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Abstract: We propose a simple delay differential equation with a delay switching. In this model,
the delay is a time-dependent variable taking two values across the stability boundary. With
both stochastic and regular periodic switching of the delay, there are cases where the region of
asymptotic stability is enhanced. We also show that this is in contrast to the analogous case
of switching coefficient parameters in the equation. Also, the direction of switching across the
stability boundary affects the stability.
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1. INTRODUCTION

Time delays are known to induce rather intricate behaviors
in simple dynamical systems. For example, even for first-
order ordinary differential equations, the stability of the
fixed point changes by increasing delay. As time delays are
almost ubiquitous in feedback control systems or multi-
body interacting systems, the delay differential equations
have been actively employed in theoretical modelings in
various fields(1; 2; 3; 4; 5; 6; 7; 8; 9). Mathematical aspects
of delay differential equations have also been investigated.
Due to the non-linearity introduced by the delay, however,
there still are many unsolved problems analytically.

Also, when we introduce stochasticity additionally, the
study of the dynamics becomes more challenging. Even
though there has been a series of investigations on such
delayed stochastic systems(10; 11; 12; 13; 14; 15), under-
standings of the interplay between delay and stochasticity
are yet to come.

What we propose here is a slightly modified simple delay
differential equation that gives rise to yet another curious
behavior. In our model, the delay is a variable taking two
values: one in the stability and the other in the unstable
regions of a fixed point. We have considered both cases
of stochastic and periodic (regular) switchings, and have
observed that the region of the asymptotic stability of the
fixed point is enhanced by this switching of delay. We also
investigate that this is in contrast to the analogous case of
switching coefficient parameters in the equation.

After this initial investigation(16; 17), it has come to
the attention of the author that similar investigations
have been done in the field of control engineering(18; 19;
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20; 21; 22; 23). In these works, however, the switchings
are done either with the delay or with the coefficient
parameter separately. We conjecture that there is the
optimal direction of crossing the boundary by switching
both of them together. Preliminary simulation results that
support this conjecture are presented.

2. MODEL

The basic equation we start with is the following simple
delay differential equation:

dX(t)
dt

= aX(t − τ) (1)

where a is a real parameter τ is the delay. This equation
is known as a special case of Hayes equation(1), which has
been much investigated. It is known that non-zero delay
induces oscillations and for a < 0 the asymptotic stability
of the origin X = 0 is lost for the delay larger than the
critical value

τc = − π

2a
. (2)

The stability boundary is shown in Figure 1.

2.1 Alternate Switching

We now extend this model so that the delay is changed to a
real variable τ̂ in such a way that it takes two values across
the critical delay. Specifically, it is given by the following

τ̂(t) = τc(1 + µξ(t)). (3)

where µ ∈ (0, 1) is a real parameter, and ξ is a variable
taking +1 and −1 periodically.

In order to gain insight, we discretize the equation,
X(t + 1) = X(t) + a(dt)X(t − N [τ̂(t)/dt]), (4)

where dt is a time discretization parameter, and N [s] is a
function which returns the closest integer to s.
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Fig. 1. The stability boundary of the origin of Equation
(1). The area with the curve and the axes is the stable
region. Also, the schematics of the delay switchings
are shown. Delay switching is between the two dot
points indicated by the solid horizontal arrows, while
the switching for the coefficient a is indicated by the
two cross points with the dashed vertical arrows.

In what follows, we investigate this discretized map (4).
One should be careful that discretization could have differ-
ent characteristics from the original continuous-time delay
differential equation.

As a first step, we let ξ take +1 and −1 alternatively at
every time step (i.e., period 2).

τ̂(t) =
{

τc(1 + µ) > τc (t even)
τc(1 − µ) < τc (t odd) (5)

We set parameters a = −1.5 and dt = 0.01. Then,
the critical delay for Eq. (1) is τc ≈ 1.0472. We now
numerically simulate the discrete map (4), and obtain the
behaviors as shown in Fig. 2.

We note that with the fixed delay τ = 1.05 (i.e., µ = 0),
the origin is not stable and the dynamical trajectory
diverges. This is expected as the value of the delay is
larger than the critical value τc. As we increase µ so that
the delay takes two values across the stability boundary
with sufficient amplitude, the stability of the origin is
obtained. Thus, even though the average of the values
of the switching delays does not change, the change in
the stability characteristics emerges by this alternating
switching.

2.2 Stochastic Switching

We consider the case so that the delay is changed to a
real stochastic process τ̂(t) in such a way that it takes two
values across the critical delay. As in the previous model,
it is given by the following

τ̂(t) = τc(1 + µξ(t)). (6)

where µ ∈ (0, 1) is a real parameter, and ξ(t) is a stochastic
process taking +1 and −1 with probabilities p and 1 − p
respectively. Thus,

τ̂(t) =
{

τc(1 + µ) > τc, (with the probability p)
τc(1 − µ) < τc, (with the probability 1 − p) (7)

So, as mentioned, the delay switches stochastically across
the critical value of the delay as indicated by the solid
horizontal arrows in Figure 1.

Fig. 2. A representative plot of the dynamical path of
Eq. (4) with the alternating delay switching. The
parameter values are a = −1.5 and dt = 0.01 The
switching amplitude µ and corresponding delays are
the following: (A)µ = 0, τ = 1.05, (B) µ = 0.08, τ =
(0.97, 1.13), (C) µ = 0.13, τ = (0.92, 1.18).

