of MCV? connected to 1.7x107° m?> 1.5x107% m?
the pump and the rod-side
chamber

atr MA! of MCV? connected to 6.5x107° m?> 6.2x107° m?
the tank and the head-side
chamber

an MA! of MCV? connected 7.2x107° m? 1.5x10~% m?
to the tank and the rod-side
chamber

ap MAL! of the bleed valve 1.8x1074 m? 1.5x107% m?

Up ratio of the bleed valve open- 0.1 0.1
ing area

Cy discharge coefficients (x € 0.7 0.7
{ph, pr,tr,th,b})

) mass density of the oil 850 kg/m?> 850 kg/m?>

1 MA stands for the maximum opening area.

2 MCV stands for a main control valve.

In order to emulate the deadtime and the lag in the responses
of the main control valves of the actuators, the following filter
was installed between the controller and the actuator as shown
in Fig. 5:

wie Tas L[]

=L = =
f 52 4 2Cwos + w3

(42)
where T denotes the deadtime in the hydraulic system. The
deadtime was set as T; = 0.3 s. The filter (42) represents
the combination of a second-order lag and the deadtime 7}; in
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Fig. 7. Simulation of step responses of the boom actuator and the arm actuator with three different parameter settings. The top three figures (a)(b)(c) are
regarding the boom actuator; (a) Poles of the transfer function G(s) in (40). (b) Configuration of excavator. (c) Step responses of the boom. The bottom three
figures (d)(e)(f) are regarding the arm actuator; (d) Poles of the transfer function G(s) in (40). (e) Configuration of the excavator. (c) Step responses of the

arm.

the response of the main control valves, where we set wy =
94.2(~ 307) rad/s and ¢ = 1.

As has been stated in Section III-D, the valve opening ratio
Ureq Of the regenerative pipeline of the arm actuator is as-
sumed to be determined by a built-in controller and is assumed
to be available to our position controller. In the simulations, to
determine 1,4, We used a proprietary algorithm of the built-in
controller provided by Kobelco Construction Machinery Co.
Ltd., of which the details are not reported here.

B. Step Responses

We conducted some simulations to investigate the effect of
the poles of the transfer function G(s) in (40) in Section IV-B.
In the simulations, step inputs of the target position pg; were
provided to each of the boom and arm controllers with three
different parameter settings. The gravitational forces calculated
from the mass parameters of each link were employed as the
external forces g of the boom and arm controllers. For the
boom controller, the following settings were used:

o Setting Ap: K = 2.5x10° N/m, B = 2.5x10% N-s/m,

H=05s.

o Setting By,: K = 2.5x10° N/m, B = 2.5x10% N-s/m,

H=1.0s.
o Setting Cp: K = 5.0x10% N/m, B = 2.5x10% N-s/m,
H=10s.

For the arm controller, the following settings were used:
o Setting Ayt K = 1.5%10% N/m, B = 2.0x10* N-s/m,

H=0.5s.

o Setting B,y K = 1.5x10% N/m, B = 2.0x10* N-s/m,
H=10s.

o Setting Cop: K = 1.5x10% N/m, B = 2.0x10* N-s/m,
H=1.0s.

The inertia M in the transfer function G(s) in (40) were
set as follows:

I *
7.0,

where J,.(0,) 2 0V,(0,)/00,. (x € {bm,am}) and I, are
the total moments of inertia of the links around the actuator.
The function ¥, is the kinematics from the joint angle 6,
to the actuator length p.. The quantity M, can be seen
as an equivalent mass of the link seen from the actuator.

M, = (43)
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Fig. 8. Target trajectory r4(t); (a) the trajectory of r4(t) and the coordinate
system, (b) the target velocity |74/, which is triangular.

We employed the equivalent masses M, at the joint angles
Opm = 70° and Onm = 40°, which were My, = 2.5x10° kg
and M, = 6.25x10% kg. We used T, = 0.3 s for the
transfer function G(s) in (40) and used the first-order Padé
approximation to approximate G(s) by a rational function.

