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Abstract. TriRainbow is proposed by Ganguly and Saxena as a variant
of the multi-layered scheme Rainbow. They show that TriRainbow is as
efficient as Rainbow, but resistants to known attacks breaking Rainbow.
In this paper, we propose efficient attacks against 2-layer TriRainbow by
combining two known attacks against Rainbow. As a result, the complex-
ity of our attack against SL1 TriRainbow is only 232 for version 1, and
270 for version 2. Moreover, our experiment shows that an equivalent key
of TriRainbow version 1 with the parameter (q, v, o, t) = (16, 36, 32, 32)
is computed in a few minutes with a laptop.
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1 Introduction

Standard RSA and EC cryptosystems are designed based on difficult mathe-
matical problems such as prime factorization and discrete logarithm problems.
However, these mathematical problems are known to be solved in polynomial
time using a large-scale quantum computer [9]. It is therefore necessary to con-
struct cryptography based on new mathematical problems resistant to quantum
computers. Such cryptography is referred to as post-quantum cryptography. In
2015, the National Security Agency announced a plan for a transition to post-
quantum cryptography, and the National Institute of Standards and Technology
(NIST) started public recruitment of such cryptography candidates in 2016.

Multivariate public key cryptography is based on an NP-hard problem of
solving a system of quadratic equations, called the MQ problem [8], and is one of
candidates in the NIST PQC standardization project [10]. UOV is a multivariate
digital signature scheme proposed by Kipnis et al. [7], and has essentially not
been broken over 20 years. Based on UOV, Ding et al. [4] proposed Rainbow as its
multi-layered version and show that it can be simply and efficiently implemented
using linear algebra methods over a small finite field. It is one of the finalists for
the 3rd round of the NIST PQC standardization project [11]. In 2022, Beullens
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proposed Simple attack and Combined attack against Rainbow and shows SL3
and SL5 Rainbow parameters satisfy only SL1 and SL3, respectively [2].

Recently, there are many studies on modifying UOV or Rainbow. For ex-
ample, Beullens proposed MAYO and Furue et al. proposed QR-UOV. In 2023,
Ganguly and Saxena [6] proposed TriRainbow as such a scheme, which replaces
some of the oil variables in Rainbow with triangular variables. They show that
it is more efficient than Rainbow but resistant to known attacks such as the
Simple attack [2]. Moreover, for known attacks against Rainbow, they proposed
the 2-layer TriRainbow parameter sets which satisfy the security levels of the
NIST PQC standardization project.

In this paper, we propose attacks against 2-layer TriRainbow. Our attacks
combine two known attacks against Rainbow. Namely, for 2-layer TriRainbow
version 1, our attack is combined the HighRank attack and the Direct attack,
and for 2-layer TriRainbow version 2, is combined the HighRank attack and the
Simple attack. The complexity of our attack is about 232 for SL1 TriRainbow
version 1, and about 270 for SL1 TriRainbow version 2. Moreover, our experi-
ment shows that an equivalent key of TriRainbow version 1 with the parameter
(q, v, o, t) = (16, 36, 32, 32) is computed within a few minutes.

The reminder of this paper is organized as follows. In Section 2, we explain
the construction of Rainbow and some known attacks against Rainbow. In Sec-
tion 3, we review TriRainbow and describe two versions of 2-layer TriRainbow.
In Section 4, we propose attacks for 2-layer TriRainbow. In Section 5, for our
attack, we provide a complexity estimation for the proposed 2-layer TriRainbow
parameters. We conclude this paper in Section 6.

2 Cryptanalysis against Rainbow

In this section, we present the notations used in this paper. Then we explain the
construction of Rainbow and some known attacks against Rainbow.

2.1 Notations

Let N be the set of natural numbers. We denote by Fq a finite field with q
elements. Let Fn

q be the set of n-dimensional vectors over Fq for n ∈ N. For
m,n ∈ N, we write Fm×n

q as the set of (m × n)-matrices over Fq. We write A⊤

as the transposed matrix of A.

