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Abstract 
Summary 

GWASLab is a comprehensive Python toolkit for processing and visualizing summary statistics 

(SumStats) derived from genome-wide association studies (GWAS). GWASLab provides 

functions including quality control (QC) of statistics, standardization of chromosome and allele 

notation, variant normalization, harmonization for meta-analysis, and data visualization. 

Modular implementation of functions allows users to customize their own pipelines for 

utilizing SumStats. An expandable formatting library and standalone utilities persistently 

ensure seamless compatibility with many post-GWAS tools.  

Availability and implementation 

GWASLab is implemented in Python; the source code is publicly and freely available at 

https://github.com/Cloufield/gwaslab, and the documentation is available at 

https://cloufield.github.io/gwaslab/. 

 

1. Introduction 
GWAS summary statistics (SumStats) are accumulating at a rapid speed. As of April 2023, SumStats 

for more than 6,000 publications are publicly available on GWAS Catalog (Buniello et al., 2019). 

The availability of SumStats potentiates a wide range of post-GWAS analyses, such as LD Score 

regression (Bulik-Sullivan et al., 2015), genome-wide meta-analysis, Mendelian randomization, and 

polygenic risk scores. SumStats sharing greatly enhanced research in genetics, and it was estimated 

that SumStats sharing led to around 75% more citations (Reales and Wallace, 2022).  

 

Despite the efforts to develop a standard SumStats format (Hayhurst et al., 2022),  the large number 

of existing unprocessed SumStats remain challenges for data sharing and efficient reuse. 

Additionally, extensive discrepancies exist between the formats GWAS software generates and the 

required formats for each post-GWAS software. The missingness of certain information (such as 

rsID), the inconsistent representation of statistics, and the ambiguity of column headers (such as the 

headers for effect allele and non-effect allele) often hinder the direct reuse of SumStats, especially 

for beginners, and were error-prone during data and format conversions without careful reading the 

manual. Furthermore, unexpected failure in processing SumStats can lead to adverse impacts on 

downstream analyses, which could be avoided by checking detailed log messages. 

 

Existing tools for handling or visualizing GWAS SumStats, mostly implemented in R (Murphy et 

al., 2021; Yin et al., 2021; Turner, 2018), focused on specific functionalities such as data munging 

or plotting. With the rapid increase in publicly available SumStats and post-GWAS tools, there is 

also an increasing need for a comprehensive and customizable tool that integrates functions for 

handling and visualizing GWAS summary statistics, which can serve as a bridge linking unprocessed 

SumStats to post-GWAS analysis tools seamlessly. Here, we present GWASLab, a user-friendly 

Python package for the manipulation and visualization of GWAS summary statistics. This package 

provides functions including quality control (QC) of statistics, standardization of chromosome and 

allele notation, variant normalization, harmonization for meta-analysis, and data visualization. We 

developed a summary statistics format conversion library along with standalone utilities, which 

ensure seamless compatibility with a wide range of post-GWAS tools. Moreover, the implementation 

of a logging system provided detailed reports on each process applied, which increased the 

interpretability and the reusability of SumStats.  
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Fig. 1 Overview of GWASLab package design. Q-Q plot, quantile-quantile plot. SumStats, Summary 

statistics. Miami plot, mirrored Manhattan plots for two traits. Brisbane plot, Manhattan-like plot 

showing genomic density of independent genetic associations. 

 

2. Implementation 
GWASLab was designed based on the following principles: (1) to remove ambiguity and minimize 

uncertainty in SumStats by specifying column definition, standardizing notations, and aligning with 

reference data; (2) to provide flexible, customizable, and interpretable functions for each manipulation 

so that users can customize their own pipeline when the pre-defined pipeline does not suit for their 

SumStats; (3) to support detailed logging for every step of manipulation so that the pipeline is traceable 

and replicable; and  (4) to provide compatibility and extensibility with existing tools and future ones. 