Figs. 7(a)(b)(c) show the relations among pole locations
and step responses of the boom. Fig. 7(a) shows the pole
locations of the boom-actuator system with three parameter
settings. Fig. 7(b) illustrates two motions of the step-response
simulations, which are the boom-up and boom-down motions.
Fig. 7(c) shows the step responses of the boom-up and boom-
up motions. From the comparison among the step responses
with the different parameter settings, one can see that Set-
ting By, is the most suitable among the three settings because
the actuator length p; converges to the target length pg
without overshoots or oscillations. The smooth response with
Setting By, is consistent with the pole locations on the real
axis in the left-half plane shown in Fig. 7(a). The overshoots
in the responses with Setting Ay, are also consistent with
the pole locations in the left-half plane away from the real
axis shown in Fig. 7(a). With Setting Cy,,, which results in
unstable poles, the response became oscillatory, though not
divergent. The non-divergent results may be explained by the
saturations of the control input u € [—1,1] and the actuator
force f € [—Frn, Fru]-

Fig. 7(d)(e)(f) show the settings and results regarding the
arm actuator. The results in Fig. 7(f) show that Setting B,
resulted in the most favorable behaviors in both arm-up and
arm-down motions. These results are consistent with the
pole locations in Fig. 7(d), as has been the case with the
results with boom motions. The position fluctuation seen in
t € [0.5 s,1.2 s] of the arm-down motion with Setting B,
can be attributed to the inaccuracy of the compensation of the
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Fig. 9. Simulation results with modeling errors that were randomly selected
in {—10%,0,+10 %} for parameters of the actuators. The red lines show
an almost ideal case with no modeling errors. The number of trials was
100 for each configuration. The deadtime 7 was set as 300 ms. (a) The
proposed controller. (b) The proposed controller without the regenerative-
pipeline compensation (RPC). (c) PID controller (44).

regenerative pipeline’s effect. The overshoots in the responses
with Setting A,,, are consistent with the pole locations away
from the real axis shown in Fig. 7(d). As has also been
the case with the boom results, Setting C,,, with unstable
poles resulted in oscillatory responses, which do not diverge
presumably due to the saturations of w and f.



C. Effects of Errors in the Actuator Models

Some simulations were conducted to test the influence of
parametric errors in the actuator models. The modeling errors
were generated by randomly varying all actuator parame-
ters including those in Table I by —10 %, 0, or +10 %,
and the number of trials for each controller was 100. We
tested three controllers, which were the proposed controller
with the regenerative-pipeline compensation, that without the
regenerative-pipeline compensation, and the following PID
controller:

f=Ku(pa—p) + Bpa - p) +La/(pd —p)dt — g (44a)

v = pa + (pa — p)/H (44b)
u=O4(vy, f) (44c)

where K, £ K+B/H and L, £ K/H. Note that, as has been
shown in Section IV-B, the PID controller (44) is equivalent
to the proposed controller (15) when u and f are unsaturated.

The simulations were performed as illustrated in Fig. 8(a),
in which the target position r; was moved along a square
trajectory. The velocity |[74|| was set triangular as shown
in Fig. 8(b). The controllers were implemented to each
of the boom and the arm actuators, and the target length
{Pbm,d, Pam,a} Of the actuators were computed through the
inverse kinematics from the target arm-tip position r4. The
controller parameters were chosen as the same as Settings By,
and B,,,, which provided favorable pole placements and step-
response results in Section V-B.

Figs. 9(a) and (b) show results with the proposed controller
with and without the regenerative-pipeline compensation, re-
spectively. In all cases, the position r converged to the target
position r4. From the comparison between the almost ideal
case (the red line) in Fig. 9(a) and that in Fig. 9(b), one can
see that the regenerative-pipeline compensation reduces the
positional errors. The chattering-like behavior of the control
input u,y in Fig. 9(b) may be because the total modeling
errors may have been too large for the controller without
compensation for the regenerative pipeline.

Fig. 9(c) shows simulation results with the PID controller
(44). The comparison between Fig. 9(b) and Fig. 9(c) suggests
that the proposed controller, even without the regenerative-
pipeline compensation, resulted in higher accuracy and smaller
oscillations than the PID controller (44). Recalling that (44)
is equivalent to the proposed controller (15) as long as f
and v are unsaturated and considering that the regenerative
pipeline acts as a modeling error, one can see that the sliding-
mode structure of the proposed controller, which is intended to
handle the saturation, contributes to higher robustness against
modeling errors.