2.2 Rainbow

In this section, we review Rainbow [4], which is a multi-layer version of UOV [7].
First, we define the notation used for Rainbow. The parameters of Rainbow

are (q, v, o1, o2). The number of variables is given by n = v + o1 + o2 and the
number of equations is given by m = o1+o2. The indices of variables are divided
into V := {1, . . . , v}, O1 := {v + 1, . . . , v + o1} and O2 := {v + o1 + 1, . . . , n}.
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Let O1 := {x ∈ Fn
q | xi = 0, i ∈ V }, O2 := {x ∈ Fn

q | xi = 0, i ∈ V ∪ O1},
W := {(xv+1, . . . , xn) ∈ Fm

q | xi = 0, i ∈ O1}.
Next, we explain the public key and the secret key of Rainbow. Two in-

vertible linear maps S ∈ Fm×m
q , T ∈ Fn×n

q are chosen randomly. We choose

a central map F = (F (v+1), . . . ,F (n))⊤ : Fn
q → Fm

q . The first o1 polynomials

F (v+1), . . . ,F (v+o1) are of the form

F (k)(x) =
∑

i∈O1,j∈V

α
(k)
ij xixj +

∑
i,j∈V,i≤j

β
(k)
ij xixj +

∑
i∈V ∪O1

γ
(k)
i xi + η(k), (1)

where k ∈ O1, and the last o2 polynomials F (v+o1+1), . . . ,F (n) are of the form

F (k)(x) =
∑

i∈O2,j∈V ∪O1

α
(k)
ij xixj +

∑
i,j∈V ∪O1,i≤j

β
(k)
ij xixj +

∑
i∈V ∪O1∪O2

γ
(k)
i xi + η(k)

(2)

where k ∈ O2. Then, the public key of Rainbow is P := S ◦ F ◦ T , and the
secret key of Rainbow is (S,F , T ). The representation matrices of S and T are
denoted by S and T , respectively. Let F (k) be the representation matrix of a
quadratic map F (k).

2.3 Key recovery attack against Rainbow

In this subsection, we review the key recovery attack against Rainbow.

First, we recall the definition of an equivalent key, which is used some key
recovery attacks on Rainbow [2,5].

Definition 1 (Equivalent key) Fix I = {I(k)}nk=v+1 (I(k) ⊆ {(i, j) : 1 ≤ i ≤
j ≤ n}). Let S,S ′ : Fm

q → Fm
q and T , T ′ : Fn

q → Fn
q be linear maps, and

F ,F ′ : Fn
q → Fm

q be quadratic map. Then, (S ′,F ′, T ′) is an equivalent key of
(S,F , T ) with respect to I if

S ′ ◦ F ′ ◦ T ′ = S ◦ F ◦ T

and F
′(k)
i,j = F

(k)
i,j for (i, j) ∈ I(k) and k ∈ {v + 1, . . . , n}.

For Rainbow, the set I(k) is defined as the set of an index corresponding a
monomial with zero coefficient in F (k). Namely, for k ∈ O1, I

(k) = {(i, j) : 1 ≤
i ≤ v, v + o1 + 1 ≤ j ≤ n} ∪ {(i, j) : v + 1 ≤ i ≤ n, i ≤ j ≤ n}, and for k ∈ O2,
I(k) = {(i, j) : v + o1 + 1 ≤ i ≤ j ≤ n}.
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I(k) (k ∈ O1) I(k) (k ∈ O2)

Fig. 1. I = {I(k)}k∈O1
∪

O2
(Rainbow)

With invertible linear maps Σ : Fm
q → Fm

q and Ω : Fn
q → Fn

q , the equivalent key
of Rainbow is constructed as follows:

S ′ := S ◦Σ,

F ′ := Σ−1 ◦ F ◦Ω−1,

T ′ := Ω ◦ T .

By the condition on the coefficient in I, two linear maps Σ and Ω have the
following form:

Ω1 0 0

Ω2 Ω3 0

Ω4 Ω5 Ω6

Ω =

Σ1 0

Σ2 Σ3

Σ =

Fig. 2. Linear maps Σ,Ω (Rainbow)

By setting Ω1, . . . , Ω6, Σ1, Σ2, Σ3 appropriately, equivalent keys T ′, S′ can take
the following forms:

I T ′
1 T ′

2

0 I T3

0 0 I

T ′ =

I S′
1

0 I

S′ =

Fig. 3. Equivalent keys T ′, S′ (Rainbow)
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Next, we recall the key recovery attack against Rainbow and in particular,
we explain the Simple attack [2]. For a quadratic map P : Fn

q → Fm
q , we define

the polar form P ′ : Fn
q × Fn

q → Fm
q as follows:

P ′(x, y) := P(x+ y)− P(x)− P(y) + P(0).

When fixing y ∈ Fn
q , we denote by P ′

y the map x 7→ P ′(x, y). By the structure I
of Rainbow, we obtain the following properties:

– P(x) = 0 for x ∈ T −1O2,

– P ′(x, y) ∈ SW for x ∈ T −1O2, y ∈ Fn
q , and

– P(x) ∈ SW for x ∈ T −1O1.