 

GWASLab has been developed as an open-source Python package. Sumstats will be formatted and 

stored in the ‘GWASLab.Sumstats’ object. Functions to manipulate and visualize the summary 

statistics were implemented as methods of the ‘GWASLab.Sumstats’ object, enabling the construction 

of interpretable, flexible, and customizable SumStats processing pipelines.  

 

GWASLab is composed of five main function groups (Fig.1): (1) SumStats formatting; (2) 

standardization and quality control without references, (3) harmonization with references, (4) 

visualization, and (5) standalone utilities. This package takes advantage of commonly used Python 

packages and can be readily integrated into any Python-based downstream analysis tools or pipelines. 

Additionally, we implemented a logging system along with an original status code system to log the 

manipulations applied to the SumStats and trace the status of each variant. 

 

Columns of SumStats data in GWASLab consist of two parts, core columns, and additional columns. 

Core columns comprise key information for variants and statistics generated from GWAS, including 

rsID, SNPID (preferably in the format of chromosome: position: reference allele: alternative allele), 

CHR (chromosome number), POS (base-pair position), EA (effect allele), NEA (non-effect allele), 

EAF (effect allele frequency), BETA (effect size), SE (standard error of effect size), N (sample size), 

OR (odds ratio), OR_95L (lower bound of 95% confidence interval), OR_95U (upper bound of 95% 

confidence interval), P (p-value), MLOG10P (-log10(P-value)), Z (z score), CHISQ (chi-square 

statistic), DIRECTIONS (effect size directions).  Additional columns consist of optional information 

for the variants such as annotation, providing extensibility for formatting or customized filtering. 

 

3. Main Usage 
3.1. Seamlessly importing and formatting files 

Using a curated and expandable format conversion library (‘formatbook’: 

https://github.com/Cloufield/formatbook ), GWASLab can read SumStats generated by widely 

used GWAS software such as PLINK (Purcell et al., 2007), SAIGE (Zhou et al., 2018) and 

REGENIE (Mbatchou et al., 2020) and format SumStats to software-specific or widely 

accepted formats in line with sharing standards such as GWAS VCF (MacArthur et al., 2021; 

Lyon et al., 2021) and GWAS-SSF (Hayhurst et al., 2022). Users can  also load customized 

https://github.com/Cloufield/formatbook


formats by explicitly specifying the columns. 

3.2. Standardization, normalization, quality control, and harmonization 

GWASLab provides functions to standardize the notations and data types of variant ID, 

chromosomes, base pair positions, and alleles. After standardization, variants will be checked 

for normalization to ensure they are left aligned and parsimonious (Tan et al., 2015).  For 

statistics, GWASLab can filter extreme values, remove missing or duplicated records, and 

perform sanity checks as implemented in existing tools (Murphy et al., 2021; Matushyn et al., 

2022). GWASLab provides functions for SumStats harmonization with references, which 

include allele alignment with a reference genome, converting genome coordinates (liftover) 

using appropriate chain file, strand checking of palindromic SNPs, and annotating rsID using 

reference files downloaded from commonly used sources such as 1000 Genomes Project (1000 

Genomes Project Consortium et al., 2015) and dbSNP (Sherry et al., 2001), or self-prepared 

files for quick annotation. 

3.3. Highly customized visualization and other utilities 

Visualization functions were integrated into the GWASLab framework. GWASLab can create 

Q-Q plots, Manhattan plots, Miami plots (Winkler et al., 2015), Regional plots, and Brisbane 

plots (Yengo et al., 2022). GWASLab also supports effect size comparison, data conversion, 

lead variant extraction, and position-based novel loci determination (Zhou et al., 2022). For 

example, users can specify an EFO ID (Malone et al., 2010), and GWASLab will extract known 

associations for the trait through GWAS Catalog API (Buniello et al., 2019), and compare the 

base pair distances between known loci and lead variants in user-provided SumStats, allowing 

users to check whether the known loci are potentially novel based on distances. 
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