VI. EXPERIMENTS
A. Setup

We tested the proposed controller with a 13-ton class ex-
cavator, Kobelco SK135SRD-5 with a shear-type attachment,
shown in Fig. 10. The excavator had three links as shown in
Fig. 10, which were the boom, the arm, and the attachment.
Each of the actuators was driven by a hydraulic circuit of

Fig. 10. Kobelco 13-ton class excavator with a shear attachment.

the structure illustrated in Fig. 2, with a single four-port spool
valve acting as the collection of the four main control valves in
Fig. 2. The control input » from the controller was interpreted
as the spool position of the spool valve. The arm actuator
involved the regenerative pipeline, while the boom actuator
did not. Further detailed specifications of the actuators and the
excavator are not reported here due to proprietary restrictions.

The proposed controller was implemented to each of the
boom and the arm actuators. The controller was constructed
with MATLAB/Simulink and its sampling interval was set as
T = 0.01 s. The controller was connected to the excavator over
the Control Area Network (CAN). It commanded the opening
ratio of the main control valve as the control input « through
CAN and received the joint angles measured by potentiome-
ters. The measured angles were converted into the actuator
length p, which were used as the inputs to the controller. The
parameters of the proposed controller for the boom actuator
were set as Ky, = 2.5x10° N/m, By, = 2.5%x102 N-s/m,
and Hy, = 0.5 s. The parameters for the arm actuator were
set as Kom = 1.5x10° N/m, B, = 2.0x10* N-s/m, and
H,, = 1.0 s. These settings were used for all experiments
in subsequent sections. The gravitational forces calculated
from the mass parameters of each link were employed as the
external forces § of the boom and arm controllers.

The valve opening ratio u,..4 of the regenerative pipeline of
the arm actuator was manipulated by a built-in controller of
the excavator, and its algorithm is proprietary. The proposed
controller implemented to the arm actuator uses the value of
Ureg @S an input.

In the experiments, we did not test other controllers in-
cluding the PID controller (44). As a practical matter, we
needed to avoid risky trials with the 13-ton class excavator
using controllers that have not been adequately validated in
our environment.

B. Step Responses

Some experiments were performed to check the step re-
sponses with the proposed controller. In the experiments, the
excavator was moved as illustrated in Fig. 11(a) to examine the
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responses of the arm.

step responses of the boom actuator, and also as in Fig. 11(c)
for the arm actuator.

Fig. 11(b) shows the results of the boom actuator. As seen
in the figure, the length pyy, of the boom actuator smoothly
converged to the target length ppm g in both boom-up and
boom-down motions. Fig. 11(b) also shows that the control
input uyy,, was saturated for the first few seconds, but it
did not result in overshoots or oscillations after that. These
results illustrate the effect of the sliding-mode structure of the
proposed controller.

Fig. 11(d) shows the results of the arm actuator. It shows
similar features as those in Fig. 11(b), indicating that the
controller properly worked also with the arm actuator. It shows
some chattering-like behaviors in the control input wusy,. It
may be attributed to the imperfection of the regenerative-
pipeline compensation, which can make the first argument of
O, in (26i) too small due to possible modeling errors. Such
chattering in u,;,, would not be a practical issue because it
does not result in physical vibration due to the dynamics of the
spool valve and because it does not affect the convergence of
the length p,,,. Nevertheless, for improving the regenerative-
pipeline compensation, it may be reasonable to employ a more

accurate estimate of the external force § in (25¢), e.g., an
estimated force based on the chamber pressures.

The deadtime in the excavator was not accurately available,
but it was estimated from the experimental results. From
the zoomed graphs in Figs. 11(b) and 11(d), one can see
that the time spent from the step input to the beginning
of the motion was about 0.25 s and 0.15 s with the boom
actuator, and 0.6 s and 0.35 s with the arm actuator, which
can be seen as rough estimates of the deadtime. It should be
noted that the proposed controller does not explicitly depend
on the estimated deadtime, except that it may be used for
the parameter tuning scheme discussed in Section IV-B. It
should also be recalled that the controller parameters used in
the experiments were chosen from the pole locations of the
transfer function G(s) in (40) with the estimated deadtime
T;=03s.