Then, these properties are represented as the diagram in Figure 4.

Fn
q T −1O1 T −1O2

Fm
q S−1W {0}

P P P
P′

y

Fig. 4. Quadratic map P and linear map P ′
y (Rainbow)

The Simple attack recovers x ∈ T −1O2 in the kernel of P ′
y using the rela-

tionship in Figure 4. Note that, since the dimension of T −1O2 and S−1W are
o2, the dimension of the kernel of P ′

y|T −1O2
for a random chosen y ∈ Fn

q is at
least 1 with probability

1−
o2−1∏
i=0

(1− qi−o2) ≒ 1

q
.

The outline of the Simple attack is as follows. First, y ∈ Fn
q is chosen uniformly

randomly. By using linear equations P ′
y(x) = 0, we eliminate m variables in x

and substitute x into the equation P(x) = 0 in Figure 4. By solving the quadratic
equations, we compute x ∈ T −1O2. Then, the equivalent key (S ′,F ′, T ′) will be
recovered efficiently.

3 2-layer TriRainbow

In this section, we review TriRainbow [6] and describe two versions of 2-layer
TriRainbow.
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3.1 TriRainbow

In this subsection, we recall a digital signature scheme TriRainbow proposed by
Ganguly and Saxena [6] as an efficient modified Rainbow.

TriRainbow has a multi-layer form similar to Rainbow but each layer uses
not only a UOV form but also the triangular form. More precisely, the layers
of TriRainbow consist of alternating triangular forms and UOV forms although
the layers of Rainbow consist only of UOV forms.

Rainbow is originally proposed as a multi-layer version of UOV but its two
layer case is mainly used for efficiency [4]. The authors also focus on two layer
case of TriRainbow in order to obtain the same efficiency as Rainbow. In [6],
they give the security analysis of TriRainbow for the known attacks against
Rainbow including the Simple attack and the Combined attack, which lead to
totally break Rainbow in [2]. As a result, for such an attack, they provide the
parameters of TriRainbow with two layers for satisfying the security levels in the
NIST PQC standardization project.

2-layer TriRainbow is the scheme which one of the two layers of Rainbow
is replaced by the triangular form, and it has the parameters (q, v, o, t). The
number of variables is given by n = v + o + t and the number of equations
is given by m = o + t. There are two different versions in 2-layer TriRainbow
depending on the position of a triangular form.

3.2 2-layer TriRainbow version 1

The indices of variables are divided into V := {1, . . . , v}, O := {v+1, . . . , v+o},
Tri := {v + o + 1, . . . , n}. Let O := {x ∈ Fn

q | xi = 0, i ∈ V }, Tri := {x ∈ Fn
q |

xi = 0, i ∈ V ∪O}, W := {(xv+1, . . . , xn) ∈ Fm
q | xi = 0, i ∈ O}.

We explain the public key and the secret key of 2-layer TriRainbow version
1. Two invertible linear maps S ∈ Fm×m

q , T ∈ Fn×n
q are chosen randomly. We

choose a central map F = (F (v+1), . . . ,F (n))⊤ : Fn
q → Fm

q . The first o polyno-

mials (F (v+1), . . . ,F (v+o)) are of the form

F (k)(x) =
∑

i,j∈V,i≤j

α
(k)
ij xixj +

∑
i∈O,j∈V

β
(k)
ij xixj +

∑
i∈V ∪Tri

γ
(k)
i xi + η(k) (3)

where k ∈ O, and the last t polynomials F (v+o+1), . . . ,F (n) are of the form

F (k)(x) =
∑

1≤i≤k−1

α
(k)
ij xixj +

∑
i≤k−1

β
(k)
ij xixk +

∑
1≤i≤k

γ
(k)
i xi + η(k) (4)

where k ∈ Tri. Then, the public key is P := S ◦ F ◦ T , and the secret key is
(S,F , T ). The representation matrices of S, T are denoted by S, T . Let F (k) be
the representation matrix of a quadratic map F (k).