We study this equation with stochastic delay switching
numerically. The dynamical map (4) is now a stochastic
delay switching map. The notable observation is that this
switching enhances the stability of the origin: The origin
can be asymptotically stable even when the average delay
value, 〈τ̂〉, is larger than τc. We can view this stochastic
switching with associated behaviors as yet another ex-
ample showing the intricate interplay between delay and
stochasticity.

2.3 Comparison against Coefficient Switching

Also, we compare these results with the case of the
stochastic stability crossing by switching two values of a.
Namely, we consider the following as a comparison,

dX(t)
dt

= â(t)X(t − τ) (8)

where â(t) is now the alternating or the stochastic variable
taking two values across the stability boundary with a
given delay as indicated by the dashed vertical arrows in
Figure 1. This type of equation for the case of stochastic
switchings can be considered as a special case of delay
differential equations with a parametric noise(7). For our



interest, we observe that the analogous stability enhance-
ment does not occur in contrast to the case of the delay
switching.

3. STABILITY CHART BY NUMERICAL
SIMULATIONS

We have performed the numerical simulation of the
stochastic map (4), and constructed a stability diagram as
shown in Figure 2. The bottom figure is the log-log plot.
As in Figure 1, The solid line is the stability boundary
without stochastic switching. Here, the average delay value
for the stochastic delay switching, 〈τ̂〉c are numerically
estimated and indicated with the solid points on the plot.
The enhancement of the stability region by stochastic
delay switching is clearly observed as τc < 〈τ̂〉c.
Also, as we mentioned we have performed the stochastic
stability crossing by switching two values of a with Equa-
tion (8). Representative results are also shown in Figure
2 with estimated average critical values 〈â〉c indicated by
the crosses. We see that the stability enhancement does
not occur. In concrete, the values of the average critical
values of â lie on the solid line so that 〈â〉c ≈ ac.
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Fig. 3. A representative plot of the stability boundary
of the origin of Equation (1) with the stochastic
switching. The bottom figure is the log-log plot. Also,
the results of stochastic switching of the coefficients
a are indicated by the crosses that show no stability
enhancement. (The parameter value of the switching
amplitude is set as µ = 0.5 for both cases)

4. OPTIMAL DIRECTION OF SWITCHING ACROSS
THE STABILITY BOUNDARY

Our results presented in previous sections are consistent
with other investigations where either the delay or the
coefficient made time dependent stochastically or period-
ically (18; 19). Our results, however, indicate that the

direction we cross the stability boundary may affect the
asymptotic stability of the fixed point, and there is the
optimal direction for keeping the stability. (Figure 4.) We
report here preliminary simulation results that support
this conjecture.
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Fig. 4. A schematics of switching across the stability
boundary with the angle θ

We extend the basic equation so that we make both the
delay and the coefficient time dependent.

dX(t)
dt

= â(t)X(t − τ̂(t)). (9)

As before, we discretize this equation,
X(t + 1) = X(t) + â(t)(dt)X(t − N [τ̂(t)/dt]), (10)

where dt is a time discretization parameter, and N [s] is a
function which returns the closest integer to s.

Here, the case of regular alternate switchings is considered
so that the values of (â(t), τ̂(t)) take the two values
alternatively at every time step (i.e., period 2) such that

(â(t), τ̂(t)) =
{

(a0 + r sin θ, τc + r cos θ), (t even)
(a0 − r sin θ, τc − r cos θ), (t odd) (11)

In the following, we fix the parameters so that a0 = −1.5,
dt = 0.01. This leads to the critical delay as τc ≈ 1.0472
The angle θ is taken in reference with τ axis as in Figure
4.

We show here the representative dynamical path of the
(10) by changing the directional angle θ for the two cases
of switching amplitudes: r = 0.1 (Fig 5) and r = 0.07 (Fig
6). We clearly observe that the nature of stability changes
as we change the direction of crossing stability boundaries.
Even though theoretical understanding of these behaviors
are left with future investigations, these are indications
that there exists the optimal direction(s) for keeping the
asymptotic stability.

5. DISCUSSION

In this paper, we proposed a simple delay differential
equation with the switching of delays across the stability
boundary. With such a mechanism, the stability region was
enhanced in the sense that the stability of the fixed point
holds even with the value of the average delay exceed-
ing the normal critical delay value. We have numerically
investigated the corresponding discretized map and the
phenomena are observed for both alternating and stochas-
tic switching. Analogous switching with the coefficient,
however, does not show such enhancement. Thus, how we



Fig. 5. A representative dynamical path for the equation
(10) as we change the crossing angle θ with the
switching amplitude r = 0.1. (A)θ = 0, (B) θ = π/8,
(C) θ = π/4, (D) θ = π/2.

cross the stability boundary by switching mechanism can
affect this enhancement phenomenon that was validated
by our preliminary simulations. Exploration of the optimal
way(s) to cross the stability boundary to have the maximal
stability enhancement is an interesting question. As the
model is simple, or probably the simplest, it is hoped
that some theoretical understanding can be obtained in
the future.

We point out again that our results are for the discretized
map, and the stability enhancement phenomenon is only
inferred from the numerical investigations. Analytical un-
derstandings are crucial for this phenomena is real for the
differential equations with the delay switching. Further
research is needed on this aspect.

Fig. 6. A representative dynamical path for the equation
(10) as we change the crossing angle θ with the
switching amplitude r = 0.07. (A)θ = 0, (B) θ = π/8,
(C) θ = π/4, (D) θ = π/2.
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