C. Trajectory-Tracking Control

We tested the proposed controller (15) with two trajectory-
tracking tasks. The controller was implemented in each of the
boom and arm actuators so that the arm tip position r should
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Fig. 13. Experiments of tracking along a square trajectory; (a) Target trajectory. (b) Velocity pattern. (c) Experimental results.

follow the target position 7. The target lengths {pbm d, Pam,d}
of the actuators were computed from the target arm-tip posi-
tion ry4 through the inverse kinematics. The parameters were

12

set the same as in the case of the step-response experiments
in Section VI-B.

The first task was the tracking along a sloping-down tra-



jectory shown in Fig. 12(a) with the trapezoidal pattern of the
speed ||rq4|| shown in Fig. 12(b). The results in Fig. 12(c) show
that the tracking was properly achieved without oscillations or
overshoots.

The second task was the tracking along a square-shaped
trajectory shown in Fig. 13(a) with the trapezoidal speed
pattern shown in Fig. 13(b). From the results in Fig. 13(c), one
can see that the tracking was mostly successful, although there
are some oscillations in r during the motions along the top
edge and the right edge. It took place when the boom actuator
was shortening. The oscillation is visible in the graphs of the
position 7, although it is not very visible in the graphs of
the actuator lengths {ppm, Pam }- The oscillations may be able
to be attributed to the inaccuracy of the actuator model and
disturbances such as errors of the gravity compensation by g,
the compressibility of the hydraulic oil, and joint frictions. It
may be suppressed by some compensation techniques using
the chamber pressures measured by additional sensors.

VII. CONCLUSION

This paper has proposed a position controller for hydraulic
actuators with deadtime and regenerative pipelines. The con-
troller is constructed by combining a sliding-mode controller
and a PD controller in a differential-algebraic manner, and
incorporates a previously-proposed quasistatic model of hy-
draulic actuators. Based on this particular actuator model,
the proposed controller accounts for the saturations of the
actuator force. This paper also has extended the controller
to deal with actuators with regenerative pipelines. We also
have provided some analyses that can be used for tuning
the controller parameters. The proposed controller has been
validated with simulations and experiments employing a 13-
ton class excavator. In the simulations and experiments, it
has been shown that some different tasks, including set-point
control tasks and trajectory-tracking tasks, can be achieved
with a single common set of parameter settings.

Future work should address combining the controller with
disturbance compensation techniques, probably based on the
sensor information of the chamber pressures from the actua-
tors. It would enhance the accuracy of the controller, especially
when the excavator is loaded. In addition, one should also
consider the fact that, in commercial excavators, the structures
of hydraulic circuits may be more involved than that has been
considered in this paper; for example, a single pump may drive
multiple actuators. The extension of the controller to deal with
such complicated circuit structures should also be sought.

APPENDIX A
PROOF OF THEOREM 1

Proof of Theorem 1: Let us define v, = v — pg and ¢ =
g—g—M7py. Then, the system (30) can be rewritten as follows:

z=A(p)x—
b(B) dznr (1B g7 wrg/B1pa5) (€ ® — §) + dp (45)
where

(40)

z 2 [0,ve,¢]"

—-(B+p8)/M 1 HK/M

AB) £ | —=(B+pB)/(HM) 0 K/M (47)
~1/H 0 0

d & [H/M,1/M,0]" (48)

b(B) £ [H(B+ 8)/(BM), (B + B)/(BM), 1/B]?49)

c2[-B/H,0,K|T (50)

g=10,1,-K/B]" (51)

dzny(f) = f = satx(f). (52)

Here, we can use the following property of the function dzn

dzny(z — a) = dzny4q (). (53)
Then, we can rewrite (45) as follows:
& = A(B)z — b(B) dmgpgra p(c ) +dp  (54)
where
F(v,u) £T5(1/B,v + pa+ §/B,u) + §. (55)