An equivalent key of 2-layer TriRainbow version 1 is as follows. For 2-layer
TriRainbow version 1, the set I(k) corresponds to the monomials with zero co-
efficient in F (k). Namely, I(k) = {(i, j) : 1 ≤ i ≤ v, v + o+ 1 ≤ j ≤ n} ∪ {(i, j) :
v + 1 ≤ i ≤ n, i ≤ j ≤ n} for k ∈ O, and I(k) = {(i, j) : 1 ≤ i ≤ k − 1, k + 1 ≤
j ≤ n} ∪ {(i, j) : k ≤ i ≤ j ≤ n} for k ∈ Tri.
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I(k) (k ∈ O)

k

k

I(k) (k ∈ Tri)

Fig. 5. Structure I = {I(k)}k∈O
∪

Tri

With invertible linear maps Σ : Fm
q → Fm

q and Ω : Fn
q → Fn

q , the equivalent
key of 2-layer TriRainbow version 1 is constructed as follows:

S ′ := S ◦Σ
F ′ := Σ−1 ◦ F ◦Ω−1

T ′ := Ω ◦ T .

By the condition on the coefficient in I, two linear maps Σ and Ω have the
following form:

Ω1 0 0

Ω2 Ω3 0

Ω4 Ω5 Ω6

0

Ω =

Σ1 0

Σ2 Σ3

0
Σ =

Fig. 6. Linear maps Σ,Ω (2-layer TriRainbow version 1)

By setting Ω1, . . . , Ω6, Σ1, Σ2, Σ3 appropriately, equivalent keys T ′ and S′ can
take the following forms:
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I T ′
1 T ′

2

0 I T3

0 0
0

T ′
4

T ′ =

I S′
1

0
0

S′
2

S′ =

Fig. 7. Equivalent keys T ′, S′ (2-layer TriRainbow version 1)

3.3 2-layer TriRainbow version 2

The indices of variables are divided into V := {1, . . . , v}, Tri := {v+1, . . . , v+t},
O := {v + t + 1, . . . , n}. Let Tri := {x ∈ Fn

q | xi = 0, i ∈ V }, O := {x ∈ Fn
q |

xi = 0, i ∈ V ∪ Tri}, W := {(xv+1, . . . , xn) ∈ Fm
q | xi = 0, i ∈ Tri}.

We explain the public key and the secret key of 2-layer TriRainbow version
2. Two invertible linear maps S ∈ Fm×m

q , T ∈ Fn×n
q are chosen randomly. We

choose a central map F = (F (v+1), . . . ,F (n))⊤ : Fn
q → Fm

q . The first t polyno-

mials (F (v+1), . . . ,F (v+o)) are of the form

F (k)(x) =
∑

1≤i≤k−1

α
(k)
ij xixj +

∑
i≤k−1

β
(k)
ij xixk +

∑
1≤i≤k

γ
(k)
i xi + η(k) (5)

where k ∈ Tri, and the last o polynomials F (v+t+1), . . . ,F (n) are of the form

F (k)(x) =
∑

i,j∈V ∪Tri,i≤j

α
(k)
ij xixj +

∑
i∈O,j∈V ∪Tri

β
(k)
ij xixj +

∑
i∈V ∪Tri∪O

γ
(k)
i xi + η(k)

(6)

where k ∈ O. Then, the public key is P := S ◦ F ◦ T , and the secret key is
(S,F , T ). The representation matrices of S, T are denoted by S, T . Let F (k) be
the representation matrix of a quadratic map F (k).

An equivalent key of 2-layer TriRainbow version 2 is as follows. For 2-layer
TriRainbow version 2, the set I(k) corresponds to the monomials with zero co-
efficient in F (k). Namely, for k ∈ Tri, I(k) = {(i, j) : 1 ≤ i ≤ k − 1, k + 1 ≤ j ≤
n}∪{(i, j) : k ≤ i ≤ j ≤ n}, and, for k ∈ O, I(k) = {(i, j) : v+t+1 ≤ i ≤ j ≤ n}.
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k

k

I(k) (k ∈ Tri)
I(k) (k ∈ O)

Fig. 8. Structure I = {I(k)}k∈Tri
∪

O

With invertible linear maps Σ : Fm
q → Fm

q and Ω : Fn
q → Fn

q , the equivalent key
of 2-layer TriRainbow version 2 is constructed as follows:

S ′ := S ◦Σ
F ′ := Σ−1 ◦ F ◦Ω−1

T ′ := Ω ◦ T .

By the condition on the coefficient in I, two linear maps Σ and Ω have the
following forms:

Ω1 0 0

Ω2 Ω3

0
0

Ω4 Ω5 Ω6

Ω =
Σ1

0
0

Σ2 Σ3

Σ =

Fig. 9. Linear maps Σ,Ω (2-layer TriRainbow version 2)

By setting Ω1, . . . , Ω6, Σ1, Σ2, Σ3 appropriately, equivalent keys T ′ and S′ can
take the following form:
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I T ′
1 T ′

2

0
0

T ′
3 T4

0 0 I

T ′ =
0

S′
1 S′

2

0 I

S′ =

Fig. 10. Equivalent keys T ′, S′ (2-layer TriRainbow version 2)

4 Proposed Attacks against 2-layer TriRainbow

In this section, we propose an attacks for 2-layer TriRainbow. First, we introduce
our attack for 2-layer TriRainbow version 1 and then describe our attack for 2-
layer TriRainbow version 2.

4.1 Our attack against 2-layer TriRainbow version 1

In this subsection, we propose an attack combining the HighRank attack and
the Direct attack against 2-layer TriRainbow version 1.

First, we randomly choose a vector a from Fo+t
q and check that the kernel of∑n

i=v+1 aiP
(i) is of dimension one. For such a vector a, we define the vector v as

Ker(
∑n

i=v+1 aiP
(i)) = 〈v〉. If the solutions of (

∑n
i=v+1 λiP

(i))v = 0 forms the
subspace of dimension o + t − 1, then the basis of the subspace give the vector
sn of S ′−1.

For i ∈ {v+1, . . . , n− 1} and j ∈ {1, . . . , n}, comparing the (j, n)-th coordi-
nate of the representing matrices with respect to the first o+ t− 1 components
of S ′−1 ◦ P ◦ T ′−1 = F ′, we have

e⊤j {P (i) + si,nP
(n)}tn = 0. (7)

Since the equations (7) are (o+ t− 1)n linear equations in n− 1 variables, the
vector tn can be computed by Gaussian elimination.

Thus we can obtain the matrix T ′
(1) such that the n-th column is tn and the

other columns are e1, . . . , en−1, and the matrix S ′
(1) such that the n-th column

is sn and the other rows are ev+1, . . . , en−1. Define P(1) = S ′
(1) ◦ P ◦ T ′

(1). Then,
for the first o+ t− 1 components of P(1), the n-th column and the n-th row are
zero.

Next, we will define S ′
(2), . . . ,S

′
(o+t) and T ′

(2), . . . , T
′
(o+t) and obtain P(2), . . . ,P(o+t)

such that for the first m − i components of P(i), the last i columns and the
last i rows are zero. We perform this procedure by induction with respect to
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ℓ ∈ {2, . . . , o + t} and assume that we obtain S ′
(2), . . . ,S

′
(ℓ−1), T

′
(2), . . . , T

′
(ℓ−1),

and P(2), . . . ,P(ℓ−1).

We randomly choose a vector a from Fo+t−ℓ
q and check that the kernel of∑n−ℓ

i=v+1 aiP
(i) is of dimension ℓ. For such a vector a, we define the vector

v1, . . . ,vℓ as Ker(
∑n−ℓ

i=v+1 aiP
(i)) = 〈v1, . . . ,vℓ〉. If the solutions of {(

∑n−ℓ
i=v+1 λiP

(i))vj =
0}j forms the subspace of dimension o + t − ℓ, then the basis of the subspace
give the vector sn−ℓ+1 of S ′−1.

For i ∈ {v + 1, . . . , n − ℓ} and j ∈ {1, . . . , n}, comparing the (j, n − ℓ + 1)-
th coordinate of the representing matrices with respect to the first o + t − ℓ
components of S ′−1 ◦ P ◦ T ′−1 = F ′, we have

e⊤j {P (i) + si,n−ℓ+1P
(n−ℓ+1)}tn−ℓ+1 = 0. (8)

Since the equations (8) are (o + t − ℓ)n linear equations in n − ℓ − 1 variables,
the vector tn−ℓ+1 can be computed by Gaussian elimination.

Thus we can obtain the matrix T ′
(ℓ) such that the (n − ℓ + 1)-th column is

tn−ℓ+1 and the other columns are e1, . . . , en−ℓ, en−ℓ+2, . . . , en, and the matrix
S ′
(ℓ) such that the ℓ-th column is sℓ and the other columns are ev+1, . . . , eℓ−1, eℓ+1, . . . , en.

Define P(ℓ) = S ′
(ℓ) ◦P(ℓ−1) ◦ T ′

(ℓ). Then, for the first o+ t− ℓ components of P(ℓ),
its last ℓ columns and its last ℓ rows are zero.

By repeating the above operation recursively, tv+o+1, . . . tn will be computed.