It can be shown that A(B) is Hurwitz for all 8 > 0 if (32)
is satisfied. Therefore, for any diagonal and positive definite
matrix @ > 0, there exists a symmetric and positive definite
matrix P(5) > 0 with which

Q=—-(P(BA(B) + A(B)"P(B))/2 (56)

is satisfied. With such a matrix P(3), let us define V £
T P(B)x /2. Then, we have

V= —2'Qx — mTP(ﬁ)b(ﬁ) dzn]_—(gT%B)(cT:c)—k
2T P(8)dp + 27 R(B)af
< —(Aq —wB)B)=|* + ol P(B)d|| |+

I1P(B)b(B)|l[|2]l| dznp(gr 4,z (¢’ @) (57)
where
2 10P(B)
R(g) & 57507 (58)

Here, A\ is the minimum eigenvalue of Q and vg(f) is the
maximum absolute value of the eigenvalues of R(S3).

The matrix P(8) can be analytically obtained (by using,
e.g., LyapunovSolve function of Mathematica) as a rational
function of 8. From the analytical representation of P(f3), it
can be seen that | P(3)b(3)| and ||P(8)d|| are bounded if
(32) is satisfied. It can also be seen that all the elements of
R(}3) are bounded, and thus yg(/3) is also bounded.

Now, let us focus on the third term of the right-hand side
of (57). With some straightforward derivations, the following
can be seen:

|dzn]:(v78)(f)| = maX(O7 f - F(”? 1))+

max(0, — f + F(v, —1)). (59)
From the property of I'y, one can see that
p< ) o (60)
v
and thus the following is satisfied:
0 < v(F(0,u) — F(v,u)) < Bv? (61)



It is equivalent to

F(0,u) — Bmax(v,0) < F(v,u) < F(0,u) — Bmin(v,0),
(62)
which implies the following:

F(0,u) — Blv| < F(v,u) < F(0,u) + Blv|.  (63)

By using (63), one can see that the terms of the right-hand
side of (59) are upperbounded as follows:
max (0, f — F(v, 0,f —F(0,1) 4+ Blvl|)

0,[f+Blv[-0d)  (64)
0,—f + F(0,-1) + Blv|)
ax(0, |f| + Blv[ = 6). (65
Here, we used the fact that 7(0,—1) < —¢ and 6 < F(0,1)
derived from the condition (33). Noting that the two terms of

the right-hand side of (59) cannot be non-zero simultaneously,
we have the following:

1)) < max
< max

max(0, — f + F(v, —1)) < max

AA,_\,_\

| /\

| dmnF w5 (f)] < max(0, [f] + Blo| = 6).  (66)

By using (66) in (57), an upperboudnd of V can be given
as follows:

V < —(q —1r@B)zl* + ol P(B)d|l||z||
1P (8)b(B)|l[||| max(0, [[c|[[|]| + Bllglll|z|l — )
< —collze|[(min(|[z]|, —c1[|2]| + c2) — acs) ©7)
where

co £ A —r(B)|8| (68)

c1 £ [P(B)b(B)[(llell + Bligll)/co — 1 (69)
cQézSHP( BB/ co (70)

s 2 [P(B)d] /co- (71)

Here, vr(8), || P(8)b(B)||, and || P(8)d|| are upperbounds of
r(B), [[P(B)b(B)|. and |[P(B)d]|, respectively. Therefore,
V < 0 is satisfied when ¢g > 0 and

min([|z(|, —c1 ||| + c2) > acs (72)
are satisfied. Here, (72) is equivalent to
— if ¢4 >0
B (73)
otherwise.

For the existence of x satisfying (73), when ¢; > 0, o must
satisfy the following:

I O e 1) i)
cs(cr+1) — [P(B)d] (el + Bllgl)

Therefore, if |3] is small enough to satisfy |5| < Ao /vr(B)
and if « is small enough to satisfy (74), one can say that
the state « is uniformly ultimately bounded with the ultimate
bound ae33, which is a neighborhood of the origin.

In addition, if o = 0, i.e., if ¢ =0 and pg = 0, V <0is
satisfied in @ € (ca/c1)B if ¢; < 0 and globally otherwise.
This means that the origin is asymptotically stable if ¢ = 0
and pg = 0.

(74)
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