Finally, T ′−1 will be computed. As shown in Figure 11, define T
′
= T(1) ◦

· · · ◦ T(m) and T
′′
such that T ′−1 = T

′
T

′′
. Then, we have

S ′−1 ◦ P ◦ T ′
= F ′ ◦ T ′′−1

. (9)

The left hand of equation (9) is revealed in this point. The first o quadratic
maps of (9) is a public key of UOV with parameter (q, v, o) when restricting the
domain to {(x1, . . . , xv+o, 0, . . . , 0) | xi ∈ Fq}.

Therefore, we can compute a pre-image of P by the Direct attack against
UOV of the form (9). Alternatively, applying a key recovery attack against UOV,

we can recover T
′′−1

. Then, our attack becomes a key recovery attack. This is
the outline of our attack against 2-layer TriRainbow version 1.

I T 1 T 2

0 I T 3

0 0
0
T 4

T ′−1

I 0 T 2

0 I T 3

0 0
0
T 4

T
′

I T 1 0

0 I 0

0 0
0

0

T
′′

Fig. 11. A decompositon of equivalent key T ′
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Remark 1 Let (q, v, o, t) be a 2-layer TriRainbow version 1 parameter and put
n = v + o + t and m = o + t. For d ∈ N and v + o + 1 ≤ ℓ ≤ n, we can add d
dummy layers to the triangular layers of 2-layer TriRainbow in the ℓ-th position
as follows. The central map of 2-layer TriRainbow with d dummy layers is

(F (v+1), . . . ,F (ℓ−1),F (ℓ+d), . . . ,F (n+d)),

and other secret keys are two invertible linear maps T : Fn+d → Fn+d and S :
Fm → Fm (see Section 3.2). Moreover, the public key is P := S◦F ◦T . Then, our
attack is still valid for 2-layer TriRainbow with such a dummy modifier. Indeed,
after our attack recovers quadratic maps F (ℓ+d), . . . ,F (n+d) as the same way
above, we find a ∈ Fℓ−v−1

q such that V := Ker(
∑ℓ−1

i=v+1 aiP
(i)) is of dimension

n− ℓ+d+1 and the solution space of {(
∑n−ℓ

i=v+1 λiP
(i))vj = 0}j is of dimension

ℓ−v−1 where V = 〈v1, . . . ,vn−ℓ+d+1〉. Then, we obtain the vector sℓ−1 and solve
linear equations (8) for the vectors tℓ, . . . , tℓ+d−1 in succession. The remaining
process is also the way in this subsection.

4.2 Our key recovery attack against 2-layer TriRainbow version 2

In this subsection, we propose a key recovery attack for 2-layer TriRainbow
version 2. In our attack, the second UOV layer will be computed by the Simple
attack. Then, the first triangular layer will be recovered in a similar way as the
attack against the second layer of 2-layer TriRainbow version 1.

By the structure of central map F of 2-layer TriRainbow version 2, we have
the following properties:

– P(x) = 0 for x ∈ T −1O and
– P ′(x, y) ∈ SW for x ∈ T −1O, y ∈ Fn

q .

Then, these properties are represented as the diagram in Figure 12.

Fn
q T −1Tri T −1O

Fm
q S−1W {0}

P P
P

P′
y

Fig. 12. The diagram of P and P ′
y of 2-layer TriRainbow version 2

Figure 12 is the same as Figure 4 in the place used for the Simple attack.
Therefore, we can apply the Simple attack to 2-layer TriRainbow version 2 and
x ∈ T −1O is recovered. The outline of the algorithm is as follows:

1. Choose y ∈ Fn
q uniformly randomly.

2. By using P ′
y(x) = 0, eliminate m variables in x.
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3. Solve quadratic equations P(x) = 0.
4. If there is no solution in the equations, return to 1.

Next, we recover S′ by using x ∈ T −1O as follows. Let the first t vectors of
(S′−1)⊤ be s1, . . . , st. By the definition of equivalent key S′ and W, the space
(SW)⊥ is spanned by s1, . . . , st. Then, by Figure 12, we have s⊤i P ′(x, y) = 0 for
i ∈ {1, . . . , t} and y ∈ Fn

q . Especially, for i ∈ {1, . . . , t} and j ∈ {1, . . . , n}, we
have

s⊤i P ′(x, ej) = 0. (10)

For i ∈ {1, . . . , t}, equations (10) are linear equations in the variables si. By
solving the equations for all i ∈ {1, . . . , t}, the secret key S′ will be recovered.

The last o vectors of T ′−1 be computed using S′ as follows. For i ∈ {1, . . . , t},
j ∈ {1, . . . , n} and x′ ∈ Fn

q , we have

s⊤i P ′(x′, ej) = 0. (11)

The equations 11 are linear equations in the variables x′. By solving the equa-
tions, a basis of T −1O is obtained. Applying Gaussian elimination, the last o
vectors of T ′−1 can be computed.

Finally, we compute tv+1, . . . tv+t from tv+t to tv+1 inductively.
First, we compute tv+t as follows. For k ∈ {v + 1, . . . , v + t − 1}, i ∈ V ,

j = v + t, comparing the (i, j)-th coordinate of the representing matrix of the
k-th quadratic map of S ′−1 ◦ P ◦ T ′−1 = F ′, we have

e⊤i {P (k) +
∑

h∈Tri

sk,hP
(h)}tv+t = 0. (12)

For all k ∈ {v + 1, . . . , v + t− 1}, i ∈ V , solving equations (12), the vector tv+t

is obtained.
We assume that tv+t, . . . tv+t−l+1 are recovered and we show the way to

compute tv+t−l from these vectors. For k ∈ {v + 1, . . . , v + t − l}, i ∈ V , j =
v+ t− l+1, comparing the (i, j)-th coordinate of the representing matrix of the
k-th quadratic map of S ′−1 ◦ P ◦ T ′−1 = F ′, we have

e⊤i {P (k) +
∑

h∈Tri

sk,hP
(h)}tv+t−l+1 = 0. (13)

In addition, for k ∈ {v + t − l + 1, . . . , v + t − 1}, i ∈ {k + 1, . . . , v + t}, j =
v+ t− l+1, comparing the (i, j)-th coordinate of the representing matrix of the
k-th quadratic map of S ′−1 ◦ P ◦ T ′−1 = F ′, we have

e⊤i {P (k) +
∑

h∈Tri

sk,hP
(h)}tv+t−l+1 = 0. (14)

The equations (13) and (14) are (t − l)v +
∑v+t−1

k=v+t−l+1(v + t − k) = (t − l)v +
l(l − 1)/2 linear equations in v + t − l variables tv+t−l+1. Since we have (t −
l)v+ l(l− 1)/2 ≥ v+ t− l for all 2 ≤ l ≤ t in the parameter proposed by [6], the
vector tv+t−l+1 can be computed by Gaussian elimination.
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By repeating the above operation recursively, tv+1, . . . tv+t will be computed.
In the above procedure, the equivalent key S ′, T ′ are computed. By comput-

ing F ′ = S ′−1 ◦ P ◦ T ′−1, the quadratic map F ′ is also recovered. This is the
outline of our attack for 2-layer TriRainbow version 2.

Remark 2 By the same argument as Remark 1, our attack is still valid for 2-
layer TriRainbow version with a dummy modifier in Remark 1 to the triangular
layer.

5 Cryptanalysis

In this section, for our attack presented in the previous section, we provide a
complexity estimation for the 2-layer TriRainbow parameters proposed in [6]

5.1 Complexity estimation for 2-layer TriRainbow version 1

We estimate the complexity of our attack against 2-layer TriRainbow version 1.
In our attack against the second layer, the dominant part is to find the vector

v such that the solution space of (
∑n

i=v+1 λiP
(i))v = 0 is of dimension o+ t− 1

and is estimated by O((n2 + n3/6)q) in [5]. Our attack against the first layer is
an attack against UOV of the form (9). The other parts are at most O(n4) since
only linear equations are solved.

When we use the Direct attack as an attack against UOV with a parameter
(q, v, o), the complexity is estimated by

O

((
o− 1 +D

D

)2(
o+ 1

2

))
. (15)

Here, D ∈ N is the minimal degree of terms whose coefficient is non-positive in
the series (1− t2)o(1− t)−o.

When we use the Intersection attack [1] as an attack against UOV with a
parameter (q, v, o), we solve M :=

(
k+1
2

)
o − 2

(
k
2

)
quadratic equations in N :=

k(v+o)−(2k−1)o variables where k ∈ N such that (k−1)(v+o)−(2k−1)o > 0.
Then, the complexity is estimated by

O

((
N − 1 +D

D

)2(
N + 1

2

))
. (16)

Here, D ∈ N is the minimal degree of terms whose coefficient is non-positive in
the series (1− t2)M (1− t)−N .

Table 1 shows the complexity of our attack for 2-layer TriRainbow version
1 and the security level asserted in [6]. Therefore, 2-layer TriRainbow version
1 does not satisfy the security level asserted in [6] for known attacks against
Rainbow.
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Table 1. Comparing the complexity of our attack for 2-layer TriRainbow version 1
and the security level (SL) in [6]

SL q v o t Complexity of our attack Asserted SL in [6]

1 16 36 32 34 232 2145

3 256 68 32 50 2109 2207

5 256 96 36 66 2118 2272

5.2 Complexity estimation for 2-layer TriRainbow version 2

We estimate the complexity of our attack for 2-layer TriRainbow version 2.
In our attack against the second layer, the dominant part is the complexity

of computing x ∈ T −1O. Then, we solve m quadratic equations in v variables
and the complexity is estimated by

O

((
v − 1 +D

D

)2(
v + 1

2

))
. (17)

Here, D ∈ N is the minimal degree of terms whose coefficient is non-positive in
the series (1− t2)m(1− t)−v.

In our attack against the first layer, the dominant part is to find the vector
v such that the solution space of (

∑v+o
i=v+1 λiP

(i))v = 0 is of dimension o+ t− 1
and is estimated by O(((v + o)2 + (v + o)3/6)q) in [5]. The other parts are at
most O(n4) since only linear equations are solved.

Table 2 shows the complexity of our attack for 2-layer TriRainbow version
2 and the security level asserted in [6]. Therefore, 2-layer TriRainbow version 2
does not satisfy the security level asserted in [6].

Table 2. Comparing the complexity of our attack for 2-layer TriRainbow version 2
and the security level (SL) in [6]

SL q v t o Complexity of our attack Asserted SL in [6]

1 16 36 34 32 270 2145

3 256 68 34 48 2157 2207

5 256 96 38 64 2248 2272

5.3 Experiments

In this subsection, we perform an experiment on our attack against SL1 TriRain-
bow version 1. The experiments were performed by using Magma V2.24-5[3] on
a 2.3 GHz Intel Core i7 CPU.
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In the paper [6], Ganguly and Saxena provide cryptanalysis against their
scheme and propose some parameters for satisfying the security level in the
NIST PQC standardization project. They first take the parameter as the same
as Rainbow and add some dummy layers to it for mitigating a partial key recovery
against the upper layer as an option. For example, they add two dummy layers
to the SL1 Rainbow parameter (q, v, o, t) = (16, 36, 32, 32) and give (q, v, o, t) =
(16, 36, 32, 34) as their SL1 TriRainbow parameter. Then, their discussion for the
complexity estimation does not need such a dummy modifier and the security
of their parameters essentially depends on a parameter set based on Rainbow
(see also Remark 1 and 2). Therefore we consider the security of their scheme
without the dummy modifier.

Table 3 shows an experimental result for our key recovery attack against
2-layer TriRainbow version 1 with (q, v, o, t) = (16, 36, 32, 32). Our experiment
is the average timing of 20 experiments for the parameter. In the complexity
estimation [6], the parameter attains the 128 bits security. However, Table 3
shows that our attack breaks the parameter in a few minutes. Note that we
confirm our attack also breaks SL1 TriRainbow version 1 with two dummy layers
as in Remark 1 in almost the same time as in Table 3.

Table 3. The average, the maximum, and the minimum of 20 experiments on our
attack against 2-layer TriRainbow version 1 with (q, v, o, t) = (16, 36, 32, 32).

Our attack 2nd Layer (sec) 1st Layer (sec) Total (sec)

Average 72.1 220.8 292.9
Maximum 81.4 235.8 307.0
Minimum 64.9 205.0 276.5

6 Conclusion

In this paper, we propose new efficient attacks against 2-layer TriRainbow.
Our attack uses the High rank attack for the triangular layer, and the Di-
rect attack, the Intersection attack or the Simple attack for the UOV layer.
Then, the complexities of the TriRainbow version 1 parameters (q, v, o, t) =
(16, 36, 32, 34), (256, 68, 32, 50) and (256, 96, 36, 66) proposed by Ganguly and
Saxena for satisfying 145, 207 and 272 bits security are about 32, 109 and 118
bits, respectively. Moreover, the complexities of the TriRainbow version 2 param-
eters (q, v, t, o) = (16, 36, 34, 32), (256, 68, 34, 48) and (256, 96, 38, 64) proposed
by Ganguly and Saxena for satisfying 145, 207 and 272 bits security are about
70, 157 and 275 bits, respectively.

As future work, we will investigate the multi-layer TriRainbow for both ver-
sions.
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